首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Membrane transporters (MTs) facilitate the movement of molecules between cellular compartments. The evolutionary history of these key components of eukaryote genomes remains unclear. Many photosynthetic microbial eukaryotes (e.g., diatoms, haptophytes, and dinoflagellates) appear to have undergone serial endosymbiosis and thereby recruited foreign genes through endosymbiotic/horizontal gene transfer (E/HGT). Here we used the diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum as models to examine the evolutionary origin of MTs in this important group of marine primary producers. Using phylogenomics, we used 1,014 diatom MTs as query against a broadly sampled protein sequence database that includes novel genome data from the mesophilic red algae Porphyridium cruentum and Calliarthron tuberculosum, and the stramenopile Ectocarpus siliculosus. Our conservative approach resulted in 879 maximum likelihood trees of which 399 genes show a non-lineal history between diatoms and other eukaryotes and prokaryotes (at the bootstrap value ≥70%). Of the eukaryote-derived MTs, 172 (ca. 25% of 697 examined phylogenies) have members of both red/green algae as sister groups, with 103 putatively arising from green algae, 19 from red algae, and 50 have an unresolved affiliation to red and/or green algae. We used topology tests to analyze the most convincing cases of non-lineal gene history in which red and/or green algae were nested within stramenopiles. This analysis showed that ca. 6% of all trees (our most conservative estimate) support an algal origin of MTs in stramenopiles with the majority derived from green algae. Our findings demonstrate the complex evolutionary history of photosynthetic eukaryotes and indicate a reticulate origin of MT genes in diatoms. We postulate that the algal-derived MTs acquired via E/HGT provided diatoms and other related microbial eukaryotes the ability to persist under conditions of fluctuating ocean chemistry, likely contributing to their great success in marine environments.  相似文献   

2.
Eukaryotic RUBISCO appears in two sequence‐diverging forms, known as red‐like (present in nongreen algae) and green‐like (of green algae and higher plants) types. Oxidation of cysteines from green‐like RUBISCOs is known to result in conformational changes that inactivate the enzyme and render a relaxed structure more prone to proteolytic attack. These changes may have regulatory value for green algae and higher plants, promoting RUBISCO catabolism under stress conditions. We compare here red‐like RUBISCOs from several diatoms with a representative green‐like RUBISCO from Chlamydomonas reinhardtii, paying special attention to the cysteine‐dependent redox properties. Purified diatom RUBISCO preparations displayed a specific carboxylase activity about one order of magnitude lower than that of the C. reinhardtii P. A. Dang. enzyme. Despite having different patterns of cysteine residues in their primary sequence, the red‐like enzymes from diatoms inactivated also through oxidation of cysteine sulfhydryls to disulfides with a transition midpoint identical to that of the green‐like forms. Cysteine oxidation resulted also in structural modifications of the diatom RUBISCOs, as recognized by a higher sensitivity of the oxidized enzyme to in vitro proteolysis. The coincident redox properties of red‐ and green‐like RUBISCO types suggest that these changes are part of a physiologically significant regulatory mechanism that has been convergently implemented in both groups with a different set of cysteine residues.  相似文献   

3.
高宇  林光辉 《生物多样性》2018,26(11):1223-137
藻类是红树林生态系统重要的生物类群, 根据生态习性可分为浮游植物、底栖微藻和大型藻类三个生态类群, 它们在红树林生态系统生物多样性、初级生产、元素循环等方面起着重要作用。但在红树林生态系统中, 关注重点多集中在红树植物和动物, 对其中的藻类重视不够, 且多数研究集中在近20年以及亚洲的红树林区。事实上, 红树林生态系统藻类非常丰富, 其多样性研究有助于深入揭示红树林生态系统的结构与功能。本文介绍了红树林生态系统藻类的组成类群及其重要性, 重点对红树林区浮游植物、底栖硅藻和大型海藻的种类组成、地理分布及其与初级生产力、水质污染、元素循环、碳库形成等生态过程中的作用的研究动态和进展等进行了总结。根据已有研究, 红树林区浮游植物和底栖硅藻的种类数一般为几十到上百种, 其中硅藻在种类和数量上都占绝对优势, 它们是重要的初级生产者、饵料生物和水质污染指示生物; 红树林区底栖大型藻类主要由红藻、绿藻、褐藻、蓝藻组成, 绿藻的种类较多, 红藻在数量上占优势; 藻类是红树林湿地碳库的重要贡献者, 在红树林湿地生态系统碳汇和碳循环中起重要作用。红树林生态系统是个高度动态和异质的系统, 今后应加强红树林藻类多样性的长周期、大尺度变化及不同生境藻类的综合研究, 关注大陆径流和潮汐对藻类多样性和蓝碳的影响, 借助沉积物藻类记录, 探明红树林区藻类的长周期变化, 反演气候变化和人类活动对红树林生态系统的影响过程和机制。  相似文献   

4.
The chromalveolate "supergroup" is of key interest in contemporary phycology, as it contains the overwhelming majority of extant algal species, including several phyla of key importance to oceanic net primary productivity such as diatoms, kelps, and dinoflagellates. There is also intense current interest in the exploitation of these algae for industrial purposes, such as biodiesel production. However, the evolution of the constituent species, and in particular the origin and radiation of the chloroplast genomes, remains poorly understood. In this review, we discuss current theories of the origins of the extant red alga-derived chloroplast lineages in the chromalveolates and the potential ramifications of the recent discovery of large numbers of green algal genes in chromalveolate genomes. We consider that the best explanation for this is that chromalveolates historically possessed a cryptic green algal endosymbiont that was subsequently replaced by a red algal chloroplast. We consider how changing selective pressures acting on ancient chromalveolate lineages may have selectively favored the serial endosymbioses of green and red algae and whether a complex endosymbiotic history facilitated the rise of chromalveolates to their current position of ecological prominence.  相似文献   

5.
H Hori  S Osawa 《Bio Systems》1986,19(3):163-172
The secondary structure models of 5S rRNA have been constructed from the primary structure of 352 5S rRNA species available at present. All the 5S rRNAs examined can take essentially the same secondary structure, however they reveal characteristic differences between eukaryotes, metabacteria (= archaebacteria) and eubacteria. These three types of models can be further subgrouped by minor but characteristic differences. A phylogenic tree of organisms has been constructed using these 5S rRNA sequences by the weighted pairing method (WPG method). The tree reveals that there exist several major groups of eubacteria which seem to have diverged into different directions in the early stages of bacterial evolution. After emergence of eubacteria, metabacteria and eukaryotes separated from each other from their common ancestor. In the eukaryotic evolution, red algae (Rhodophyta) emerged first, and thereafter, thraustocytrids-Proctista, Ascomycota, green plants (green algae and land plants), Basidiomycota, Chromophyta (brown algae, diatoms and golden-yellow algae), slime- and water molds, various protozoans, and animals emerged in this order.  相似文献   

6.
I discuss the evidence for a single origin of primary plastids in the context of a paper in this issue challenging this view, and I review recent evidence concerning the number of secondary plastid endosymbioses and the controversy over whether the relic plastid of apicomplexans is of red or green algal origin. A broad consensus has developed that the plastids of green algae, red algae, and glaucophytes arose from the same primary, cyanobacterial endosymbiosis. Although the analyses in this issue by Stiller and colleagues firmly undermine one of many sources of data, gene content similarities among plastid genomes used to argue for a monophyletic origin of primary plastids, the overall evidence still clearly favors monophyly. Nonetheless, this issue should not be considered settled and new data should be sought from better sampling of cyanobacteria and glaucophytes, from sequenced nuclear genomes, and from careful analysis of such key features as the plastid import apparatus. With respect to the number of secondary plastid symbioses, it is completely unclear as to whether the secondary plastids of euglenophytes and chlorarachniophytes arose by the same or two different algal endosymbioses. Recent analyses of certain plastid and nuclear genes support the chromalveolate hypothesis of Cavalier-Smith, namely, that the plastids of heterokonts, haptophytes, cryptophytes, dinoflagellates, and apicomplexans all arose from a common endosymbiosis involving a red alga. However, another recent paper presents intriguing conflicting data on this score for one of these groups—apicomplexans—arguing instead that they acquired their plastids from green algae.  相似文献   

7.
PRIMARY AND SECONDARY ENDOSYMBIOSIS AND THE ORIGIN OF PLASTIDS   总被引:4,自引:0,他引:4  
The theory of endosymbiosis describes the origin of plastids from cyanobacterial-like prokaryotes living within eukaryotic host cells. The endosymbionts are much reduced, but morphological, biochemical, and molecular studies provide clear evidence of a prokaryotic ancestry for plastids. There appears to have been a single (primary) endosymbiosis that produced plastids with two bounding membranes, such as those in green algae, plants, red algae, and glaucophytes. A subsequent round of endosymbioses, in which red or green algae were engulfed and retained by eukaryotic hosts, transferred photosynthesis into other eukaryotic lineages. These endosymbiotic plastid acquisitions from eukaryotic algae are referred to as secondary endosymbioses, and the resulting plastids classically have three or four bounding membranes. Secondary endosymbioses have been a potent factor in eukaryotic evolution, producing much of the modern diversity of life.  相似文献   

8.
Distribution of photosystem II (PSII) extrinsic proteins was examined using antibodies raised against various extrinsic proteins from different sources. The results showed that a glaucophyte (Cyanophora paradoxa) having the most primitive plastids contained the cyanobacterial-type extrinsic proteins (PsbO, PsbV, PsbU), and the primitive red algae (Cyanidium caldarium) contained the red algal-type extrinsic proteins (PsO, PsbQ', PsbV, PsbU), whereas a prasinophyte (Pyraminonas parkeae), which is one of the most primitive green algae, contained the green algal-type ones (PsbO, PsbP, PsbQ). These suggest that the extrinsic proteins had been diverged into cyanobacterial-, red algal- and green algal-types during early phases of evolution after a primary endosymbiosis. This study also showed that a haptophyte, diatoms and brown algae, which resulted from red algal secondary endosymbiosis, contained the red algal-type, whereas Euglena gracilis resulted from green algal secondary endosymbiosis contained the green algal-type extrinsic proteins, suggesting that the red algal- and green algal-type extrinsic proteins have been retained unchanged in the different lines of organisms following the secondary endosymbiosis. Based on these immunological analyses, together with the current genome data, the evolution of photosynthetic oxygen-evolving PSII was discussed from a view of distribution of the extrinsic proteins, and a new model for the evolution of the PSII extrinsic proteins was proposed.  相似文献   

9.
Current understanding of the plastid proteome comes almost exclusively from studies of plants and red algae. The proteome in these taxa has a relatively simple origin via integration of proteins from a single cyanobacterial primary endosymbiont and the host. However, the most successful algae in marine environments are the chlorophyll c-containing chromalveolates such as diatoms and dinoflagellates that contain a plastid of red algal origin derived via secondary or tertiary endosymbiosis. Virtually nothing is known about the plastid proteome in these taxa. We analyzed expressed sequence tag data from the toxic "Florida red tide" dinoflagellate Karenia brevis that has undergone a tertiary plastid endosymbiosis. Comparative analyses identified 30 nuclear-encoded plastid-targeted proteins in this chromalveolate that originated via endosymbiotic or horizontal gene transfer (HGT) from multiple different sources. We identify a fundamental divide between plant/red algal and chromalveolate plastid proteomes that reflects a history of mixotrophy in the latter group resulting in a highly chimeric proteome. Loss of phagocytosis in the "red" and "green" clades effectively froze their proteomes, whereas chromalveolate lineages retain the ability to engulf prey allowing them to continually recruit new, potentially adaptive genes through subsequent endosymbioses and HGT. One of these genes is an electron transfer protein (plastocyanin) of green algal origin in K. brevis that likely allows this species to thrive under conditions of iron depletion.  相似文献   

10.
By synthesizing data from individual gene phylogenies, large concatenated gene trees, and other kinds of molecular, morphological, and biochemical markers, we begin to see the broad outlines of a global phylogenetic tree of eukaryotes. This tree is apparently composed of five large assemblages, or "supergroups." Plants and algae, or more generally eukaryotes with plastids (the photosynthetic organelle of plants and algae and their nonphotosynthetic derivatives) are scattered among four of the five supergroups. This is because plastids have had a complex evolutionary history involving several endosymbiotic events that have led to their transmission from one group to another. Here, the history of the plastid and of its various hosts is reviewed with particular attention to the number and nature of the endosymbiotic events that led to the current distribution of plastids. There is accumulating evidence to support a single primary origin of plastids from a cyanobacterium (with one intriguing possible exception in the little-studied amoeba Paulinella), followed by the diversification of glaucophytes, red and green algae, with plants evolving from green algae. Following this, some of these algae were themselves involved in secondary endosymbiotic events. The best current evidence indicates that two independent secondary endosymbioses involving green algae gave rise to euglenids and chlorarachniophytes, whereas a single endosymbiosis with a red algae gave rise to the chromalveolates, a diverse group including cryptomonads, haptophytes, heterokonts, and alveolates. Dinoflagellates (alveolates) have since taken up other algae in serial secondary and tertiary endosymbioses, raising a number of controversies over the origin of their plastids, and by extension, the recently discovered cryptic plastid of the closely related apicomplexan parasites.  相似文献   

11.
兰州五泉山的藻类及其分布   总被引:3,自引:0,他引:3  
以兰州五泉山为该地藻种资源库,对其中水生、陆生生境中藻类的种类多样性、群落结构、分布特点进行了研究。结果发现该地藻类植物65种(含4变种),包括蓝藻、绿藻、硅藻和红藻,其中硅藻种类最多(29种),其它依次为蓝藻(24种)、绿藻(11种)和红藻(1种)。水体中共42种,硅藻最多,有26种,其次蓝藻8种,绿藻7种,红藻1种,不同水体中优势种和亚优势种不同。土壤生境中发现20种,蓝藻13种,绿藻4种,硅藻3种,且非洲席藻和小球藻分为优势种和亚优势种。7个种类在水、陆两大生境都有分布,而且它们主要是丝状蓝藻。  相似文献   

12.
Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences   总被引:18,自引:0,他引:18  
A phylogenetic tree of most of the major groups of organisms has been constructed from the 352 5S ribosomal RNA sequences now available. The tree suggests that there are several major groups of eubacteria that diverged during the early stages of their evolution. Metabacteria (= archaebacteria) and eukaryotes separated after the emergence of eubacteria. Among eukaryotes, red algae emerged first; and, later, thraustochytrids (a Proctista group), ascomycetes (yeast), green plants (green algae and land plants), "yellow algae" (brown algae, diatoms, and chrysophyte algae), basidiomycetes (mushrooms and rusts), slime- and water molds, various protozoans, and animals emerged, approximately in that order. Three major types of photosynthetic eukaryotes--i.e., red algae (= Chlorophyll a group), green plants (Chl. a + b group) and yellow algae (Chl. a + c)--are remotely related to one another. Other photosynthetic unicellular protozoans--such as Cyanophora (Chl. a), Euglenophyta (Chl. a + b), Cryptophyta (Chl. a + c), and Dinophyta (Chl. a + c)--seem to have separated shortly after the emergence of the yellow algae.   相似文献   

13.
Photosynthetic eukaryotes unite: endosymbiosis connects the dots   总被引:15,自引:0,他引:15  
The photosynthetic organelle of algae and plants (the plastid) traces its origin to a primary endosymbiotic event in which a previously non-photosynthetic protist engulfed and enslaved a cyanobacterium. This eukaryote then gave rise to the red, green and glaucophyte algae. However, many algal lineages, such as the chlorophyll c-containing chromists, have a more complicated evolutionary history involving a secondary endosymbiotic event, in which a protist engulfed an existing eukaryotic alga (in this case, a red alga). Chromists such as diatoms and kelps then rose to great importance in aquatic habitats. Another algal group, the dinoflagellates, has undergone tertiary (engulfment of a secondary plastid) and even quaternary endosymbioses. In this review, we examine algal diversity and show endosymbiosis to be a major force in algal evolution. This area of research has advanced rapidly and long-standing issues such as the chromalveolate hypothesis and the extent of endosymbiotic gene transfer have recently been clarified.  相似文献   

14.
Cerutti H  Ma X  Msanne J  Repas T 《Eukaryotic cell》2011,10(9):1164-1172
Algae are a large group of aquatic, typically photosynthetic, eukaryotes that include species from very diverse phylogenetic lineages, from those similar to land plants to those related to protist parasites. The recent sequencing of several algal genomes has provided insights into the great complexity of these organisms. Genomic information has also emphasized our lack of knowledge of the functions of many predicted genes, as well as the gene regulatory mechanisms in algae. Core components of the machinery for RNA-mediated silencing show widespread distribution among algal lineages, but they also seem to have been lost entirely from several species with relatively small nuclear genomes. Complex sets of endogenous small RNAs, including candidate microRNAs and small interfering RNAs, have now been identified by high-throughput sequencing in green, red, and brown algae. However, the natural roles of RNA-mediated silencing in algal biology remain poorly understood. Limited evidence suggests that small RNAs may function, in different algae, in defense mechanisms against transposon mobilization, in responses to nutrient deprivation and, possibly, in the regulation of recently evolved developmental processes. From a practical perspective, RNA interference (RNAi) is becoming a promising tool for assessing gene function by sequence-specific knockdown. Transient gene silencing, triggered with exogenously synthesized nucleic acids, and/or stable gene repression, involving genome-integrated transgenes, have been achieved in green algae, diatoms, yellow-green algae, and euglenoids. The development of RNAi technology in conjunction with system level "omics" approaches may provide the tools needed to advance our understanding of algal physiological and metabolic processes.  相似文献   

15.
Abstract: In algae different types of plastids are known, which vary in pigment content and ultrastructure, providing an opportunity to study their evolutionary origin. One interesting feature is the number of envelope membranes surrounding the plastids. Red algae, green algae and glaucophytes have plastids with two membranes. They are thought to originate from a primary endocytobiosis event, a process in which a prokaryotic cyanobacterium was engulfed by a eukaryotic host cell and transformed into a plastid. Several other algal groups, like euglenophytes and heterokont algae (diatoms, brown algae, etc.), have plastids with three or four surrounding membranes, respectively, probably reflecting the evolution of these organisms by so‐called secondary endocytobiosis, which is the uptake of a eukaryotic alga by a eukaryotic host cell. A prerequisite for the successful establishment of primary or secondary endocytobiosis must be the development of suitable protein targeting machineries to allow the transport of nucleus‐encoded plastid proteins across the various plastid envelope membranes. Here, we discuss the possible evolution of such protein transport systems. We propose that the secretory system of the respective host cell might have been the essential tool to establish protein transport into primary as well as into secondary plastids.  相似文献   

16.
Septins are a group of GTP‐binding proteins that are multi‐functional, with a well‐known role in cytokinesis in animals and fungi. Although the functions of septins have been thoroughly studied in opisthokonts (fungi and animals), the function and evolution of plant/algal septins are not as well characterized. Here we describe septin localization and expression in the green algae Nannochloris bacillaris and Marvania geminata. The present data suggest that septins localize at the division site when cytokinesis occurs. In addition, we show that septin homologs may be found only in green algae, but not in other major plant lineages, such as land plants, red algae and glaucophytes. We also found other septin homolog‐possessing organisms among the diatoms, Rhizaria and cryptomonad/haptophyte lineages. Our study reveals the potential role of algal septins in cytokinesis and/or cell elongation, and confirms that septin genes appear to have been lost in the Plantae lineage, except in some green algae.  相似文献   

17.
Red algae (Rhodophyta) putatively diverged from the eukaryote tree of life >1.2 billion years ago and are the source of plastids in the ecologically important diatoms, haptophytes, and dinoflagellates. In general, red algae contain the largest plastid gene inventory among all such organelles derived from primary, secondary, or additional rounds of endosymbiosis. In contrast, their nuclear gene inventory is reduced when compared to their putative sister lineage, the Viridiplantae, and other photosynthetic lineages. The latter is thought to have resulted from a phase of genome reduction that occurred in the stem lineage of Rhodophyta. A recent comparative analysis of a taxonomically broad collection of red algal and Viridiplantae plastid genomes demonstrates that the red algal ancestor encoded ~1.5× more plastid genes than Viridiplantae. This difference is primarily explained by more extensive endosymbiotic gene transfer (EGT) in the stem lineage of Viridiplantae, when compared to red algae. We postulate that limited EGT in Rhodophytes resulted from the countervailing force of ancient, and likely recurrent, nuclear genome reduction. In other words, the propensity for nuclear gene loss led to the retention of red algal plastid genes that would otherwise have undergone intracellular gene transfer to the nucleus. This hypothesis recognizes the primacy of nuclear genome evolution over that of plastids, which have no inherent control of their gene inventory and can change dramatically (e.g., secondarily non‐photosynthetic eukaryotes, dinoflagellates) in response to selection acting on the host lineage.  相似文献   

18.
We modified the stable isotope mixing model MixSIR to infer primary producer contributions to consumer diets based on their fatty acid composition. To parameterize the algorithm, we generated a ‘consumer-resource library’ of FA signatures of Daphnia fed different algal diets, using 34 feeding trials representing diverse phytoplankton lineages. This library corresponds to the resource or producer file in classic Bayesian mixing models such as MixSIR or SIAR. Because this library is based on the FA profiles of zooplankton consuming known diets, and not the FA profiles of algae directly, trophic modification of consumer lipids is directly accounted for. To test the model, we simulated hypothetical Daphnia comprised of 80% diatoms, 10% green algae, and 10% cryptophytes and compared the FA signatures of these known pseudo-mixtures to outputs generated by the mixing model. The algorithm inferred these simulated consumers were comprised of 82% (63-92%) [median (2.5th to 97.5th percentile credible interval)] diatoms, 11% (4-22%) green algae, and 6% (0-25%) cryptophytes. We used the same model with published phytoplankton stable isotope (SI) data for δ13C and δ15N to examine how a SI based approach resolved a similar scenario. With SI, the algorithm inferred that the simulated consumer assimilated 52% (4-91%) diatoms, 23% (1-78%) green algae, and 18% (1-73%) cyanobacteria. The accuracy and precision of SI based estimates was extremely sensitive to both resource and consumer uncertainty, as well as the trophic fractionation assumption. These results indicate that when using only two tracers with substantial uncertainty for the putative resources, as is often the case in this class of analyses, the underdetermined constraint in consumer-resource SI analyses may be intractable. The FA based approach alleviated the underdetermined constraint because many more FA biomarkers were utilized (n < 20), different primary producers (e.g., diatoms, green algae, and cryptophytes) have very characteristic FA compositions, and the FA profiles of many aquatic primary consumers are strongly influenced by their diets.  相似文献   

19.
Plastids of diatoms and other chromophytic algae have four surrounding membranes. In contrast to plastids of green algae, higher plants and red algae chromophytic cells are thought to have evolved by secondary endocytobiosis, i.e. by uptake of a eukaryotic photosynthetic organism by a eukaryotic host cell. This review gives a brief summary of the current views about the origin of diatom plastids and discusses possible mechanisms the cells might employ to transport nucleus-encoded plastid proteins into these organelles.  相似文献   

20.
In a search for slowly evolving nuclear genes that may cast light on the deep evolution of plants, we carried out phylogenetic analyses of two well-characterized subfamilies of P-type pumps (P2A and P5A ATPases) from representative branches of the eukaryotic tree of life. Both P-type ATPase genes were duplicated very early in eukaryotic evolution and before the divergence of the present eukaryotic supergroups. Synapomorphies identified in the sequences provide evidence that green plants and red algae are more distantly related than are green plants and eukaryotic supergroups in which secondary or tertiary plastids are common, such as several groups belonging to the clade that includes Stramenopiles, Alveolata, Rhizaria, Cryptophyta and Haptophyta (SAR). We propose that red algae branched off soon after the first photosynthesizing eukaryote had acquired a primary plastid, while in another lineage that led to SAR, the primary plastid was lost but, in some cases, regained as a secondary or tertiary plastid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号