共查询到20条相似文献,搜索用时 0 毫秒
1.
Cyclic AMP receptor protein (CRP) plays a key role in the regulation of more than 150 genes. CRP is allosterically activated by cyclic AMP and binds to specific DNA sites. A structural understanding of this allosteric conformational change, which is essential for its function, is still lacking because the structure of apo-CRP has not been solved. Therefore, we performed various NMR experiments to obtain apo-CRP structural data. The secondary structure of apo-CRP was determined by analyses of the NOE connectivities, the amide proton exchange rates, and the (1)H-(15)N steady-state NOE values. A combination of the CSI-method and TALOS prediction was also used to supplement the determination of the secondary structure of apo-CRP. This secondary structure of apo-CRP was compared with the known structure of cyclic AMP-bound CRP. The results suggest that the allosteric conformational change of CRP caused by cyclic AMP binding involves subunit realignment and domain rearrangement, resulting in the exposure of helix F onto the surface of the protein. Additionally, the results of the one-dimensional [(13)C]carbonyl NMR experiments show that the conformational change of CRP caused by the binding of cyclic GMP, an analogue of cyclic AMP, is different from that caused by cyclic AMP binding. 相似文献
2.
3.
Interdomain interaction of apo-cyclic AMP receptor protein (apo-CRP) was qualified using its isolated domains. The cAMP-binding domain was prepared by a limited proteolysis, while the DNA-binding domain was constructed as a recombinant protein. Three different regions making interdomain contacts in apo-CRP were identified by a sequence-specific comparison of the HSQC spectra. The results indicated that apo-CRP possesses characteristic modules of interdomain interaction that are properly organized to suppress activity and to sense and transfer the cAMP binding signals. Particularly, the inertness of the DNA-binding motif in apo-CRP was attributable to the participation of F-helices in the interdomain contacts. 相似文献
4.
5.
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix. 相似文献
6.
A monoclonal antibody that inhibits cyclic AMP binding by the Escherichia coli cyclic AMP receptor protein 总被引:3,自引:0,他引:3
The monoclonal antibody (mAb) 64D1 was found to inhibit cAMP binding by the cAMP receptor protein (CRP) from Escherichia coli (Li, X.-M., and Krakow, J. S. (1985) J. Biol. Chem. 260, 4378-4383). CRP is relatively resistant to attack by the Staphylococcus aureus V8 protease, chymotrypsin, trypsin, and subtilisin whereas both mAb 64D1-CRP and cAMP-CRP are attacked by these proteases yielding N-terminal core fragments. The fragment patterns resulting from proteolysis of mAb 64D1-CRP and cAMP-CRP differ indicating that the CRP in each complex is in a different conformation. The data presented indicate that the preferred conformation of the antigenic site for mAb 64D1 is present in unliganded CRP. Binding of mAb 64D1 to CRP is inhibited at high cAMP concentration. Formation of a stable cAMP-CRP-lac P+-RNA polymerase open promoter complex resistant to dissociation by mAb 64D1 occurs at a much lower cAMP concentration. The observed increase in resistance to mAb 64D1 may reflect a possible conformational change in CRP effected by contact with RNA polymerase in the open promoter complex. 相似文献
7.
8.
9.
Superhelical pBR 322 derivatives have been relaxed by eukaryotic topoisomerase I in the presence or in the absence of E. coli cyclic AMP receptor protein (CRP) and of cyclic AMP (cAMP). CRP alone, or cAMP alone do not affect the average linking number of the distribution of the relaxed topoisomers. Hence, they do not unwind the template. In the presence of cAMP, CRP induces a small unwinding. The extent of this unwinding is barely modified when the relaxation is carried out on a similar vector plasmid where the CRP binding site of the lac or of the gal operon has been inserted. Under these conditions, we checked that CRP occupies the lactose control site and that upon addition of RNA polymerase, the corresponding promoter is readily activated. These findings are difficult to reconcile with the proposal that activation of these promoters results from the binding of the CRP-cAMP complex to left-handed DNA sequences. 相似文献
10.
11.
The amount of asparaginase II in an Escherichia coli wild-type strain (cya+, crp+) markedly increased upon a shift from aerobic to anaerobic growth. However, no such increase occurred in a mutant (cya) lacking cyclic AMP synthesis unless supplemented with exogenous cyclic AMP. Since a mutant (crp) deficient in cyclic AMP receptor protein also did not support the anaerobic formation of this enzyme, it is concluded that the formation of E. coli asparaginase II depends on both cyclic AMP and cyclic AMP receptor protein. 相似文献
12.
Activation of the cAMP receptor protein (CRP) from Escherichia coli is highly specific to its allosteric ligand, cAMP. Ligands such as adenosine and cGMP, which are structurally similar to cAMP, fail to activate wild-type CRP. However, several cAMP-independent CRP variants (termed CRP*) exist that can be further activated by both adenosine and cGMP, as well as by cAMP. This has remained a puzzle because the substitutions in many of these CRP* variants lie far from the cAMP-binding pocket (>10 A) and therefore should not directly affect that pocket. Here we show a surprising similarity in the altered ligand specificity of four CRP* variants with a single substitution in D53S, G141K, A144T, or L148K, and we propose a common basis for this phenomenon. The increased active protein population caused by an equilibrium shift in these variants is hypothesized to preferentially stabilize ligand binding. This explanation is completely consistent with the cAMP specificity in the activation of wild-type CRP. The model also predicts that wild-type CRP should be activated even by the lower-affinity ligand, adenosine, which we experimentally confirmed. The study demonstrates that protein equilibrium is an integral factor for ligand specificity in an allosteric protein, in addition to the direct effects of ligand pocket residues. 相似文献
13.
Abnormally high rate of cyclic AMP excretion from an Escherichia coli mutant deficient in cyclic AMP receptor protein 总被引:16,自引:0,他引:16
K Potter G Chaloner-Larsson H Yamazaki 《Biochemical and biophysical research communications》1974,57(2):379-385
By labeling adenosine 3′, 5′-cyclic monophosphate (cyclic AMP) with [32P] phosphate and chromatographing it on a thin-layer alumina plate, we have determined the extra- and intracellular amounts of cyclic AMP in an CRP? mutant (deficient in a cyclic AMP receptor protein) and its isogenic CRP+ cell. The CRP? cell was found to excrete cyclic AMP at an abnormally high rate as compared to the CRP+ cell when growing on glucose or glycerol, which can be correlated with the abnormally high intracellular levels of cyclic AMP in the CRP? cell. 相似文献
14.
15.
16.
How cyclic AMP and its receptor protein act in Escherichia coli 总被引:24,自引:0,他引:24
17.
18.
19.
Marcin Wasylewski Jedrzej Ma?ecki Zygmunt Wasylewski 《Journal of Protein Chemistry》1995,14(5):299-308
Time-resolved, steady-state fluorescence and fluorescence-detected circular dichroism (FDCD) have been used to resolve the fluorescence contributions of the two tryptophan residues, Trp-13 and Trp-85, in the cyclic AMP receptor protein (CRP). The iodide and acrylamide quenching data show that in CRP one tryptophan residue, Trp-85, is buried within the protein matrix and the other, Trp-13, is moderately exposed on the surface of the protein. Fluorescence-quenching-resolved spectra show that Trp-13 has emission at about 350 nm and contributes 76–83% to the total fluorescence emission. The Trp-85, unquenchable by iodide and acrylamide, has the fluorescence emission at about 337 nm. The time-resolved fluorescence measurements show that Trp-13 has a longer fluorescence decay time. The Trp-85 exhibits a shorter fluorescence decay time. In the CRP-cAMP complex the Trp-85, previously buried in the apoprotein becomes totally exposed to the iodide and acrylamide quenchers. The FDCD spectra indicate that in the CRP-cAMP complex Trp-85 remains in the same environment as in the protein alone. It has been proposed that the binding of cAMP to CRP is accompanied by a hinge reorientation of two protein domains. This allows for penetration of the quencher molecules into the Trp-85 residue previously buried in the protein matrix.Abbreviations CRP
cyclic AMP receptor protein
- NATA
N-acetyltryptophanamide
- FQRS
fluorescence-quenching-resolved spectra
- FDCD
fluorescence-detected circular dichroism
- EDTA
ethylenediaminetetraacetic acid
- SDS
sodium dodecyl sulfate
- FPLC
fast protein liquid chromatography 相似文献