首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The in vitro activation of the [FeFe] hydrogenase is accomplished by combining Escherichia coli cell extracts containing the heterologously expressed inactive HydA with extracts in which hydrogenase-specific maturation proteins HydE, HydF, and HydG are expressed in concert. Interestingly, the process of HydA activation occurs rapidly and in the absence of potential substrates, which suggests that the hydrogenase accessory proteins synthesize an H-cluster precursor that can be quickly transferred to the hydrogenase enzyme to affect activation. HydA activity is observed to be dependent on the protein fraction containing all three accessory proteins expressed in concert and cannot be accomplished with addition of heat-treated extract or extract filtrate, suggesting that the activation of the hydrogenase structural protein is mediated by interaction with the accessory assembly protein(s). These results represent the first important step in understanding the process of H-cluster assembly and provide significant insights into hydrogenase maturation. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

2.
Molecular hydrogen (H2) can be produced in green microalgae by [FeFe]‐hydrogenases as a direct product of photosynthesis. The Chlamydomonas reinhardtii hydrogenase HYDA1 contains a catalytic site comprising a classic [4Fe4S] cluster linked to a unique 2Fe sub‐cluster. From in vitro studies it appears that the [4Fe4S] cluster is incorporated first by the housekeeping FeS cluster assembly machinery, followed by the 2Fe sub‐cluster, whose biosynthesis requires the specific maturases HYDEF and HYDG. To investigate the maturation process in vivo, we expressed HYDA1 from the C. reinhardtii chloroplast and nuclear genomes (with and without a chloroplast transit peptide) in a hydrogenase‐deficient mutant strain, and examined the cellular enzymatic hydrogenase activity, as well as in vivo H2 production. The transformants expressing HYDA1 from the chloroplast genome displayed levels of H2 production comparable to the wild type, as did the transformants expressing full‐length HYDA1 from the nuclear genome. In contrast, cells equipped with cytoplasm‐targeted HYDA1 produced inactive enzyme, which could only be activated in vitro after reconstitution of the [4Fe4S] cluster. This indicates that the HYDA1 FeS cluster can only be built by the chloroplastic FeS cluster assembly machinery. Further, the expression of a bacterial hydrogenase gene, CPI, from the C. reinhardtii chloroplast genome resulted in H2‐producing strains, demonstrating that a hydrogenase with a very different structure can fulfil the role of HYDA1 in vivo and that overexpression of foreign hydrogenases in C. reinhardtii is possible. All chloroplast transformants were stable and no toxic effects were seen from HYDA1 or CPI expression.  相似文献   

3.
The role of accessory Fe-S clusters of the F-domain in the catalytic activity of M3-type [FeFe] hydrogenase and the contribution of each of the two Fe-S surface clusters in the intermolecular electron transfer from ferredoxin are both poorly understood. We designed, constructed, produced and spectroscopically, electrochemically and biochemically characterized three mutants of Clostridium acetobutylicum CaHydA hydrogenase with modified Fe-S clusters: two site-directed mutants, HydA_C100A and HydA_C48A missing the FS4C and the FS2 surface Fe-S clusters, respectively, and a HydA_ΔDA mutant that completely lacks the F-domain. Analysis of the mutant enzyme activities clearly demonstrated the importance of accessory clusters in retaining full enzyme activity at potentials around and higher than the equilibrium 2H+/H2 potential but not at the lowest potentials, where all enzymes have a similar turnover rate. Moreover, our results, combined with molecular modelling approaches, indicated that the FS2 cluster is the main gate for electron transfer from reduced ferredoxin.  相似文献   

4.

Background

The realization of hydrogenase-based technologies for renewable H2 production is presently limited by the need for scalable and high-yielding methods to supply active hydrogenases and their required maturases.

Principal Findings

In this report, we describe an improved Escherichia coli-based expression system capable of producing 8–30 mg of purified, active [FeFe] hydrogenase per liter of culture, volumetric yields at least 10-fold greater than previously reported. Specifically, we overcame two problems associated with other in vivo production methods: low protein yields and ineffective hydrogenase maturation. The addition of glucose to the growth medium enhances anaerobic metabolism and growth during hydrogenase expression, which substantially increases total yields. Also, we combine iron and cysteine supplementation with the use of an E. coli strain upregulated for iron-sulfur cluster protein accumulation. These measures dramatically improve in vivo hydrogenase activation. Two hydrogenases, HydA1 from Chlamydomonas reinhardtii and HydA (CpI) from Clostridium pasteurianum, were produced with this improved system and subsequently purified. Biophysical characterization and FTIR spectroscopic analysis of these enzymes indicate that they harbor the H-cluster and catalyze H2 evolution with rates comparable to those of enzymes isolated from their respective native organisms.

Significance

The production system we describe will facilitate basic hydrogenase investigations as well as the development of new technologies that utilize these prolific H2-producing enzymes. These methods can also be extended for producing and studying a variety of oxygen-sensitive iron-sulfur proteins as well as other proteins requiring anoxic environments.  相似文献   

5.
The large subunit HoxC of the H2-sensing [NiFe] hydrogenase from Ralstonia eutropha was purified without its small subunit. Two forms of HoxC were identified. Both forms contained iron but only substoichiometric amounts of nickel. One form was a homodimer of HoxC whereas the second also contained the Ni-Fe site maturation proteins HypC and HypB. Despite the presence of the Ni-Fe active site in some of the proteins, both forms, which lack the Fe-S clusters normally present in hydrogenases, cannot activate hydrogen. The incomplete insertion of nickel into the Ni-Fe site provides direct evidence that Fe precedes Ni in the course of metal center assembly.  相似文献   

6.
Hydrogenases are enzymes involved in hydrogen metabolism, utilizing H2 as an electron source. [NiFe] hydrogenases are heterodimeric Fe-S proteins, with a large subunit containing the reaction center involving Fe and Ni metal ions and a small subunit containing one or more Fe-S clusters. Maturation of the [NiFe] hydrogenase involves assembly of nonproteinaceous ligands on the large subunit by accessory proteins encoded by the hyp operon. HypE is an essential accessory protein and participates in the synthesis of two cyano groups found in the large subunit. We report the crystal structure of Escherichia coli HypE at 2.0-Å resolution. HypE exhibits a fold similar to that of PurM and ThiL and forms dimers. The C-terminal catalytically essential Cys336 is internalized at the dimer interface between the N- and C-terminal domains. A mechanism for dehydration of the thiocarbamate to the thiocyanate is proposed, involving Asp83 and Glu272. The interactions of HypE and HypF were characterized in detail by surface plasmon resonance and isothermal titration calorimetry, revealing a Kd (dissociation constant) of ~400 nM. The stoichiometry and molecular weights of the complex were verified by size exclusion chromatography and gel scanning densitometry. These experiments reveal that HypE and HypF associate to form a stoichiometric, hetero-oligomeric complex predominantly consisting of a [EF]2 heterotetramer which exists in a dynamic equilibrium with the EF heterodimer. The surface plasmon resonance results indicate that a conformational change occurs upon heterodimerization which facilitates formation of a productive complex as part of the carbamate transfer reaction.  相似文献   

7.
于瑞嵩  宗文明  周志华 《微生物学报》2011,51(11):1468-1475
摘要:【目的】探讨一种构建异源表达【FeFe】氢酶的重组大肠杆菌的新方法。【方法】通过同源重组,依次将来源于丙酮丁醇梭菌中促进【FeFe】氢酶成熟的3 个辅助基因hydE、hydF 和hydG 分别整合到大肠杆菌BW2513-10(缺失氢酶基因) 的丙酮酸甲酸脱氢酶(ybiW)、乳酸脱氢酶(ldh) 和乙醇脱氢酶(adhE) 编码基因位点上。在此基础上进一步将含有来源于丁酸梭菌的氢酶基因的表达载体转化上述重组菌,并对转化子的氢酶活性进行分析。【结果】PCR 和RT-PCR 的检测结果表明,3 个辅助基因都  相似文献   

8.
The [NiFe] centers at the active sites of the Escherichia coli hydrogenase enzymes are assembled by a team of accessory proteins that includes the products of the hyp genes. To determine whether any other proteins are involved in this process, the sequential peptide affinity system was used. The analysis of the proteins in a complex with HypB revealed the peptidyl-prolyl cis/trans-isomerase SlyD, a metal-binding protein that has not been previously linked to the hydrogenase biosynthetic pathway. The association between HypB and SlyD was confirmed by chemical cross-linking of purified proteins. Deletion of the slyD gene resulted in a marked reduction of the hydrogenase activity in cell extracts prepared from anaerobic cultures, and an in-gel assay was used to demonstrate diminished activities of both hydrogenase 1 and 2. Western analysis revealed a decrease in the final proteolytic processing of the hydrogenase 3 HycE protein, indicating that the metal center was not assembled properly. These deficiencies were all rescued by growth in medium containing excess nickel, but zinc did not have any phenotypic effect. Experiments with radioactive nickel demonstrated that less nickel accumulated in DeltaslyD cells compared with wild type, and overexpression of SlyD from an inducible promoter doubled the level of cellular nickel. These experiments demonstrate that SlyD has a role in the nickel insertion step of the hydrogenase maturation pathway, and the possible functions of SlyD are discussed.  相似文献   

9.
HydF as a scaffold protein in [FeFe] hydrogenase H-cluster biosynthesis   总被引:1,自引:0,他引:1  
In an effort to determine the specific protein component(s) responsible for in vitro activation of the [FeFe] hydrogenase (HydA), the individual maturation proteins HydE, HydF, and HydG from Clostridium acetobutylicum were purified from heterologous expressions in Escherichia coli. Our results demonstrate that HydF isolated from a strain expressing all three maturation proteins is sufficient to confer hydrogenase activity to purified inactive heterologously expressed HydA (expressed in the absence of HydE, HydF, and HydG). These results represent the first in vitro maturation of [FeFe] hydrogenase with purified proteins, and suggest that HydF functions as a scaffold upon which an H-cluster intermediate is synthesized.  相似文献   

10.
11.

Background

The hydrogenosomes of the anaerobic ciliate Nyctotherus ovalis show how mitochondria can evolve into hydrogenosomes because they possess a mitochondrial genome and parts of an electron-transport chain on the one hand, and a hydrogenase on the other hand. The hydrogenase permits direct reoxidation of NADH because it consists of a [FeFe] hydrogenase module that is fused to two modules, which are homologous to the 24 kDa and the 51 kDa subunits of a mitochondrial complex I.

Results

The [FeFe] hydrogenase belongs to a clade of hydrogenases that are different from well-known eukaryotic hydrogenases. The 24 kDa and the 51 kDa modules are most closely related to homologous modules that function in bacterial [NiFe] hydrogenases. Paralogous, mitochondrial 24 kDa and 51 kDa modules function in the mitochondrial complex I in N. ovalis. The different hydrogenase modules have been fused to form a polyprotein that is targeted into the hydrogenosome.

Conclusion

The hydrogenase and their associated modules have most likely been acquired by independent lateral gene transfer from different sources. This scenario for a concerted lateral gene transfer is in agreement with the evolution of the hydrogenosome from a genuine ciliate mitochondrion by evolutionary tinkering.  相似文献   

12.
[NiFe] hydrogenases are metalloenzymes involved in many biological processes concerning the metabolism of hydrogen. The maturation of the large subunit of these hydrogenases requires the cleavage of a peptide at the C terminus by an endopeptidase before the final formation of the [NiFe] metallocenter. HycI is an endopeptidase of the M52 family and responsible for the C-terminal cleavage of the large subunit of hydrogenase 3 in Escherichia coli. Although extensive studies were performed, the molecular mechanism of recognition and cleavage of hydrogenase 3 remains elusive. Herein, we report the solution structure of E. coli HycI determined by high resolution nuclear magnetic resonance spectroscopy. This is the first solution structure of the apo form of endopeptidase of the M52 family reported thus far. The overall structure is similar to the crystal structure of holo-HybD in the same family. However, significant diversity was observed between the two structures. Especially, HycI shows an open conformation at the putative nickel-binding site, whereas HybD adopts a closed conformation. In addition, we performed backbone dynamic studies to probe the motional properties of the apo form of HycI. Furthermore, the metal ion titration experiments provide insightful information on the substrate recognition and cleavage processes. Taken together, our current structural, biochemical, and dynamic studies extend the knowledge of the M52 family proteins and provide novel insights into the biological function of HycI.  相似文献   

13.
Since the discovery that, despite the active site complexity, only three gene products suffice to obtain active recombinant [FeFe]-hydrogenase, significant light has been shed on this process. Both the source of the CO and CN(-) ligands to iron and the assembly site of the catalytic subcluster are known, and an apo structure of HydF has been published recently. However, the nature of the substrate(s) for the synthesis of the bridging dithiolate ligand to the subcluster remains to be established. From both spectroscopy and model chemistry, it is predicted that an amine function in this ligand plays a central role in catalysis, acting as a base in the heterolytic cleavage of hydrogen.  相似文献   

14.
Magalon A  Böck A 《FEBS letters》2000,473(2):254-258
The steps in the maturation of the precursor of the large subunit (pre-HycE) of hydrogenase 3 from Escherichia coli taking place after incorporation of both iron and nickel were investigated. Pre-HycE could be matured and processed in the absence of the small subunit but association with the cytoplasmic membrane required heterodimer formation between the two subunits. Pre-HycE formed a complex with the chaperone-like protein HypC in the absence of the small subunit and, in this complex, also incorporated nickel. For the C-terminal processing, HypC had to leave the complex since only a HypC-free, nickel-containing form of pre-HycE was a substrate for the maturation endopeptidase.  相似文献   

15.
Assembly of the active site of the [NiFe]-hydrogenase enzymes involves a multi-step pathway and the coordinated activity of many accessory proteins. To analyze complex formation between these factors in Escherichia coli, they were genomically tagged and native multi-protein complexes were isolated. This method validated multiple interactions reported in separate studies from several organisms and defined a new complex containing the putative chaperone HybG and the large subunit of hydrogenase 1 or 2. The complex also includes HypE and HypD, which interact with each other before joining the larger complex.  相似文献   

16.
Leach MR  Sandal S  Sun H  Zamble DB 《Biochemistry》2005,44(36):12229-12238
The formation of the [NiFe] metallocenter of Escherichia coli hydrogenase 3 requires the participation of proteins encoded by the hydrogenase pleiotropy operon hypABCDEF. The insertion of Ni(II) into the precursor enzyme follows the incorporation of the iron center and is the function of HypA, a Zn(II)-binding protein, and HypB, a GTPase. The Ni(II) donor and the mechanism of transfer of Ni(II) into the hydrogenase precursor protein are not known. In this study, we demonstrate that HypB is a nickel-binding protein capable of binding 1 equiv of Ni(II) with a K(d) in the sub-picomolar range. In addition, HypB has a weaker metal-binding site that is not specific for Ni(II) over Zn(II). Examination of the isolated C-terminal GTPase domain revealed that the high-affinity metal binding capability was severely abrogated but the low-affinity site was intact. By mutating conserved cysteine and histidine residues in E. coli HypB, we have localized the high-affinity Ni(II)-binding site to an N-terminal CXXCGC motif and the low-affinity metal-binding site to the GTPase domain. A model for the function of HypB during the Ni(II) loading of hydrogenase is proposed.  相似文献   

17.
18.
The present investigations deal with the modeling of the peptide surrounding of [FeFe] hydrogenase using amine containing disulphides to simulate possible influences of the amino acid lysine (K237) on the electrochemical and electrocatalytic properties of biomimetic compounds based on [Fe2S2] moieties. Fe3(CO)12 was reacted with Boc-4-amino-1,2-dithiolane, Boc-Adt-OMe (Adt = 4-amino-1,2-dithiolane-4-carboxylic acid, Boc = tert-butoxycarbonyl) and Boc-Adp tert-butyl ester (Adp = (S)-2-amino-3-(1,2-dithiolan-4-yl)propionic acid) to elongate the FeN distance in comparison to the well known [Fe2{(SCH2)2NR}(CO)6] model complexes. Efforts to deprotect the complexes containing Boc-4-amino-1,2-dithiolane with trifluoroacetic acid result in the formation of [Fe33-O)(μ-O2C2F3)6(OC4H8)2(H2O)]. The novel [2Fe2S] complexes are characterized using spectroscopic, electrochemical techniques and X-ray diffraction studies.  相似文献   

19.
Hydrogen is the central free intermediate in the degradation of wood by termite gut microbes and can reach concentrations exceeding those measured for any other biological system. Degenerate primers targeting the largest family of [FeFe] hydrogenases observed in a termite gut metagenome have been used to explore the evolution and representation of these enzymes in termites. Sequences were cloned from the guts of the higher termites Amitermes sp. strain Cost010, Amitermes sp. strain JT2, Gnathamitermes sp. strain JT5, Microcerotermes sp. strain Cost008, Nasutitermes sp. strain Cost003, and Rhyncotermes sp. strain Cost004. Each gut sample harbored a more rich and evenly distributed population of hydrogenase sequences than observed previously in the guts of lower termites and Cryptocercus punctulatus. This accentuates the physiological importance of hydrogen for higher termite gut ecosystems and may reflect an increased metabolic burden, or metabolic opportunity, created by a lack of gut protozoa. The sequences were phylogenetically distinct from previously sequenced [FeFe] hydrogenases. Phylogenetic and UniFrac comparisons revealed congruence between host phylogeny and hydrogenase sequence library clustering patterns. This may reflect the combined influences of the stable intimate relationship of gut microbes with their host and environmental alterations in the gut that have occurred over the course of termite evolution. These results accentuate the physiological importance of hydrogen to termite gut ecosystems.  相似文献   

20.
The [FeFe] hydrogenases HydA1 and HydA2 in the green alga Chlamydomonas reinhardtii catalyze the final reaction in a remarkable metabolic pathway allowing this photosynthetic organism to produce H(2) from water in the chloroplast. A [2Fe-2S] ferredoxin is a critical branch point in electron flow from Photosystem I toward a variety of metabolic fates, including proton reduction by hydrogenases. To better understand the binding determinants involved in ferredoxin:hydrogenase interactions, we have modeled Chlamydomonas PetF1 and HydA2 based on amino-acid sequence homology, and produced two promising electron-transfer model complexes by computational docking. To characterize these models, quantitative free energy calculations at atomic resolution were carried out, and detailed analysis of the interprotein interactions undertaken. The protein complex model we propose for ferredoxin:HydA2 interaction is energetically favored over the alternative candidate by 20 kcal/mol. This proposed model of the electron-transfer complex between PetF1 and HydA2 permits a more detailed view of the molecular events leading up to H(2) evolution, and suggests potential mutagenic strategies to modulate electron flow to HydA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号