首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tripeptidyl-peptidase II (TPP II) is a subtilisin-like serine protease which forms a large enzyme complex (> 4 MDa). It is considered a potential drug target due to its involvement in specific physiological processes. However, information is scarce concerning the kinetic characteristics of TPP II and its active site features, which are important for design of efficient inhibitors. To amend this, we probed the active site by determining the pH dependence of TPP II catalysis. Access to pure enzyme is a prerequisite for kinetic investigations and herein we introduce the first efficient purification system for heterologously expressed mammalian TPP II. The pH dependence of kinetic parameters for hydrolysis of two different chromogenic substrates, Ala-Ala-Phe-pNA and Ala-Ala-Ala-pNA, was determined for murine, human and Drosophila melanogaster TPP II as well as mutant variants thereof. The investigation demonstrated that TPP II, in contrast to subtilisin, has a bell-shaped pH dependence of kcatapp/KM probably due to deprotonation of the N-terminal amino group of the substrate at higher pH. Since both the KM and kcatapp are lower for cleavage of AAA-pNA than for AAF-pNA we propose that the former can bind non-productively to the active site of the enzyme, a phenomenon previously observed with some substrates for subtilisin. Two mutant variants, H267A and D387G, showed bell-shaped pH-dependence of kcatapp, possibly due to an impaired protonation of the leaving group. This work reveals previously unknown differences between TPP II orthologues and subtilisin as well as features that might be conserved within the entire family of subtilisin-like serine peptidases.  相似文献   

2.
Klebsiella aerogenes urease uses a dinuclear nickel active site to catalyze urea hydrolysis at >10(14)-fold the spontaneous rate. To better define the enzyme mechanism, we examined the kinetics and structures for a suite of site-directed variants involving four residues at the active site: His320, His219, Asp221, and Arg336. Compared to wild-type urease, the H320A, H320N, and H320Q variants exhibit similar approximately 10(-)(5)-fold deficiencies in rates, modest K(m) changes, and disorders in the peptide flap covering their active sites. The pH profiles for these mutant enzymes are anomalous with optima near 6 and shoulders that extend to pH 9. H219A urease exhibits 10(3)-fold increased K(m) over that of native enzyme, whereas the increase is less marked ( approximately 10(2)-fold) in the H219N and H219Q variants that retain hydrogen bonding capability. Structures for these variants show clearly resolved active site water molecules covered by well-ordered peptide flaps. Whereas the D221N variant is only moderately affected compared to wild-type enzyme, D221A urease possesses low activity ( approximately 10(-)(3) that of native enzyme), a small increase in K(m), and a pH 5 optimum. The crystal structure for D221A urease is reminiscent of the His320 variants. The R336Q enzyme has a approximately 10(-)(4)-fold decreased catalytic rate with near-normal pH dependence and an unaffected K(m). Phenylglyoxal inactivates the R336Q variant at over half the rate observed for native enzyme, demonstrating that modification of non-active-site arginines can eliminate activity, perhaps by affecting the peptide flap. Our data favor a mechanism in which His219 helps to polarize the substrate carbonyl group, a metal-bound terminal hydroxide or bridging oxo-dianion attacks urea to form a tetrahedral intermediate, and protonation occurs via the general acid His320 with Asp221 and Arg336 orienting and influencing the acidity of this residue. Furthermore, we conclude that the simple bell-shaped pH dependence of k(cat) and k(cat)/K(m) for the native enzyme masks a more complex underlying pH dependence involving at least four pK(a)s.  相似文献   

3.
The beta-xylosidase from Aspergillus awamori X-100 belonging to the family 3 glycoside hydrolase revealed a distinctive transglycosylating ability to produce xylooligosaccharides with degree of polymerization more than 7. In order to explain this fact, the enzyme has been subjected to the detailed biochemical study. The enzymatic hydrolysis of p-nitrophenyl beta-D-xylopyranoside was found to occur with overall retention of substrate anomeric configuration suggesting cleavage of xylosidic bonds through a double-displacement mechanism. Kinetic study with aryl beta-xylopyranosides substrates, in which leaving group pK(a)s were in the range of 3.96-10.32, revealed monotonic function of log(k(cat)) and no correlation of log(k(cat)/Km) versus pKa values indicating deglycosylation as a rate-limiting step for the enzymatic hydrolysis. The classical bell-shaped pH dependence of k(cat)/Km indicated two ionizable groups in the beta-xylosidase active site with apparent pKa values of 2.2 and 6.4. The kinetic parameters of hydrolysis, Km and k(cat), of p-nitrophenyl beta-D-1,4-xylooligosaccharides were very close to those for hydrolysis of p-nitrophenyl-beta-D-xylopyranoside. Increase of p-nitrophenyl-beta-D-xylopyranoside concentration up to 80 mM led to increasing of the reaction velocity resulting in k(cat)(app)=81 s(-1). Addition of alpha-methyl D-xylopyranoside to the reaction mixture at high concentration of p-nitrophenyl-beta-D-xylopyranoside (50 mM) caused an acceleration of the beta-xylosidase-catalyzed reactions and appearance of a new transglycosylation product, alpha-methyl D-xylopyranosyl-1,4-beta-D-xylopyranoside, that was identified by 1H NMR spectroscopy. The kinetic model suggested for the enzymatic reaction was consistent with the results obtained.  相似文献   

4.
The Staphylococcus aureus transpeptidase SrtA catalyzes the covalent attachment of LPXTG-containing virulence and colonization-associated proteins to cell-wall peptidoglycan in Gram-positive bacteria. Recent structural characterizations of staphylococcal SrtA, and related transpeptidases SrtB from S. aureus and Bacillus anthracis, provide many details regarding the active site environment, yet raise questions with regard to the nature of catalysis and active site cysteine thiol activation. Here we re-evaluate the kinetic mechanism of SrtA and shed light on aspects of its catalytic mechanism. Using steady-state, pre-steady-state, bisubstrate kinetic studies, and high-resolution electrospray mass spectrometry, revised steady-state kinetic parameters and a ping-pong hydrolytic shunt kinetic mechanism were determined for recombinant SrtA. The pH dependencies of kinetic parameters k(cat)/K(m) and k(cat) for the substrate Abz-LPETG-Dap(Dnp)-NH(2) were bell-shaped with pK(a) values of 6.3 +/- 0.2 and 9.4 +/- 0.2 for k(cat) and 6.2 +/- 0.2 and 9.4 +/- 0.2 for k(cat)/K(m). Solvent isotope effect (SIE) measurements revealed inverse behavior, with a (D)2(O)k(cat) of 0.89 +/- 0.01 and a (D)2(O)(k(cat)/K(m)) of 0.57 +/- 0.03 reflecting an equilibrium SIE. In addition, SIE measurements strongly implicated Cys184 participation in the isotope-sensitive rate-determining chemical step when considered in conjunction with an inverse linear proton inventory for k(cat). Last, the pH dependence of SrtA inactivation by iodoacetamide revealed a single ionization for inactivation. These studies collectively provide compelling evidence for a reverse protonation mechanism where a small fraction (ca. 0.06%) of SrtA is competent for catalysis at physiological pH, yet is highly active with an estimated k(cat)/K(m) of >10(5) M(-)(1) s(-)(1).  相似文献   

5.
Polgár L 《Biochemistry》1999,38(47):15548-15555
Oligopeptidase B, a member of the novel prolyl oligopeptidase family of serine peptidases, is involved in cell invasion by trypanosomes. The kinetic analysis of the reactions of oligopeptidase B, which preferentially cleaves peptides at two adjacent basic residues, has revealed significant differences from the trypsin-like serine peptidases. (i) The pH dependence of k(cat)/K(m) deviates from normal bell-shaped curves due to ionization of an enzymatic group characterized by a macroscopic pK(a) of approximately 8.3. The effect of this group is abolished at high ionic strength. (ii) The second-order acylation rate constants, k(cat)/K(m), are similar with the ester and the corresponding amide substrates, suggesting that their chemical reactivity does not prevail in the rate-limiting step. The kinetic deuterium isotope effects indicate that the rate-limiting step for k(cat)/K(m) is principally governed by conformational changes. (iii) The pH-k(cat)/K(m) profile and the very low rate constant for benzoyl-citrulline ethyl ester reveal a new kinetically influential group ionizing below the pK(a) of the active site histidine and indicate that the positive charge of arginine is essential for effective catalysis. (iv) The enzyme is inhibited by high concentrations of substrate. The mechanism of inhibition markedly varies with the reaction conditions. (v) The optimum temperature for the reactions of amide substrates is unusually low, slightly below 25 degrees C, whereas with benzoyl-arginine ethyl ester a linear Eyring plot is obtained up to 39 degrees C. The positive entropies of activation point to substantial reorganization of water molecules upon substrate binding.  相似文献   

6.
Prolyl oligopeptidase, which is involved in memory disorders, is a member of a new family of serine peptidases. In addition to the peptidase domain, the enzyme contains a beta-propeller, which excludes large peptides from the active site. The enzyme is inhibited with thiol reagents, possibly by reacting with Cys-255 located close to the substrate binding site. This assumption was tested with the Cys-255 --> Thr, Cys-255 --> Ala, and Cys-255 --> Ser variants of prolyl oligopeptidase. In contrast to the wild type enzyme, the Cys-255 --> Thr variant was not inhibited with N-ethylmaleimide, indicating that Cys-255, of the 16 free cysteine residues, exclusively accounts for the enzyme inhibition. Unlike the wild type enzyme that showed a doubly bell-shaped pH rate profile, the modified enzyme displayed a single bell-shaped pH dependence with benzyloxycarbonyl-Gly-Pro-naphthylamide. It was the high pH form of the enzyme that virtually disappeared with all three enzyme variants. A substantial reduction was also observed in k(cat)/K(m) for the aminobenzoyl-Ser-Pro-Phe(NO(2))-Ala-OH substrate. The high pK(a) (9.77) of Cys-255 determined by titration with N-ethylmaleimide excluded the possibility that ionization of the thiol group was responsible for generation of the two active enzyme forms. The impaired activity of the enzyme variants could be rationalized in terms of weaker binding, which manifests itself in high K(m) for substrates and high K(i) for inhibitors, like benzyloxycarbonyl-Gly-Pro-OH and aminobenzoyl-Ser-d-Pro-Phe(NO(2))-Ala-OH. It was concluded that, besides selecting substrates by size, the beta-propeller domain containing Cys-255 remarkably contributed to catalysis of the peptidase domain.  相似文献   

7.
The steady-state kinetic parameters of the amine oxidases purified from Lathyrus cicera (LCAO) and Pisum sativum (PSAO) seedling were measured on a series of common substrates, previously tested on bovine serum amine oxidase (BSAO). LCAO, as PSAO, was substantially more reactive than BSAO with aliphatic diamines and histamine. The k(cat) and k(cat)/Km for putrescine were four and six order of magnitude higher, respectively. Differences were smaller with some aromatic monoamines. The plot of k(cat) versus hydrogen ions concentration produced bell-shaped curves, the maximum of which was substrate dependent, shifting from neutral pH with putrescine to alkaline pH with phenylethylamine and benzylamine. The latter substrates made the site more hydrophobic and increased the pK(a) of both enzyme-substrate and enzyme-product adducts. The plot of k(cat)/Km versus hydrogen ion concentration produced approximately parallel bell-shaped curves. Similar pK(a) couples were obtained from the latter curves, in agreement with the assignment as free enzyme and free substrate pK(a). The limited pH dependence of kinetic parameters suggests a predominance of hydrophobic interactions.  相似文献   

8.
Bott RR  Chan G  Domingo B  Ganshaw G  Hsia CY  Knapp M  Murray CJ 《Biochemistry》2003,42(36):10545-10553
The properties of the transition state for serine protease-catalyzed hydrolysis of an amide bond were determined for a series of subtilisin variants from Bacillus lentus. There is no significant change in the structure of the enzyme upon introduction of charged mutations S156E/S166D, suggesting that changes in catalytic activity reflect global properties of the enzyme. The effect of charged mutations on the pK(a) of the active site histidine-64 N(epsilon)(2)-H was correlated with changes in the second-order rate constant k(cat)/K(m) for hydrolysis of tetrapeptide anilides at low ionic strength with a Br?nsted slope alpha = 1.1. The solvent isotope effect (D)2(O)(k(cat)/K(m))(1) = 1.4 +/- 0.2. These results are consistent with a rate-limiting breakdown of the tetrahedral intermediate in the acylation step with hydrogen bond stabilization of the departing amine leaving group. There is an increase in the ratio of hydrolysis of succinyl-Ala-Ala-Pro-Phe-anilides for p-nitroaniline versus aniline leaving groups with variants with more basic active site histidines that can be described by the interaction coefficient p(xy) = delta beta(lg)/delta pK(a) (H64) = 0.15. This is attributed to increased hydrogen bonding of the active site imidazolium N-H to the more basic amine leaving group as well as electrostatic destabilization of the transition state. A qualitative characterization of the transition state is presented in terms of a reaction coordinate diagram that is defined by the structure-reactivity parameters.  相似文献   

9.
We investigated the epoxidase activity of a class mu glutathione S-transferase (cGSTM1-1), using 1,2-epoxy-3-(p-nitrophenoxy)propane (EPNP) as substrate. Trp209 on the C-terminal tail, Arg107 on the alpha4 helix, Asp161 and Gln165 on the alpha6 helix of cGSTM1-1 were selected for mutagenesis and kinetic studies. A hydrophobic side-chain at residue 209 is needed for the epoxidase activity of cGSTM1-1. Replacing Trp209 with histidine, isoleucine or proline resulted in a fivefold to 28-fold decrease in the k(cat)(app) of the enzyme, while a modest 25 % decrease in the k(cat)(app) was observed for the W209F mutant. The rGSTM1-1 enzyme has serine at the correponding position. The k(cat)(app) of the S209W mutant is 2. 5-fold higher than that of the wild-type rGSTM1-1. A charged residue is needed at position 107 of cGSTM1-1. The K(m)(app)(GSH) of the R107L mutant is 38-fold lower than that of the wild-type enzyme. On the contrary, the R107E mutant has a K(m)(app)(GSH) and a k(cat)(app) that are 11-fold and 35 % lower than those of the wild-type cGSTM1-1. The substitutions of Gln165 with Glu or Leu have minimal effect on the affinity of the mutants towards GSH or EPNP. However, a discernible reduction in k(cat)(app) was observed. Asp161 is involved in maintaining the structural integrity of the enzyme. The K(m)(app)(GSH) of the D161L mutant is 616-fold higher than that of the wild-type enzyme. In the hydrogen/deuterium exchange experiments, this mutant has the highest level of deuteration among all the proteins tested.We also elucidated the structure of cGSTM1-1 co-crystallized with the glutathionyl-conjugated 1, 2-epoxy-3-(p-nitrophenoxy)propane (EPNP) at 2.8 A resolution. The product found in the active site was 1-hydroxy-2-(S-glutathionyl)-3-(p-nitrophenoxy)propane, instead of the conventional 2-hydroxy isomer. The EPNP moiety orients towards Arg107 and Gln165 in dimer AB, and protrudes into a hydrophobic region formed by the loop connecting beta1 and alpha1 and part of the C-terminal tail in dimer CD. The phenoxyl ring forms strong ring stacking with the Trp209 side-chain in dimer CD. We hypothesize that these two conformations represent the EPNP moiety close to the initial and final stages of the reaction mechanism, respectively.  相似文献   

10.
Human vascular adhesion protein-1 (VAP-1) is an endothelial copper-dependent amine oxidase involved in the recruitment and extravasation of leukocytes at sites of inflammation. VAP-1 is an important therapeutic target for several pathological conditions. We expressed soluble VAP-1 in HEK293 EBNA1 cells at levels suitable for detailed mechanistic studies with model substrates. Using the model substrate benzylamine, we analyzed the steady-state kinetic parameters of VAP-1 as a function of solution pH. We found two macroscopic pK(a) values that defined a bell-shaped plot of turnover number k(cat,app) as a function of pH, representing ionizable groups in the enzyme-substrate complex. The dependence of (k(cat)/K(m))(app) on pH revealed a single pK(a) value (~9) that we assigned to ionization of the amine group in free benzylamine substrate. A kinetic isotope effect (KIE) of 6 to 7.6 on (k(cat)/K(m))(app) over the pH range of 6 to 10 was observed with d(2)-benzylamine. Over the same pH range, the KIE on k(cat) was found to be close to unity. The unusual KIE values on (k(cat)/K(m))(app) were rationalized using a mechanistic scheme that includes the possibility of multiple isotopically sensitive steps. We also report the analysis of quantitative structure-activity relationships (QSAR) using para-substituted protiated and deuterated phenylethylamines. With phenylethylamines we observed a large KIE on k(cat,app) (8.01 ± 0.28 with phenylethylamine), indicating that C-H bond breakage is limiting for 2,4,5-trihydroxyphenylalanine quinone reduction. Poor correlations were observed between steady-state rate constants and QSAR parameters. We show the importance of combining KIE, QSAR, and structural studies to gain insight into the complexity of the VAP-1 steady-state mechanism.  相似文献   

11.
A growing body of data suggests that protein motion plays an important role in enzyme catalysis. Two highly conserved hydrophobic active site residues in the cofactor-binding pocket of ht-ADH (Leu176 and V260) have been mutated to a series of hydrophobic side chains of smaller size, as well as one deletion mutant, L176Δ. Mutations decrease k(cat) and increase K(M)(NAD(+)). Most of the observed decreases in effects on k(cat) at pH 7.0 are due to an upward shift in the optimal pH for catalysis; a simple electrostatic model is invoked that relates the change in pK(a) to the distance between the positively charged nicotinamide ring and bound substrate. Structural modeling of the L176Δ and V260A variants indicates the development of a cavity behind the nicotinamide ring without any significant perturbation of the secondary structure of the enzyme relative to that of the wild type. Primary kinetic isotope effects (KIEs) are modestly increased for all mutants. Above the dynamical transition at 30 °C for ht-ADH [Kohen, A., et al. (1999) Nature 399, 496], the temperature dependence of the KIE is seen to increase with a decrease in side chain volume at positions 176 and 260. Additionally, the relative trends in the temperature dependence of the KIE above and below 30 °C appear to be reversed for the cofactor-binding pocket mutants in relation to wild-type protein. The aggregate results are interpreted in the context of a full tunneling model of enzymatic hydride transfer that incorporates both protein conformational sampling (preorganization) and active site optimization of tunneling (reorganization). The reduced temperature dependence of the KIE in the mutants below 30 °C indicates that at low temperatures, the enzyme adopts conformations refractory to donor-acceptor distance sampling.  相似文献   

12.
Thimet oligopeptidase (EC 3.4.24.15; TOP) is a Zn(II) endopeptidase implicated in physiological regulation of processes involving neuropeptides. The present study clarifies the active site structure and mechanism of catalysis of TOP. The enzyme exhibited a bell-shaped pH dependence of activity having an acidic limb due to a protonation event with a pK(a) of 5.7 and a basic limb with pK(a) of 8.8. The acidic limb can be attributed to protonation of a residue affecting k(cat) while the alkaline limb may be due to conformational change. Mutation of Tyr612 to Phe resulted in more than 400-fold decrease in activity. This result, supported by modeling studies, implicates Tyr612 in transition state stabilization analogous to the role of His231 of thermolysin.  相似文献   

13.
Kumamolisin-As is an acid collagenase with a subtilisin-like fold. Its active site contains a unique catalytic triad, Ser278-Glu78-Asp82, and a putative transition-state stabilizing residue, Asp164. In this study, the mutants D164N and E78H/D164N were engineered in order to replace parts of the catalytic machinery of kumamolisin-As with the residues found in the equivalent positions in subtilisin. Unlike the wild-type and D164N proenzymes, which undergo instantaneous processing to produce their 37-kDa mature forms, the expressed E78H/D164N proenzyme exists as an equilibrated mixture of the nicked and intact forms of the precursor. X-ray crystallographic structures of the mature forms of the two mutants showed that, in each of them, the catalytic Ser278 makes direct hydrogen bonds with the side chain of Asn164. In addition, His78 of the double mutant is distant from Ser278 and Asp82, and the catalytic triad no longer exists. Consistent with these structural alterations around the active site, these mutants showed only low catalytic activity (relative k(cat) at pH 4.0 1.3% for D164N and 0.0001% for E78H/D164N). pH-dependent kinetic studies showed that the single D164N substitution did not significantly alter the logk(cat) vs. pH and log(k(cat)/Km) vs. pH profiles of the enzyme. In contrast, the double mutation resulted in a dramatic switch of the logk(cat) vs. pH profile to one that was consistent with catalysis by means of the Ser278-His78 dyad and Asn164, which may also account for the observed ligation/cleavage equilibrium of the precursor of E78H/D164N. These results corroborate the mechanistic importance of the glutamate-mediated catalytic triad and oxyanion-stabilizing aspartic acid residue for low-pH peptidase activity of the enzyme.  相似文献   

14.
To gain insight into the role of the strictly conserved histidine residue, H178, in the reaction mechanism of the methionyl aminopeptidase from Escherichia coli (EcMetAP-I), the H178A mutant enzyme was prepared. Metal-reconstituted H178A binds only one equivalent of Co(II) or Fe(II) tightly with affinities that are identical to the WT enzyme based on kinetic and isothermal titration calorimetry (ITC) data. Electronic absorption spectra of Co(II)-loaded H178A EcMetAP-I indicate that the active site divalent metal ion is pentacoordinate, identical to the WT enzyme. These data indicate that the metal binding site has not been affected by altering H178. The effect of altering H178 on activity is, in general, due to a decrease in k(cat). The k(cat) value for Co(II)-loaded H178A decreased 70-fold toward MGMM and 290-fold toward MP-p-NA compared to the WT enzyme, while k(cat) decreased 50-fold toward MGMM for the Fe(II)-loaded H178A enzyme and 140-fold toward MP-p-NA. The K(m) values for MGMM remained unaffected, while those for MP-p-NA increased approximately 2-fold for Co(II)- and Fe(II)-loaded H178A. The k(cat)/K(m) values for both Co(II)- and Fe(II)-loaded H178A toward both substrates ranged from approximately 50- to 580-fold reduction. The pH dependence of log K(m), log k(cat), and log(k(cat)/K(m)) of both WT and H178A EcMetAP-I were also obtained and are identical, within error, for H178A and WT EcMetAP-I. Therefore, H178A is catalytically important but is not required for catalysis. Assignment of one of the observed pK(a) values at 8.1 for WT EcMetAP-I was obtained from plots of molar absorptivity at lambda(max(640)) vs pH for both WT and H178A EcMetAP-I. Apparent pK(a) values of 8.1 and 7.6 were obtained for WT and H178A EcMetAP-I, respectively, and were assigned to the deprotonation of a metal-bound water molecule. The data reported herein provide support for the key elements of the previously proposed mechanism and suggest that a similar mechanism can apply to the enzyme with a single metal in the active site.  相似文献   

15.
M Philipp  I H Tsai  M L Bender 《Biochemistry》1979,18(17):3769-3773
The p-nitrophenyl esters of straight-chain fatty acids were used as substrates of the enzyme subtilisin Novo (EC 3.4.4.16) and its chemically produced artificial enzyme thiolsubtilisin. Subtilisin and thiolsubtilisin pH--activity profiles were determined, and kinetic effects of the active site O-S substitution were observed. Among the substrates tested, both enzymes show highest specificity with p-nitrophenyl butyrate. It was also found that subtilisin is more sensitive to changes in substrate chain length than is thiolsubtilisin. Second-order acylation rate constants (k2/Ks) are remarkably similar for both enzymes. However, thiolsubtilisin deacylation rate constants and Km values are lower than analogous subtilisin constants. While thiolsubtilisin deacylation rate constants give a pH profile identical with that of subtilisin, the pH profile of thiolsubtilisin acylation rate constants shows an active site pK value lowered from the subtilisin pK of 7.15 and exhibits an inflection point at pH 8.45, which is absent in subtilisin.  相似文献   

16.
Tyrosine 343 in human sulfite oxidase (SO) is conserved in all SOs sequenced to date. Intramolecular electron transfer (IET) rates between reduced heme (Fe(II)) and oxidized molybdenum (Mo(VI)) in the recombinant wild-type and Y343F human SO were measured for the first time by flash photolysis. The IET rate in wild-type human SO at pH 7.4 is about 37% of that in chicken SO with a similar decrease in k(cat). Steady-state kinetic analysis of the Y343F mutant showed an increase in K(m)(sulfite) and a decrease in k(cat) resulting in a 23-fold attenuation in the specificity constant k(cat)/K(m)(sulfite) at the optimum pH value of 8.25. This indicates that Tyr-343 is involved in the binding of the substrate and catalysis within the molybdenum active site. Furthermore, the IET rate constant in the mutant at pH 6.0 is only about one-tenth that of the wild-type enzyme, suggesting that the OH group of Tyr-343 is vital for efficient IET in SO. The pH dependences of IET rate constants in the wild-type and mutant SO are consistent with the previously proposed coupled electron-proton transfer mechanism.  相似文献   

17.
Hardy LW  Nishida CH  Kirsch JF 《Biochemistry》1984,23(6):1288-1294
The pH dependence of k(cat) for the Bacillus cereus beta-lactamase I catalyzed hydrolysis of carbenicillin(VI), which differs from benzylpenicillin (I) in having a carboxylic moiety alpha to the phenyl ring, exhibits a profile consistent with a model in which the alpha-COOH and alpha-COO forms of the ES complex turn over with respective rate constants of 2152 s(-1) and 384 s(-1). The pK(a)(app) for the alpha-COOH is shifted from 3.2 in solution to 6.1 in the ES complex. The normalized k(cat)/K(m) vs. pH profile for VI is not superimposable on that of I, indicating that both the neutral and anionic forms of the carboxyl moiety of VI combine with the enzyme to give the first irreversibly formed complex, presumably the acyl-enzyme. Quantitative accord with the kinetic data is achieved only through fitting to a model where kinetically significant proton transfer in the ES complex is permitted. The second-order rate constants for the reaction of the enzyme with the alpha-COOH and alpha-COO forms of VI are 2.2 x 10(8) M(-1) s(-1) and 3.8 x 10(6) M(-1) s(-1), respectively. The high value for the alpha-COOH form suggests that this reaction may be in part diffusion controlled. This conjecture is borne out by the observation that the sensitivity of k(cat)/K(m) to eta(rel) decreases with increasing pH for VI, whereas this sensitivity is pH independent for I. These conclusions are further supported by the results of a kinetic investigation of the pH dependence of sulbenicillin (VII) where an alpha-SO3H replaces the alpha-COOH of VI. The strongly acidic sulfonic acid moiety of VII is fully ionized throughout nearly the entire pH range of interest, and its kinetics, as a function of pH, are very similar to those observed and calculated for the alpha-COO form of VI. Solvent deuterium kinetic isotope effects are reported for k(cat) and k(cat)/K(m) for both VI and VII.  相似文献   

18.
The first committed step of lipid A biosynthesis in Gram-negative bacteria is catalyzed by the zinc-dependent hydrolase LpxC that removes an acetate from the nitrogen at the 2' '-position of UDP-3-O-acyl-N-acetylglucosamine. Recent structural characterization by both NMR and X-ray crystallography provides many important details about the active site environment of LpxC from Aquifex aeolicus, a heat-stable orthologue that displays 32% sequence identity to LpxC from Escherichia coli. The detailed reaction mechanism and specific roles of active site residues for LpxC from A. aeolicus are further analyzed here. The pH dependencies of k(cat)/K(M) and k(cat) for the deacetylation of the substrate UDP-3-O-[(R)-3-hydroxymyristoyl]-GlcNAc are both bell-shaped. The ascending acidic limb (pK(1)) was fitted to 6.1 +/- 0.2 for k(cat) and 5.7 +/- 0.2 for k(cat)/K(M). The descending basic limb (pK(2)) was fitted to 8.0 +/- 0.2 for k(cat) and 8.4 +/- 0.2 for k(cat)/K(M). The pH dependence of the E73A mutant exhibits loss of the acidic limb, and the mutant retains only 0.15% activity versus the wild type. The pH dependencies of the other active site mutants H253A, K227A, H253A/K227A, and D234N remain bell-shaped, although their significantly lower activities (0.25%, 0.05%, 0.007%, and 0.57%, respectively) suggest that they contribute significantly to catalysis. Our cumulative data support a mechanism for LpxC wherein Glu73 serves as the general base for deprotonation and activation of the zinc-bound water.  相似文献   

19.
Lee SS  Yu S  Withers SG 《Biochemistry》2003,42(44):13081-13090
The unusual enzyme, Gracilariopsis alpha-1,4-glucan lyase of the sequence-related glycoside hydrolase family 31, cleaves the glycosidic bond of alpha-1,4-glucans via a beta-elimination reaction involving a covalent glycosyl-enzyme intermediate (Lee, S. S., Yu, S., and Withers, S. G. (2002) J. Am. Chem. Soc. 124, 4948-4949). The classical bell-shaped pH dependence of k(cat)/K(m) indicates two ionizable groups in the active site with apparent pK(a) values of 3.05 and 6.66. Br?nsted relationships of log k(cat) versus pK(a) and log(k(cat)/K(m)) versus pK(a) for a series of aryl glucosides both show a linear monotonic dependence on leaving group pK(a) with low beta(lg) values of 0.32 and 0.33, respectively. The combination of these low beta(lg) values with large secondary deuterium kinetic isotope effects (k(H)/k(D) = 1.16 - 1.19) on the first step indicate a glycosylation step with substantial glycosidic bond cleavage and proton donation to the leaving group oxygen at the transition state. Developed oxocarbenium ion character of the transition state is also suggested by the potent inhibition afforded by acarbose and 1-deoxynojirimycin (K(i) = 20 and 130 nM, respectively) and by the substantial rate reduction afforded by adjacent fluorine substitution. For only one substrate, 5-fluoro-alpha-D-glucopyranosyl fluoride, was the second elimination step shown to be rate-limiting. The large alpha-secondary deuterium kinetic isotope effect (k(H)/k(D) = 1.23) at C-1 and the small primary deuterium kinetic isotope effect (k(H)/k(D) = 1.92) at C-2 confirm an E2 mechanism with strong E1 character for this second step. This considerable structural and mechanistic similarity with retaining alpha-glucosidases is clear evidence for the evolution of an enzyme mechanism within the family.  相似文献   

20.
Two ORFs encoding a protein related to bacterial dimethylglycine oxidase were cloned from Pyrococcus furiosus DSM 3638. The protein was expressed in Escherichia coli, purified, and shown to be a flavoprotein amine dehydrogenase. The enzyme oxidizes the secondary amines L-proline, L-pipecolic acid and sarcosine, with optimal catalytic activity towards L-proline. The holoenzyme contains one FAD, FMN and ATP per alphabeta complex, is not reduced by sulfite, and reoxidizes slowly following reduction, which is typical of flavoprotein dehydrogenases. Isolation of the enzyme in a form containing only FAD cofactor allowed detailed pH dependence studies of the reaction with L-proline, for which a bell-shaped dependence (pK(a) values 7.0 +/- 0.2 and 7.6 +/- 0.2) for k(cat)/K(m) as a function of pH was observed. The pH dependence of k(cat) is sigmoidal, described by a single macroscopic pK(a) of 7.7 +/- 0.1, tentatively attributed to ionization of L-proline in the Michaelis complex. The preliminary crystal structure of the enzyme revealed active site residues conserved in related amine dehydrogenases and potentially implicated in catalysis. Studies with H225A, H225Q and Y251F mutants ruled out participation of these residues in a carbanion-type mechanism. The midpoint potential of enzyme-bound FAD has a linear temperature dependence (- 3.1 +/- 0.05 mV x C degrees (-1)), and extrapolation to physiologic growth temperature for P. furiosus (100 degrees C) yields a value of - 407 +/- 5 mV for the two-electron reduction of enzyme-bound FAD. These studies provide the first detailed account of the kinetic/redox properties of this hyperthermophilic L-proline dehydrogenase. Implications for its mechanism of action are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号