首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Aims

A commonly accepted challenge when visualising plant roots in X-ray micro Computed Tomography (μCT) images is the similar X-ray attenuation of plant roots and soil phases. Soil moisture content remains a recognised, yet currently uncharacterised source of segmentation error. This work sought to quantify the effect of soil moisture content on the ability to segment roots from soil in μCT images.

Methods

Rice (Oryza sativa) plants grown in contrasting soils (loamy sand and clay loam) were μCT scanned daily for nine days whilst drying from saturation. Root volumes were segmented from μCT images and compared with volumes derived by root washing.

Results

At saturation the overlapping attenuation values of root material, water-filled soil pores and soil organic matter significantly hindered segmentation. However, in dry soil (ca. six days of drying post-saturation) the air-filled pores increased image noise adjacent to roots and impeded accurate visualisation of root material. The root volume was most accurately segmented at field capacity.

Conclusions

Root volumes can be accurately segmented from μCT images of undisturbed soil without compromising the growth requirements of the plant providing soil moisture content is kept at field capacity. We propose all future studies in this area should consider the error associated with scanning at different soil moisture contents.  相似文献   

2.
Adventitious rooting contributes to efficient phosphorus acquisition by enhancing topsoil foraging. However, metabolic investment in adventitious roots may retard the development of other root classes such as basal roots, which are also important for phosphorus acquisition. In this study we quantitatively assessed the potential effects of adventitious rooting on basal root growth and whole plant phosphorus acquisition in young bean plants. The geometric simulation model SimRoot was used to dynamically model root systems with varying architecture and C availability growing for 21 days at 3 planting depths in 3 soil types with contrasting nutrient mobility. Simulated root architectures, tradeoffs between adventitious and basal root growth, and phosphorus acquisition were validated with empirical measurements. Phosphorus acquisition and phosphorus acquisition efficiency (defined as mol phosphorus acquired per mol C allocated to roots) were estimated for plants growing in soil in which phosphorus availability was uniform with depth or was greatest in the topsoil, as occurs in most natural soils. Phosphorus acquisition and acquisition efficiency increased with increasing allocation to adventitious roots in stratified soil, due to increased phosphorus depletion of surface soil. In uniform soil, increased adventitious rooting decreased phosphorus acquisition by reducing the growth of lateral roots arising from the tap root and basal roots. The benefit of adventitious roots for phosphorus acquisition was dependent on the specific respiration rate of adventitious roots as well as on whether overall C allocation to root growth was increased, as occurs in plants under phosphorus stress, or was lower, as observed in unstressed plants. In stratified soil, adventitious rooting reduced the growth of tap and basal lateral roots, yet phosphorus acquisition increased by up to 10% when total C allocation to roots was high and adventitious root respiration was similar to that in basal roots. With C allocation to roots decreased by 38%, adventitious roots still increased phosphorus acquisition by 5%. Allocation to adventitious roots enhanced phosphorus acquisition and efficiency as long as the specific respiration of adventitious roots was similar to that of basal roots and less than twice that of tap roots. When adventitious roots were assigned greater specific respiration rates, increased adventitious rooting reduced phosphorus acquisition and efficiency by diverting carbohydrate from other root types. Varying the phosphorus diffusion coefficient to reflect varying mobilities in different soil types had little effect on the value of adventitious rooting for phosphorus acquisition. Adventitious roots benefited plants regardless of basal root growth angle. Seed planting depth only affected phosphorus uptake and efficiency when seed was planted below the high phosphorus surface stratum. Our results confirm the importance of root respiration in nutrient foraging strategies, and demonstrate functional tradeoffs among distinct components of the root system. These results will be useful in developing ideotypes for more nutrient efficient crops.  相似文献   

3.
X-ray Computed Tomography (CT) is a non-destructive imaging technique originally designed for diagnostic medicine, which was adopted for rhizosphere and soil science applications in the early 1980s. X-ray CT enables researchers to simultaneously visualise and quantify the heterogeneous soil matrix of mineral grains, organic matter, air-filled pores and water-filled pores. Additionally, X-ray CT allows visualisation of plant roots in situ without the need for traditional invasive methods such as root washing. However, one routinely unreported aspect of X-ray CT is the potential effect of X-ray dose on the soil-borne microorganisms and plants in rhizosphere investigations. Here we aimed to i) highlight the need for more consistent reporting of X-ray CT parameters for dose to sample, ii) to provide an overview of previously reported impacts of X-rays on soil microorganisms and plant roots and iii) present new data investigating the response of plant roots and microbial communities to X-ray exposure. Fewer than 5% of the 126 publications included in the literature review contained sufficient information to calculate dose and only 2.4% of the publications explicitly state an estimate of dose received by each sample. We conducted a study involving rice roots growing in soil, observing no significant difference between the numbers of root tips, root volume and total root length in scanned versus unscanned samples. In parallel, a soil microbe experiment scanning samples over a total of 24 weeks observed no significant difference between the scanned and unscanned microbial biomass values. We conclude from the literature review and our own experiments that X-ray CT does not impact plant growth or soil microbial populations when employing a low level of dose (<30 Gy). However, the call for higher throughput X-ray CT means that doses that biological samples receive are likely to increase and thus should be closely monitored.  相似文献   

4.
The effect of nutrient deficiency, aeration, phosphorus supply, and nitrogen source on the formation of cluster (proteoid) roots was examined in Myrica gale seedlings growing in water culture. Only the omission of phosphorus resulted in the formation of significant numbers to cluster roots when plants were grown in a number of 1/4 strength Hoagland's solutions, each lacking one mineral nutrient. Aeration shortened the time required for cluster root formation and increased the percentage of plants forming cluster roots. The proportion of the root system comprised of cluster roots decreased as the phosphorus concentration in the solution increased and no cluster roots formed in solutions containing 8 mg P/L. Phosphorus supply also affected total plant biomass, proportion of biomass comprising nitrogen-fixing nodules, shoot:root ratio, phosphorus concentration in the leaves and phosphorus content of the plants. The plants showed luxury consumption of phosphorus and were able to produce large amounts of biomass utilizing only stored phosphorus.Nitrogen source also affected cluster root formation. Urea-fed plants produced cluster roots more quickly and devoted a substantially larger proportion of root growth to cluster roots than did nitrate-fed plants. The longest cluster root axes were produced in nitrate-fed plants supplied with no phosphorus and the shortest were in urea-fed plants at 4 mg P L–1.Four methods for expressing the extent of cluster root formation were examined and it was concluded that cluster roots as a proportion of total fine root dry weight is preferable in many cases. Formation of cluster roots in response to phosphorus deficiency coupled with previously demonstrated traits allows Myrica gale to adapt to a wide range of soil conditions.  相似文献   

5.
Little bluestem grass Schizachyrium scoparium ([Michx.] Nash) plants were grown under field conditions for 2 years in soils fumigated with methyl bromide and chloropicrin, or in unfumigated soil, and treated with supplemental inorganic nutrients (bases calcium and magnesium) phosphorus, nitrogen, and potassium. Most differences in measured plant responses were due to interactions between fumigation and nutrient treatments. These included biomass production, root mass per unit length (μg/cm), root lengths, flowering culm production, percent colonization, colonized root length, and spore production in rhizosphere soil. Plants generally responded to mycorrhizal fungal colonization by reducing total root length and producing thicker roots. Treatment of plants with bases appeared to profoundly affect the mycorrhizal association by reducing sporulation of vesicular-arbuscular mycorrhizal fungi and increasing colonization. When fumigated or unfumigated soils were considered separately, base-treated plants produced more biomass than other treatments. Base-treated plants grown on unfumigated soil had more flowering culms and longer colonized root lengths than all other plants. Percent colonization by mycorrhizal fungi and colonized root length were positively correlated with phosphorus/nitrogen ratios, but the ratio was not correlated with plant biomass production. This suggests that phosphorus is not a limiting nutrient in our soil and investment in a mycorrhizal association may not result in enhanced plant growth. The base-nutrient effects may indicate a need to reevaluate earlier studies of macro nutrient effects that did not take into account the role played by calcium and magnesium in assessing fungus-host plant interactions.  相似文献   

6.
Spatially averaged models of root–soil interactions are often used to calculate plant water uptake. Using a combination of X‐ray computed tomography (CT) and image‐based modelling, we tested the accuracy of this spatial averaging by directly calculating plant water uptake for young wheat plants in two soil types. The root system was imaged using X‐ray CT at 2, 4, 6, 8 and 12 d after transplanting. The roots were segmented using semi‐automated root tracking for speed and reproducibility. The segmented geometries were converted to a mesh suitable for the numerical solution of Richards' equation. Richards' equation was parameterized using existing pore scale studies of soil hydraulic properties in the rhizosphere of wheat plants. Image‐based modelling allows the spatial distribution of water around the root to be visualized and the fluxes into the root to be calculated. By comparing the results obtained through image‐based modelling to spatially averaged models, the impact of root architecture and geometry in water uptake was quantified. We observed that the spatially averaged models performed well in comparison to the image‐based models with <2% difference in uptake. However, the spatial averaging loses important information regarding the spatial distribution of water near the root system.  相似文献   

7.
Phosphorus (P) deficiency in soil is a major constraint for agricultural production worldwide. Despite this, most soils contain significant amounts of total soil P that occurs in inorganic and organic fractions and accumulates with phosphorus fertilization. A major component of soil organic phosphorus occurs as phytate. We show that when grown in agar under sterile conditions, Arabidopsis thaliana plants are able to obtain phosphorus from a range of organic phosphorus substrates that would be expected to occur in soil, but have only limited ability to obtain phosphorus directly from phytate. In wild-type plants, phytase constituted less than 0.8% of the total acid phosphomonoesterase activity of root extracts and was not detectable as an extracellular enzyme. By comparison, the growth and phosphorus nutrition of Arabidopsis plants supplied with phytate was improved significantly when the phytase gene (phyA) from Aspergillus niger was introduced. The Aspergillus phytase was only effective when secreted as an extracellular enzyme by inclusion of the signal peptide sequence from the carrot extensin (ex) gene. A 20-fold increase in total root phytase activity in transgenic lines expressing ex::phyA resulted in improved phosphorus nutrition, such that the growth and phosphorus content of the plants was equivalent to control plants supplied with inorganic phosphate. These results show that extracellular phytase activity of plant roots is a significant factor in the utilization of phosphorus from phytate and indicate that opportunity exists for using gene technology to improve the ability of plants to utilize accumulated forms of soil organic phosphorus.  相似文献   

8.
Fang S  Gao X  Deng Y  Chen X  Liao H 《Plant physiology》2011,155(3):1277-1285
Root is a primary organ to respond to environmental stimuli and percept signals from neighboring plants. In this study, root responses in maize (Zea mays)/soybean (Glycine max) intercropping systems recognized soil phosphorus (P) status and neighboring plants in the field. Compared to self culture, the maize variety GZ1 intercropping with soybean HX3 grew much better on low P, but not in another maize variety, NE1. This genotypic response decreased with increasing distance between plants, suggesting that root interactions were important. We further conducted a detailed and quantitative study of root behavior in situ using a gel system to reconstruct the three-dimensional root architecture. The results showed that plant roots could integrate information on P status and root behavior of neighboring plants. When intercropped with its kin, maize or soybean roots grew close to each other. However, when maize GZ1 was grown with soybean HX3, the roots on each plant tended to avoid each other and became shallower on stratified P supply, but not found with maize NE1. Furthermore, root behavior in gel was highly correlated to shoot biomass and P content for field-grown plants grown in close proximity. This study provides new insights into the dynamics and complexity of root behavior and kin recognition among crop species in response to nutrient status and neighboring plants. These findings also indicate that root behavior not only depends on neighbor recognition but also on a coordinated response to soil P status, which could be the underlying cause for the different growth responses in the field.  相似文献   

9.
The activity of soil pathogens, competition for assimilates, and the changing availability of below-ground resources make root systems subject to a continuous and dynamic process of formation and loss of both fine and coarse roots. As hypocotyl borne roots appear later than other root classes, they may serve to functionally replace basal and primary roots lost to biotic and abiotic stress. Using common bean (Phaseolus vulgaris L.), we conducted experiments in solution and solid media culture with treatments involving the removal of part of the root system (basal, hypocotyl borne or primary roots), phosphorus availability, and depth of seeding to test the hypothesis that there are compensation mechanisms among basal, hypocotyl borne and primary roots to cope with the loss of part of the root system. The root system was highly plastic in response to root excision, which resulted in the maintenance of below-ground biomass accumulation. In most cases, this compensation among root classes was enough to maintain plant performance in both phosphorus sufficient and phosphorus stressed plants. Removal of a specific root class induced an increase in the growth of the remaining root classes. All root classes, but especially the primary root, contributed to the compensation mechanism in some way. Primary roots represented around 10% of the root system in control plants and this proportion increased dramatically (up to 50%) when other root classes were removed. In contrast, negligible compensatory re-growth was observed following removal of the primary root. Greater planting depth increased the production of hypocotyl borne roots at the expense of basal roots. The proportion of hypocotyl borne roots increased from 25% of the whole root system when seeds were placed at a depth of 2 cm to 30% when they were placed at 5 cm and to 38% when placed at 8 cm, with corresponding decreases in the proportion represented by basal roots. The common feature of our observations is the innate ability of the root system for its own regeneration. Total root biomass maintained strict allometric relationships with total shoot biomass in all treatments. Re-stabilization of root to shoot balance after partial root loss is governed by overall plant size following allometric relationships similar to undisturbed plants. However, the pattern of this root regeneration was not uniform since the way the three root classes compensated each other after the removal of any one of them varied among the different growth media and phosphorus supply conditions. The resulting changes in root architecture could have functional significance for soil resource acquisition.  相似文献   

10.
When two plants interact, changes in plant growth are usually related to variations in root distribution and phosphorus (P) levels. However, root distributions and root tendencies are difficult to study because root systems grow beneath the soil surface. In this study, a transparent root box was used to observe interactions between root systems in situ, and the relation between tomato growth and root proliferation at different depths and distance from the rows at no P added and 120?mg kg-1 P added levels were also tested. We found that tomato shoot and total biomass increased and roots grew deeper when companion cropped with potato onion under both P levels. Moreover, tomato roots tended to grow away from the potato onion roots. Our results suggest that a deeper and more evasive root distribution may be related to the increased plant growth of tomato when companion cropped with potato onion.  相似文献   

11.
12.
When subjected, directly (through nutritional deficiencies) or indirectly (through alkaline constraints leading to such deficiencies) to nutrient deficiencies, certain plants respond by developing special root structures called cluster roots. This phenomenon can be considered as an ecophysiological response to a specific nutrient deficiency enabling plants to enhance nutrient uptake. Experiments conducted on an alkaline and an acid soil showed that Casuarina glauca (Sieber ex Spreng.) produced cluster roots only in the alkaline soil and not in the acid soil. In addition, iron (Fe) and phosphorus (P) deficiencies were examined separately or together to determine their effect on cluster root formation in C. glauca seedlings grown hydroponically. Results from experiments carried out on three Casuarina species (C. glauca, C. cunninghamiana Miq. and C. equisetifolia L.) indicated that Fe is involved in cluster root formation. In nutrient media lacking P but containing Fe, no cluster roots formed while seedlings receiving P and lacking Fe developed cluster roots. When incubated on chrome-azurol S-agar on blue plates (CAS assay), a technique used routinely to detect the production of siderophores by micro-organisms, the root system of Fe-deficient plants exhibited orange halos around cluster roots, indicating production of a ferric-chelating agent. It is concluded that the capacity of cluster roots of C. glauca to chelate Fe allows the plant to grow normally on alkaline soils.  相似文献   

13.
根毛和共生真菌增加了吸收面积,提高了植物获取磷等土壤资源的能力。由于野外原位观测根表微观结构较为困难,吸收细根、根毛、共生真菌如何相互作用并适应土壤资源供应,缺乏相应的数据和理论。该研究以受磷限制的亚热带森林为对象,选取了21种典型树种,定量了根毛存在情况、属性变异,分析了根毛形态特征与共生真菌侵染率、吸收细根功能属性之间的关系,探讨了根表结构对低磷土壤的响应和适应格局。结果表明:1)在亚热带森林根毛不是普遍存在的, 21个树种中仅发现7个树种存有根毛, 4个为丛枝菌根(AM)树种, 3个为外生菌根(ECM)树种。其中,马尾松(Pinus massoniana)根毛出现率最高,为86%;2)菌根类型是理解根-根毛-共生真菌关系的关键,AM树种根毛密度与共生真菌侵染率正相关,但ECM树种根毛直径与共生真菌侵染率负相关; 3) AM树种根毛长度和根毛直径、ECM树种根毛出现率与土壤有效磷含量呈负相关关系。该研究揭示了不同菌根类型树种根毛-共生真菌-根属性的格局及相互作用,为精细理解养分获取策略奠定了基础。  相似文献   

14.
The growth of young tomato plants in nutrient solution or in soil and infected with Pyrenochaeta lycopersici Schneider & Gerlach, the cause of tomato brown root rot, was decreased relative to that of uninfected plants. The roots of plants grown in nutrient solution and infected with a mycelial mat of the pathogen contained lower concentrations of potassium and higher concentrations of calcium than roots of uninfected plants. These changes occurred largely in the visibly affected tissue, as opposed to the root system as a whole. The concentrations of magnesium, total nitrogen and phosphorus in the roots of infected plants were not significantly different from those of control plants. Magnesium, nitrogen and phosphorus concentrations in the tops of infected plants were also not significantly different from those of healthy plants, but no consistent changes were found in the concentrations of calcium and potassium. Young tomato plants grown in soil infested with P. lycopersici contained lower concentrations of phosphorus and potassium in the tops than plants grown in sterilized soil. It was not possible to separate intact damaged root systems of infected plants from soil. The changes in composition found in infected plants are discussed in relation to possible methods of manipulating the nutrition of the plant to offset the effects of the disease on crop yield.  相似文献   

15.
Tropospheric ozone (O(3)) triggers physiological changes in leaves that affect carbon source strength leading to decreased carbon allocation below-ground, thus affecting roots and root symbionts. The effects of O(3) depend on the maturity-related physiological state of the plant, therefore adult and young forest trees might react differently. To test the applicability of young beech plants for studying the effects of O(3) on forest trees and forest stands, beech seedlings were planted in containers and exposed for two years in the Kranzberg forest FACOS experiment (Free-Air Canopy O(3) Exposure System, http://www.casiroz.de ) to enhanced ozone concentration regime (ambient [control] and double ambient concentration, not exceeding 150 ppb) under different light conditions (sun and shade). After two growing seasons the biomass of the above- and below-ground parts, beech roots (using WinRhizo programme), anatomical and molecular (ITS-RFLP and sequencing) identification of ectomycorrhizal types and nutrient concentrations were assessed. The mycorrhization of beech seedlings was very low ( CA. 5 % in shade, 10 % in sun-grown plants), no trends were observed in mycorrhization (%) due to ozone treatment. The number of Cenococcum geophilum type of ectomycorrhiza, as an indicator of stress in the forest stands, was not significantly different under different ozone treatments. It was predominantly occurring in sun-exposed plants, while its majority share was replaced by Genea hispidula in shade-grown plants. Different light regimes significantly influenced all parameters except shoot/root ratio and number of ectomycorrhizal types. In the ozone fumigated plants the number of types, number of root tips per length of 1 to 2 mm root diameter, root length density per volume of soil and concentration of Mg were significantly lower than in control plants. Trends to a decrease were found in root, shoot, leaf, and total dry weights, total number of root tips, number of vital mycorrhizal root tips, fine root (mass) density, root tip density per surface, root area index, concentration of Zn, and Ca/Al ratio. Due to the general reduction in root growth indices and nutrient cycling in ozone-fumigated plants, alterations in soil carbon pools could be predicted.  相似文献   

16.
X-ray microcomputed tomography (μCT) is an invaluable tool for visualizing plant root systems within their natural soil environment noninvasively. However, variations in the x-ray attenuation values of root material and the overlap in attenuation values between roots and soil caused by water and organic materials represent major challenges to data recovery. We report the development of automatic root segmentation methods and software that view μCT data as a sequence of images through which root objects appear to move as the x-y cross sections are traversed along the z axis of the image stack. Previous approaches have employed significant levels of user interaction and/or fixed criteria to distinguish root and nonroot material. RooTrak exploits multiple, local models of root appearance, each built while tracking a specific segment, to identify new root material. It requires minimal user interaction and is able to adapt to changing root density estimates. The model-guided search for root material arising from the adoption of a visual-tracking framework makes RooTrak less sensitive to the natural ambiguity of x-ray attenuation data. We demonstrate the utility of RooTrak using μCT scans of maize (Zea mays), wheat (Triticum aestivum), and tomato (Solanum lycopersicum) grown in a range of contrasting soil textures. Our results demonstrate that RooTrak can successfully extract a range of root architectures from the surrounding soil and promises to facilitate future root phenotyping efforts.  相似文献   

17.
植物残体添加和去除试验(The Detritus Input and Removal Treatments, DIRT)是研究地上凋落物以及植物根系对土壤营养物质循环过程及机制探究的一种试验设计。于2012年6月选择福建省三明森林生态系统与全球变化研究站的米槠常绿阔叶天然林,设置5种处理:对照(CT)、去除凋落物(NL)、去除根系(NR)、去除凋落物与根系(NI)、添加双倍凋落物(DL),在2018年12月对各处理不同土层(0—10cm、10—20cm)土壤磷组分及其影响因子进行研究,结果表明:(1)在0—10cm土层中DL处理总磷含量显著大于NL处理,NI处理无机磷含量最低,在10—20cm中DL处理有机磷含量显著大于其他处理;(2)DL处理活性磷(Resin-P、NaHCO3-Pi、NaHCO3-Po)含量在0—10cm土层中显著大于其他处理。在10—20cm土层中NR处理活性磷以及中等活性磷显著大于NL处理。残留态磷(Residual-P)含量最高,但在各处理与土层之间并没有明显差异;(3)酸性磷酸酶在0—10 cm土层不同处理间的变化...  相似文献   

18.
植物高效利用磷机制的研究进展   总被引:28,自引:4,他引:28  
缺磷是限制目前农林业产量的一个重要因子,传统的农林业生产主要通过施肥和土壤改良来满足植物对磷的需求,近年来人们开始发掘磷高效利用植物来替代传统方法提高磷的利用效率。本文综述了国内外有关植物高效利用磷的形态学、生理学及遗传学作用机制,植物高效利用磷的机制主要包括:(1)磷高效利用植物能通过根系形态变化(包括根伸长、根轴变细、根毛数量和密度增大、侧根幼根数量增加及形成排根等)和根冠问的物质分配改变等形态学机制来适应磷胁迫;(2)在缺磷环境下磷高效利用植物能通过根系分泌物增加、菌根侵染、根系吸收动力学特征变化及植物磷素内循环加强等生理学机制来适应磷胁迫;(3)在磷亏缺的长期选择压力下,植物可通过某些“沉默”基因的诱导表达或DNA序列的特定形成相对稳定的磷营养遗传性状,由此通过遗传学机制来增加对土壤难溶态性磷的利用,使植物表现出较高的磷素利用效率。  相似文献   

19.
Summary This paper provides some quantitative data on the relationship between the rate of uptake of phosphorus and potassium from soil and the amount of root, root density and rate of root growth. Three experiments were conducted with winter wheat, all grown in the same soil. Root growth and density were manipulated in three ways: (1) by root pruning; (2) by a split-root technique; (3) by growing plants in different soil volumes. Root lengths as well as weights were determined.Potassium uptake per unit amount of root was generally lower the higher the root density, suggesting that roots were competing with each other for potassium even at the lowest density. In contrast, phosphorus uptake showed a good correlation with root growth irrespective of root density or plant age. Phosphorus uptake during a period was more closely and consistently correlated with root growth during that period than with the total amount of root on the plant. The results can be explained in terms of ion supply to the root surface, taking into account the diffusion coefficients of the ions and the approximate distances between neighbouring roots.Now Mrs. Watkins; address 39 Leach Heath Lane, Rubery, Birmingham.Now Mrs. Watkins; address 39 Leach Heath Lane, Rubery, Birmingham.  相似文献   

20.
Study of roots and associated organisms in soil particularly in mixed plant populations, such as pastures, is limited by difficulties in quantification of root growth and function. The research evaluated the potential of DNA quantification by real-time PCR to improve our capacity to study and understand roots in such contexts. Probes and primers were developed for two common pasture species, Trifolium subterraneum and Lolium perenne (and closely related Lolium spp.), and evaluated for specificity and sensitivity in TaqMan assays on DNA extracted from soil. Further experiments examined the ability to detect DNA in dead roots, the changes in root DNA levels of plants defoliated or treated with herbicide and the relationship between DNA and root dry weight for single and mixed plant species grown in pots. T. subterraneum DNA/PCR 200 fg/µl was detected at 17.5 cycles and L. perenne at 19.5 cycles. The assay for T. subterraneum was species specific but the L. perenne assay, as anticipated from the choice of probe, also detected some closely related species. The assays were sensitive and capable of detecting equivalent to <2 mg roots/kg of dry soil and able to quantify targets in mixed populations. DNA concentration varied with plant age and genotype and DNA in dead roots found to decay rapidly over a few days. DNA concentrations in roots were found to respond more rapidly to defoliation and herbicide treatments than root mass. This approach appears to offer a new way to study roots in soil and indicates that quantifying root DNA could provide insights into root function and responses not readily provided by other methods.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号