首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A potential role of the olfactory rosettes in maintaining prolactin (PRL) and prolactin-releasing peptide (PrRP) levels was examined in the euryhaline silver sea bream (Sparus sarba). The olfactory rosettes were surgically removed in silver sea bream adapted to hypo- (6 ppt) and hyper-osmotic (33 ppt) salinities and the mRNA expression of the two previously identified freshwater-adapting factors, prolactin (PRL) and prolactin-releasing peptide (PrRP), in silver sea bream was measured. The elevation of pituitary PRL and PrRP mRNA expression levels as seen in 6 ppt-adapted fish was abolished by surgical removal of the olfactory rosettes. The PRL and PrRP expression levels in fish adapted to 6 ppt were significantly lowered following olfactory rosette removal. On the other hand, hypothalamic PrRP mRNA expression in 6 ppt-adapted fish did not change. Specific signals for Na+-K+-ATPase but not CFTR mRNA expression were detected in the surface layers of olfactory epithelial cells by in situ hybridization. The mRNA abundance of CFTR and Na+-K+-ATPase α and β subunits remained unchanged in the olfactory rosette of silver sea bream adapted to 0, 6, 12, 33 and 50 ppt for 4 weeks and in fish abruptly transferred from 33 ppt to 6 ppt. Data obtained from the olfactory rosette removal experiments suggest a possible role of the olfactory system for maintaining PRL and PrRP expression during hyposmotic acclimation in sea bream.  相似文献   

2.
3.
Black sea bream ( Mylio macrocephalus) hepatic heat shock proteins hsp90, hsp70, and hsp60 were found to be thermally and reversibly inducible as they were elevated 2.0, 3.2, and 2.1 fold, respectively, on acute heat shock and returned to pre-heat-shock levels after a 40-hour recovery period. To establish whether salinity plays a role in regulating heat shock protein (hsp) and insulin-like growth factor-I (IGF-I) expression in a euryhaline marine fish, we adapted groups of juvenile black sea bream to salinities of 50 ppt (hypersaline), 33 ppt (seawater), 12 ppt (isoosmotic), and 6 ppt (hypoosmotic) for 8 months. The lowest levels of hsps were found in fish reared in an isoosmotic salinity and the highest in those adapted to hypersaline and hypoosmotic salinities. Hepatic beta-actin messenger RNA abundance remained unchanged in all groups during salinity adaptation, whereas IGF-I mRNA abundance was highest in isoosmotic adapted black sea bream. This study is the first report of an effect of salinity ranging from hypersaline to hypoosmotic on the expression of different hsp forms and IGF-I in fish, and the possible relationship between environmental salinity, hepatic IGF-I expression, and hsp regulation is discussed.  相似文献   

4.
5.
6.
A potential role for prolactin-releasing peptide (PrRP) in appetite regulation and hydromineral balance in goldfish was examined. PrRP was found to be expressed in discrete regions of the goldfish brain, in particular, the hypothalamus. Intraperitoneal (IP) or intracerebroventricular administration of PrRP had dose-dependent effects to suppress food intake in goldfish. Hypothalamic PrRP mRNA expression significantly increased after feeding, as well as after 7 days of food deprivation. Refeeding fish after 7 days food deprivation did not result in a postprandial increase in PrRP mRNA expression. These data suggest an anorexigenic role for PrRP in the short term around a scheduled meal time, but not over the longer term. IP injection of PrRP significantly increased pituitary prolactin (PRL) mRNA levels, suggesting involvement in the regulation of lactotroph activity. Acclimating goldfish to an ion-poor environment decreased serum osmolality and increased PrRP and PRL mRNA levels, providing evidence for PrRP involvement in hydromineral balance through its actions on lactotrophs. Acclimation to ion-poor water diminished the anorexigenic properties of PrRP in goldfish, indicating that a role for PrRP in goldfish satiation is counterbalanced by alternate systemic needs (i.e., osmoregulatory). This was further supported by an ability to reinstate the anorexigenic actions of PrRP in fish acclimated to ion-poor water by feeding a salt-rich diet. These studies provide evidence that PrRP is involved in regulating appetite and hydromineral balance in fish, and that the degree of involvement in either process varies according to overall systemic needs in response to environmental conditions.  相似文献   

7.
8.
The purpose of the present study was to ascertain the tissue-specific expression of the water channel protein, aquaporin 3 (AQP3), during salinity acclimation and larval development of silver sea bream (Sparus sarba). A cDNA fragment encoding aquaporin 3 (aqp3) from silver sea bream gill was cloned and from the deduced amino acid sequence a polyclonal antibody was prepared. AQP3 was found to be present in gill, kidney, liver, brain, heart, and spleen but not in whole blood. The abundance of AQP3 was significantly highest in gills of hypoosmotic (6 ppt) and isoosmotic (12 ppt) acclimated sea bream when compared to seawater (33 ppt) and hypersaline (50 ppt)- acclimated sea bream. Spleen tissue also displayed significantly high levels of AQP3 protein in hypoosmotic and isoosmotic salinities whereas the AQP3 abundance in brain, liver, heart, and kidney remained unchanged across the range of salinities tested. The ontogenetic profile of AQP3 was also investigated from developing sea bream larvae and AQP3 was first detected at 14 days posthatch (dph) and increased steadily up to 28–46 dph. In conclusion, this study has demonstrated that AQP3 expression is modulated in gill and spleen tissue of salinity acclimated sea bream and that it can be detected relatively early during larval development.  相似文献   

9.
10.
Stimulation of prolactin release by prolactin-releasing peptide in rats.   总被引:14,自引:0,他引:14  
We have previously reported a hypothalamic peptide that shows specific prolactin (PRL)-releasing activity in vitro, named prolactin-releasing peptide (PrRP). However, its activity in vivo has not yet been shown. In this study, we examined whether PrRP could induce specific PRL release in vivo using normal cycling female and male rats. Intravenous injection of PrRP31 increased plasma PRL levels in rats in a dose-dependent manner. PrRP31 (50 nmol/kg i.v.) significantly (P < 0.05) stimulated plasma PRL levels within 25 min after injection in rats in proestrus, estrus, and metestrus. A higher dose of PrRP31 (500 nmol/kg i.v.) was necessary for a significant increase in plasma PRL levels in male rats. These results clearly indicate that female rats, especially at proestrus, are more sensitive to PrRP-induced PRL secretion than male rats. The effect of PrRP on PRL release is affected considerably by the estrous cycle and sex, which suggests that PrRP sensitivity is controlled by the endogenous hormonal milieu, such as estrogen levels. PrRP31 did not affect other pituitary hormone secretions. The results indicate that PrRP shows specific PRL-releasing activity in vivo as well as in vitro and suggest that it plays an important role in the regulation of PRL release under certain physiological conditions.  相似文献   

11.
Amino acid sequences for identified prolactin (PRL)-releasing peptides (PrRPs) were conserved in mammals (>90%) or teleost fishes (100%), but there were considerable differences between these classes in the sequence (<65%) as well as in the role of PrRP. In species other than fishes and mammals, we have identified frog PrRP. The cDNA encoding Xenopus laevis prepro-PrRP, which can generate putative PrRPs, was cloned and sequenced. Sequences for the coding region showed higher identity with teleost PrRPs than mammalian homologues, but suggested the occurrence of putative PrRPs of 20 and 31 residues as in mammals. The amino acid sequence of PrRP20 was only one residue different from teleost PrRP20, but shared 70% identity with mammalian PrRP20s. In primary cultures of bullfrog (Rana catesbeiana) pituitary cells, Xenopus PrRPs increased prolactin concentrations in culture medium to 130–160% of the control, but PrRPs was much less potent than thyrotropin-releasing hormone (TRH) causing a three- to four-fold increase in prolactin concentrations. PrRP mRNA levels in the developing Xenopus brain peak in early prometamorphosis, different from prolactin levels. PrRP may not be a major prolactin-releasing factor (PRF), at least in adult frogs, as in mammals.  相似文献   

12.
1. Membrane fractions were obtained from homogenates of olfactory rosettes from Atlantic salmon (Salmo salar) or from isolated olfactory cilia and homogenates of deciliated olfactory rosettes. 2. Specific binding of L-[3H]alanine was saturable, high-affinity, and effectively inhibited by L-threonine, L-serine and L-alanine but not by L-lysine or L-glutamic acid. Comparable results were obtained with L-[3H]serine except for the presence of a second, lower affinity, binding site for L-alanine but not L-serine. 3. Specific binding of L-[3H]alanine was inhibited by low concentrations of mercury ion, acidic pH, and high concentrations of cadmium, copper or zinc ions. Aluminum had no effect. 4. Specific binding sites for L-alanine were present in membranes from isolated cilia at a level 2-fold that of membranes prepared from the deciliated rosette. 5. Ouabain sensitive Na+, K(+)-ATPase activity was also determined in cilia preparations. This enzyme was present in cilia at a level approximately 3-fold that of membranes prepared from the deciliated rosette. 6. The results are consistent with the presence of an olfactory alanine receptor in S. salar with binding characteristics similar to those of a variety of other fish species and with a localization on olfactory cilia as well as non-ciliated receptor cell membranes.  相似文献   

13.
FXYD5, also known as dysadherin, belongs to a family of tissue-specific regulators of the Na(+)-K(+)-ATPase. We determined the kinetic effects of FXYD5 on Na(+)-K(+)-ATPase pump activity in stably transfected Madin-Darby canine kidney cells. FXYD5 significantly increased the apparent affinity for Na(+) twofold and decreased the apparent affinity for K(+) by 60% with a twofold increase in V(max) of K(+), a pattern that would increase activity and Na(+) removal from the cell. To test the effect of increased Na(+) uptake on FXYD5 expression, we analyzed Madin-Darby canine kidney cells stably transfected with an inducible vector expressing all three subunits of the epithelial Na(+) channel (ENaC). Na(+)-K(+)-ATPase activity increased sixfold after 48-h ENaC induction, but FXYD5 expression decreased 75%. FXYD5 expression was also decreased in lung epithelia from mice that overexpress ENaC, suggesting that chronic Na(+) absorption by itself downregulates epithelial FXYD5 expression. Patients with cystic fibrosis (CF) display ENaC-mediated hyperabsorption of Na(+) in the airways, accompanied by increased Na(+)-K(+)-ATPase activity. However, FXYD5 was significantly increased in the lungs and nasal epithelium of CF mice as assessed by RT-PCR, immunohistochemistry, and immunoblot analysis (P < 0.001). FXYD5 was also upregulated in nasal scrapings from human CF patients compared with controls (P < 0.02). Treatment of human tracheal epithelial cells with a CFTR inhibitor (I-172) confirmed that loss of CFTR function correlated with increased FXYD5 expression (P < 0.001), which was abrogated by an inhibitor of NF-kappaB. Thus FXYD5 is upregulated in CF epithelia, and this change may exacerbate the Na(+) hyperabsorption and surface liquid dehydration observed in CF airway epithelia.  相似文献   

14.
Na(+)-K(+)-ATPase is arguably the most important enzyme in the animal cell plasma membrane, but the role of the membrane in its regulation is poorly understood. We investigated the relationship between Na(+)-K(+)-ATPase and membrane microdomains or "lipid rafts" enriched in sulfatide (sulfogalactosylceramide/SGC), a glycosphingolipid implicated as a cofactor for this enzyme, in the basolateral membrane of rainbow trout gill epithelium. Our studies demonstrated that when trout adapt to seawater (33 ppt), Na(+)-K(+)-ATPase relocates to these structures. Arylsulfatase-induced desulfation of basolateral membrane SGC prevented this relocation and significantly reduced Na(+)-K(+)-ATPase activity in seawater but not freshwater trout. We contend that Na(+)-K(+)-ATPase partitions into SGC-enriched rafts to help facilitate the up-regulation of its activity during seawater adaptation. We also suggest that differential partitioning of Na(+)-K(+)-ATPase between these novel SGC-enriched regulatory platforms results in two distinct, physiological Na(+) transport modes. In addition, we extend the working definition of cholesterol-dependent raft integrity to structural dependence on the sulfate moiety of SGC in this membrane.  相似文献   

15.
The impact of different environmental salinities on the energy metabolism of gills, kidney, liver, and brain was assessed in gilthead sea bream (Sparus aurata) acclimated to brackish water [BW, 12 parts/thousand (ppt)], seawater (SW, 38 ppt) and hyper saline water (HSW, 55 ppt) for 14 days. Plasma osmolality and levels of sodium and chloride presented a clear direct relationship with environmental salinities. A general activation of energy metabolism was observed under different osmotic conditions. In liver, an enhancement of glycogenolytic and glycolytic potential was observed in fish acclimated to BW and HSW compared with those in SW. In plasma, an increased availability of glucose, lactate, and protein was observed in parallel with the increase in salinity. In gills, an increased Na+-K+-ATPase activity, a clear decrease in the capacity for use of exogenous glucose and the pentose phosphate pathway, as well as an increased glycolytic potential were observed in parallel with the increased salinity. In kidney, Na+-K+-ATPase activity and lactate levels increased in HSW, whereas the capacity for the use of exogenous glucose decreased in BW- and HSW- acclimated fish compared with SW-acclimated fish. In brain, fish acclimated to BW or HSW displayed an enhancement in their potential for glycogenolysis, use of exogenous glucose, and glycolysis compared with SW-acclimated fish. Also in brain, lactate and ATP levels decreased in parallel with the increase in salinity. The data are discussed in the context of energy expenditure associated with osmotic acclimation to different environmental salinities in fish euryhaline species.  相似文献   

16.
Some freshwater (FW) teleosts are capable of acclimating to seawater (SW) when challenged; however, the related energetic and physiological consequences are still unclear. This study was conducted to examine the changes in expression of gill Na(+)-K(+)-ATPase and creatine kinase (CK) in tilapia (Oreochromis mossambicus) as the acute responses to transfer from FW to SW. After 24 h in 25 ppt SW, gill Na(+)-K(+)-ATPase activities were higher than those of fish in FW. Fish in 35 ppt SW did not increase gill Na(+)-K(+)-ATPase activities until 1.5 h after transfer, and then the activities were not significantly different from those of fish in 25 ppt SW. Compared to FW, the gill CK activities in 35 ppt SW declined within 1.5 h and afterward dramatically elevated at 2 h, as in 25 ppt SW, but the levels in 35 ppt SW were lower than those in 25 ppt SW. The Western blot of muscle-type CK (MM form) was in high association with the salinity change, showing a pattern of changes similar to that in CK activity; however, levels in 35 ppt SW were higher than those in 25 ppt SW. The activity of Na(+)-K(+)-ATPase highly correlated with that of CK in fish gill after transfer from FW to SW, suggesting that phosphocreatine acts as an energy source to meet the osmoregulatory demand during acute transfer.  相似文献   

17.
We compared levels of prolactin-releasing peptide (PrRP) mRNA expression in mouse medulla at different stages of pregnancy and lactation. Mouse medulla samples were collected on days 6, 12 and 18 of pregnancy and lactation, respectively (six per group), for mRNA. Expression levels of PrRP mRNA in the medulla were measured by semi-quantitative RT-PCR, with glyceraldehyde 3-phosphate dehydrogenase as a control. PrRP mRNA was highly expressed in mouse medulla oblongata on day 6 of pregnancy (0.53), followed by 0.43 at lactation day 6, and 0.42 at lactation day 12. The expression level of PrRP mRNA on days 12 and 18 of pregnancy and day 18 of lactation shared the same value of 0.36. PrRP mRNA levels during lactation decreased slightly compared with that during pregnancy, but the differences between them were not significant. In summary, PrRP mRNA levels in the medulla oblongata remain relatively stable during pregnancy and lactation. This is evidence that medulla PrRP is not involved in the regulation of prolactin secretion.  相似文献   

18.
The gilthead sea bream (Sparus auratus) is an euryhaline fish where prolactin (PRL) and growth hormone (GH) play a role in the adaptation to different environmental salinities. To find out the role of these pituitary hormones in osmoregulation and energy metabolism, fish were implanted with slow release implants of ovine GH (oGH, 5 microg g(-1) body mass) or ovine prolactin (oPRL, 5 microg g(-1) body mass), and sampled 7 days after the start of the treatment. GH increased branchial Na(+),K(+)-ATPase activity and decreased sodium levels in line with its predicted hypoosmoregulatory action. GH had metabolic effects as indicated by lowered plasma protein and lactate levels, while glucose, triglycerides and plasma cortisol levels were not affected. Also, GH changed liver glucose and lipid metabolism, stimulated branchial and renal glucose metabolism and glycolytic activity, and enhanced glycogenolysis in brain. PRL induced hypernatremia. Furthermore, this hormone decreased liver lipid oxidation potential, and increased glucose availability in kidney and brain. Both hormones have opposite osmoregulatory effects and different metabolic effects. These metabolic changes may support a role for both hormones in the control of energy metabolism in fish that could be related to the metabolic changes occurring during osmotic acclimation.  相似文献   

19.
20.
Modulation of 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase (6PF-2-K/Fru-2,6-P(2)ase) gene expression by diet composition and ration size was studied in the liver of gilthead sea bream, Sparus aurata. From five different types of diet supplied to fish, those with either high carbohydrate/low protein or high carbohydrate/low lipid content stimulated 6PF-2-K/Fru-2,6-P(2)ase expression at the levels of mRNA, immunodetectable protein and kinase activity as well as promoting higher fructose-2,6-bisphosphate (Fru-2,6-P(2)) values. The expression of the bifunctional enzyme and Fru-2,6-P(2) levels showed also direct dependence on the quantity of diet supplied. These findings demonstrate for the first time nutritional regulation of 6PF-2-K/Fru-2,6-P(2)ase at mRNA level by diet composition and ration size and suggest that the carnivorous fish S. aurata can adapt its metabolism, by stimulation of liver glycolysis, to partial substitution of protein by carbohydrate in the diet. In addition, the expression of 6PF-2-K/Fru-2,6-P(2)ase can be used as an indicator of nutritional condition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号