首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A systematic, ligation-based approach to study RNA modifications   总被引:2,自引:1,他引:1  
Over 100 different chemical types of modifications have been identified in thousands of sites in tRNAs, rRNAs, mRNAs, small nuclear RNAs, and other RNAs. Some modifications are highly conserved, while others are more specialized. They include methylation of bases and the ribose backbone, rotation, and reduction of uridine, base deamination, elaborate addition of ring structures, carbohydrate moieties, and more. We have developed a systematic approach to detect and quantify the extent of known RNA modifications. The method is based on the enzymatic ligation of oligonucleotides using the modified or unmodified RNA as the template. The efficiency of ligation is very sensitive to the presence and the type of modifications. First, two oligo pairs for each type of modification are identified. One pair greatly prefers ligation using the unmodified RNA template over the modified RNA template or vice versa. The other pair has equal reactivity with unmodified and modified RNA. Second, separate ligations with each of the two oligo pairs and the total RNA mixture are performed to detect the presence or absence of modifications. Multiple modification sites can be examined in the same ligation reaction. The feasibility of this method is demonstrated for three 2'O-methyl modification sites in yeast rRNA.  相似文献   

2.
The modification of RNA with fluorophores, affinity tags and reactive moieties is of enormous utility for studying RNA localization, structure and dynamics as well as diverse biological phenomena involving RNA as an interacting partner. Here we report a labeling approach in which the RNA of interest--of either synthetic or biological origin--is modified at its 3'-end by a poly(A) polymerase with an azido-derivatized nucleotide. The azide is later on conjugated via copper-catalyzed or strain-promoted azide-alkyne click reaction. Under optimized conditions, a single modified nucleotide of choice (A, C, G, U) containing an azide at the 2'-position can be incorporated site-specifically. We have identified ligases that tolerate the presence of a 2'-azido group at the ligation site. This azide is subsequently reacted with a fluorophore alkyne. With this stepwise approach, we are able to achieve site-specific, internal backbone-labeling of de novo synthesized RNA molecules.  相似文献   

3.
4.
5.
We report that combining a DNA analog (2′F-ANA) with rigid RNA analogs [2′F-RNA and/or locked nucleic acid (LNA)] in siRNA duplexes can produce gene silencing agents with enhanced potency. The favored conformations of these two analogs are different, and combining them in a 1–1 pattern led to reduced affinity, whereas alternating short continuous regions of individual modifications increased affinity relative to an RNA:RNA duplex. Thus, the binding affinity at key regions of the siRNA duplex could be tuned by changing the pattern of incorporation of DNA-like and RNA-like nucleotides. These heavily or fully modified duplexes are active against a range of mRNA targets. Effective patterns of modification were chosen based on screens using two sequences targeting firefly luciferase. We then applied the most effective duplex designs to the knockdown of the eIF4E binding proteins 4E-BP1 and 4E-BP2. We identified modified duplexes with potency comparable to native siRNA. Modified duplexes showed dramatically enhanced stability to serum nucleases, and were characterized by circular dichroism and thermal denaturation studies. Chemical modification significantly reduced the immunostimulatory properties of these siRNAs in human peripheral blood mononuclear cells.  相似文献   

6.
7.
Agarwal T  Kumar S  Maiti S 《Biochimie》2011,93(10):1694-1700
G-quadruplexes are common structural motifs in aptamers. UNA or unlocked nucleic acid is the latest nucleic acid modification. We have attempted to evaluate the impact of UNA modification on the structure and stability of G-quadruplex oligonucleotides for application in aptamer design. We show using CD spectroscopy that UNA modifications can cause structural transitions in some cases although they retain the inherent G- quadruplex signature. From UV melting studies we showed a position dependent effect of UNA modifications such that quadruplexes with UNA modified loops are further stabilized whereas UNA modifications in stem of the G-quadruplex significantly destabilize the structure. The impact of UNA modification on different nucleobases is also investigated. From the analysis of UV melting results, thermodynamic profile was computed and it was concluded that all the sequences are stable at 37 °C. Finally, a greater serum stability of the modified oligonucleotides in comparison with unmodified ones is also demonstrated. Overall, the position dependent effect of single UNA substitutions was observed and analysed.  相似文献   

8.
The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.  相似文献   

9.
Ribose 2'-hydroxyls make a key contribution to the enormous structural and functional potential of RNA molecules. Here, we report the identification of 2'-deoxy modifications in the catalytic RNA subunit of RNase P from Escherichia coli that interfere with tRNA binding. This was accomplished by modification interference employing pools of RNase P RNA that carried a low level of Rp-deoxy-phosphorothioate (Rp-deoxyNMPalpha(S) ) modifications randomly distributed over its 380 nt. A gel retardation assay allowed us to separate RNase P RNA pools into tRNA-binding and nonbinding fractions. Differences in the intensity of phosphorothioate-specific iodine hydrolysis patterns of the two RNA fractions revealed positions where the Rp-deoxyNMPalpha(S) modification interferes with tRNA binding. A comparison with interference patterns obtained for the Rp-NMPalpha(S) modification alone has identified some 20 positions in the backbone of E. coli RNase P RNA where the functional defect caused by the Rp-deoxyNMPalpha(S) double modification is attributable to the 2'-deoxy modification (or possibly the C5 methyl group in the case of U residues because we used deoxyTMPalpha(S) for partial substitution of UMP). Most of the corresponding 2'-OH functions were localized in regions that have been reported to crosslink to photoreactive tRNA derivatives, suggesting that these 2'-hydroxyls are located along the tRNA binding interface of E. coli RNase P RNA. Our results indicate that the modification interference approach applied here will be useful generally to identify structurally and functionally important 2'-hydroxyls in large RNAs and ribozymes.  相似文献   

10.
11.
12.
We have modified the yeast two-hybrid system to enable the detection of protein-protein interactions that require a specific post-translational modification, using the acetylation of histones and the phosphorylation of the carboxyl terminal domain (CTD) of RNA polymerase II as test modifications. In this tethered catalysis assay, constitutive modification of the protein to be screened for interactions is achieved by fusing it to its cognate modifying enzyme, with the physical linkage resulting in efficient catalysis. This catalysis maintains substrate modification even in the presence of antagonizing enzyme activities. A catalytically inactive mutant of the enzyme is fused to the substrate as a control such that the modification does not occur; this construct enables the rapid identification of modification-independent interactions. We identified proteins with links to chromatin functions that interact with acetylated histones, and proteins that participate in RNA polymerase II functions and in CTD phosphorylation regulation that interact preferentially with the phosphorylated CTD.  相似文献   

13.
The activity-stability-structure relationship of the cold-active alkaline phosphatase from Red Arctic shrimp, Pandalus borealis (SAP) was studied by chemically modifying aliphatic (C-H) or amino (NH2) groups using benzophenone tetracarboxylic derivatives in either a light (UV-A) or dark reaction. The response of the cold-adapted enzyme was compared to a similarly modified calf alkaline phosphatase (CAP). MALDI-TOF-MS was used to determine the extent and nature of the modifications in both SAP and CAP. On average 2 to 4 amino acid residues were linked to a BP-modifier, with up to 18 to 21 amino acids modified in a smaller portion of the material. The effect of the modifications on kinetic and thermodynamic properties varied with the enzyme and type of modification. The aliphatic-group modified SAP demonstrated typical characteristics of a mesophilic enzyme, consistent with an activity-stability trade-off where gain in thermostability was attained at the expense of decreased activity. In contrast, the activity of the amino-group modified SAP attained an even more psychrophilic character with respect to its kinetic (increase in kcat and Km) and thermodynamic (reduction in deltaH#) properties. Interestingly, the amino-group modified SAP also acquired higher thermostability, thus demonstrating that both activity and stability can be simultaneously enhanced using chemical modification. The study demonstrates the applicability of benzophenone chemical modification for improving the thermal properties of enzymes from psychrophiles and mesophiles.  相似文献   

14.
The analysis of histone modifications   总被引:6,自引:0,他引:6  
The biological function of many proteins is often regulated through posttranslational modifications (PTMs). Frequently different modifications influence each other and lead to an intricate network of interdependent modification patterns that affect protein-protein interactions, enzymatic activities and sub-cellular localizations. One of the best-studied class of proteins that is affected by PTMs and combinations thereof are the histone molecules. Histones are very abundant, small basic proteins that package DNA in the eukaryotic nucleus to form chromatin. The four core-histones are densely modified within their first 20-40 N-terminal amino acids, which are highly evolutionary conserved despite playing no structural role. The modifications are thought to constitute a histone code that is used by the cell to encrypt various chromatin conformations and gene expression states. The analysis of modified histones can be used as a model to dissect complex modification patterns and to investigate their molecular functions. Here we review techniques that have been used to decipher complex histone modification patterns and discuss the implication of these findings for chromatin structure and function.  相似文献   

15.
RNA-binding proteins play an important role in RNA metabolism, especially in mRNA biogenesis and subsequent expression patterns regulation. RNA immunoprecipitation (RIP) is a powerful tool for detecting protein–RNA associations. In this paper, we briefly cover the history of this method for analyzing RNA–protein interactions and reviewing a number of modifications of the RIP technique. We also present an adjusted RIP protocol that was modified for Drosophila S2 cell culture. The use of this protocol allows one to perform the efficient precipitation of RNA–protein complexes and harvest RNA in amounts that are sufficient for its downstream analysis.  相似文献   

16.
Synthetic RNAi activators have shown considerable potential for therapeutic application to silencing of pathology-causing genes. Typically these exogenous RNAi activators comprise duplex RNA of approximately 21 bp with 2 nt overhangs at the 3' ends. To improve efficacy of siRNAs, chemical modification at the 2'-OH group of ribose has been employed. Enhanced stability, gene silencing and attenuated immunostimulation have been demonstrated using this approach. Although promising, efficient and controlled delivery of highly negatively charged nucleic acid gene silencers remains problematic. To assess the potential utility of introducing positively charged groups at the 2' position, our investigations aimed at assessing efficacy of novel siRNAs containing 2'-O-guanidinopropyl (GP) moieties. We describe the formation of all four GP-modified nucleosides using the synthesis sequence of Michael addition with acrylonitrile followed by Raney-Ni reduction and guanidinylation. These precursors were used successfully to generate antihepatitis B virus (HBV) siRNAs. Testing in a cell culture model of viral replication demonstrated that the GP modifications improved silencing. Moreover, thermodynamic stability was not affected by the GP moieties and their introduction into each position of the seed region of the siRNA guide strand did not alter the silencing efficacy of the intended HBV target. These results demonstrate that modification of siRNAs with GP groups confers properties that may be useful for advancing therapeutic application of synthetic RNAi activators.  相似文献   

17.
18.
TMV RNA was modified by two bulky carcinogens, N-acetoxy-2-acetylamino-fluorene (AAAF) and (+/-)-7beta, 8alpha- dihydroxy-9alpha, 10alpha-epoxy-7,8,9,10-tetrahydrobenzo[alpha]pyrene (BPDE), and the effects of such substituents on biological and physical properties was studied. For both types of modification, the loss of infectivity was directly proportional to the number of chemical modifications indicating that all modifications are lethal. Neither AAAF nor BPDE produced measurable mutations. Reconstitution of modified RNA with TMV protein was partially inhibited, but such inhibition occurred to similar extents with either carcinogen and a varying levels of modification. The data suggest that both types of substitution of TMV RNA generally permit the TMV coat protein to aggregate normally around the RNA, but that AAAF and BPDE may induce some conformational change in the initiation region that inhibits the initiation step.  相似文献   

19.
Numerous DNA chemistries for improving oligodeoxynucleotide (ODN)-based RNA targeting have been explored. The majority of the modifications render the ODN/RNA target insensitive to RNase H1. Borano phosphonate ODN's are among the few modifications that are tolerated by RNase H1. To understand the effect of the stereochemistry of the BH(3) modification on the nucleic acid structure and RNase H1 enzyme activity, we have investigated two DNA/RNA hybrids containing either a R(P) or S(P) BH(3) modification by nuclear magnetic resonance (NMR) spectroscopy. T(M) studies show that the stabilities of R(P) and S(P) modified DNA/RNA hybrids are essentially identical (313.8 K) and similar to that of an unmodified control (312.9 K). The similarity is also reflected in the imino proton spectra. To characterize such similar structures, we used a large number of NMR restraints (including dipolar couplings and backbone torsion angles) to determine structural features that were important for RNase H1 activity. The final NMR structures exhibit excellent agreement with the data (total R(x) values of <6%) with helical properties between those of an A and B helix. Subtle backbone variations are observed in the DNA near the modification, while the RNA strands are relatively unperturbed. In the case of the S(P) modification, for which more perturbations are recorded, a slightly narrower minor groove is also obtained. Unique NOE base contacts localize the S(P) BH(3) group in the major groove while the R(P) BH(3) group points away from the DNA. However, this creates a potential clash of the R(P) BH(3) groups with important RNase H1 residues in a complex, while the S(P) BH(3) groups could be tolerated. We therefore predict that on the basis of our NMR structures a fully R(P) BH(3) DNA/RNA hybrid would not be a substrate for RNase H1.  相似文献   

20.
Dicer-substrate small interfering RNAs (DsiRNAs) are synthetic RNA duplexes that are processed by Dicer into 21-mer species and show improved potency as triggers of RNA interference, particularly when used at low dose. Chemical modification patterns that are compatible with high potency 21-mer small interfering RNAs have been reported by several groups. However, modification patterns have not been studied for Dicer-substrate duplexes. We therefore synthesized a series of chemically modified 27-mer DsiRNAs and correlated modification patterns with functional potency. Some modification patterns profoundly reduced function although other patterns maintained high potency. Effects of sequence context were observed, where the relative potency of modification patterns varied between sites. A modification pattern involving alternating 2'-O-methyl RNA bases was developed that generally retains high potency when tested in different sites in different genes, evades activation of the innate immune system, and improves stability in serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号