首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An 859-bp cDNA segment of a terpene synthase gene was amplified by PCR from the evergreen sclerophyllous holm oak (Quercus ilex L.) using heterologous primers for conserved regions of terpene synthase genes (TPS) in dicotyledonous plants. Based on the sequence of this segment, homologous primers were designed for amplification by RACE-PCR of a cDNA segment carrying the monoterpene synthase gene myrS. The gene encodes a protein of 597 amino acids including an N-terminal putative plastid transit peptide. The gene without the segment encoding the transit peptide was cloned by PCR into a bacterial expression vector. Expression in Escherichia coli yielded an active monoterpene synthase, which converted geranyl diphosphate (GDP) predominantly into the acyclic monoterpene myrcene and to a very small extent into cyclic monoterpenes. Sequence comparison with previously cloned monoterpene synthases revealed that the myrcene synthase from Q. ilex belongs to the TPSb subfamily.  相似文献   

2.
Snapdragon flowers emit two monoterpene olefins, myrcene and (E)-beta-ocimene, derived from geranyl diphosphate, in addition to a major phenylpropanoid floral scent component, methylbenzoate. Emission of these monoterpenes is regulated developmentally and follows diurnal rhythms controlled by a circadian clock. Using a functional genomics approach, we have isolated and characterized three closely related cDNAs from a snapdragon petal-specific library that encode two myrcene synthases (ama1e20 and ama0c15) and an (E)-beta-ocimene synthase (ama0a23). Although the two myrcene synthases are almost identical (98%), except for the N-terminal 13 amino acids, and are catalytically active, yielding a single monoterpene product, myrcene, only ama0c15 is expressed at a high level in flowers and contributes to floral myrcene emission. (E)-beta-Ocimene synthase is highly similar to snapdragon myrcene synthases (92% amino acid identity) and produces predominantly (E)-beta-ocimene (97% of total monoterpene olefin product) with small amounts of (Z)-beta-ocimene and myrcene. These newly isolated snapdragon monoterpene synthases, together with Arabidopsis AtTPS14 (At1g61680), define a new subfamily of the terpene synthase (TPS) family designated the Tps-g group. Members of this new Tps-g group lack the RRx(8)W motif, which is a characteristic feature of the Tps-d and Tps-b monoterpene synthases, suggesting that the reaction mechanism of Tps-g monoterpene synthase product formation does not proceed via an RR-dependent isomerization of geranyl diphosphate to 3S-linalyl diphosphate, as shown previously for limonene cyclase. Analyses of tissue-specific, developmental, and rhythmic expression of these monoterpene synthase genes in snapdragon flowers revealed coordinated regulation of phenylpropanoid and isoprenoid scent production.  相似文献   

3.
4.
The functional life of the flower is terminated by senescence and/or abscission. Multiple processes contribute to produce the visible signs of petal wilting and inrolling that typify senescence, but one of the most important is that of protein degradation and remobilization. This is mediated in many species through protein ubiquitination and the action of specific protease enzymes. This paper reports the changes in protein and protease activity during development and senescence of Alstroemeria flowers, a Liliaceous species that shows very little sensitivity to ethylene during senescence and which shows perianth abscission 8-10 d after flower opening. Partial cDNAs of ubiquitin (ALSUQ1) and a putative cysteine protease (ALSCYP1) were cloned from Alstroemeria using degenerate PCR primers and the expression pattern of these genes was determined semi-quantitatively by RT-PCR. While the levels of ALSUQ1 only fluctuated slightly during floral development and senescence, there was a dramatic increase in the expression of ALSCYP1 indicating that this gene may encode an important enzyme for the proteolytic process in this species. Three papain class cysteine protease enzymes showing different patterns of activity during flower development were identified on zymograms, one of which showed a similar expression pattern to the cysteine protease cDNA.  相似文献   

5.
6.
Petal senescence in many species is regulated by ethylene but some flowers, such as those on the monocotyledonous plant Alstroemeria, var. Rebecca are ethylene insensitive. Changes in gene expression during the post-harvest senescence of Alstroemeria flowers were investigated using several different techniques. Suppressive subtractive hybridization (SSH) was used to obtain cDNA libraries enriched for genes expressed at selected stages of petal senescence. Sequencing of the EST clones obtained resulted in over 1000 sequences that represent approximately 500 different genes. Analysis of the potential functions of these genes provides a snapshot of the processes that are taking place during petal development. Both cell wall related genes and genes involved in metabolism were present at a higher proportion in the earlier stages. Genes encoding metal binding proteins (mostly metallothionein-like) were the major component of senescence enhanced libraries. This limited the diversity of genes identified showing differential expression at the later stages. Changes in the expression of all genes were analysed using microarray hybridization, and genes showing either up or down-regulation were identified. The expression pattern of a selection of genes was confirmed using Northern hybridization. Northern hybridization confirmed the up-regulation of metallothioneins after floral opening, however, this was not detected by the microarray analysis, indicating the importance of using a combination of methods to investigate gene expression patterns. Considerably more genes were up-regulated than down-regulated. This may reflect the need during Alstroemeria petal senescence for the expression of a whole new set of genes involved with degradation and mobilization. The potential uses of expression profiling to improve floral quality in breeding programmes or as a diagnostic tool are discussed.  相似文献   

7.
Two 6-hydroxypelargonidin glycosides were isolated from the orange-red flowers of Alstroemeria cultivars, and determined to be 6-hydroxypelargonidin 3-O-(beta-D-glucopyranoside) and 3-O-[6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranoside], respectively, by chemical and spectroscopic methods. In addition, five known anthocyanidin glycosides, 6-hydroxycyanidin 3-malonylglucoside, 6-hydroxycyanidin 3-rutinoside, cyanidin 3-malonylglucoside, cyanidin 3-rutinoside and pelargonidin 3-rutinoside were identified in the flowers.  相似文献   

8.
Chlorophyll loss in the leaves of cut flowering branches of Alstroemeria pelegrina L. cv. Stajello, placed in water in darkness at 20°, was inhibited by irradiation with red light and by the inclusion of gibberellic acid (GA3) in the water. The effects of red light were abolished when it was followed by far-red light. Effects of GA3 and red light were additive over a range of GA3 concentrations (0. 01–1 μ M ). Chlorophyll breakdown was increased by the inclusion of AMO-1618, ancymidol, or tetcyclasis in the water. The effect of these inhibitors of gibberellin synthesis was fully reversed by GA3. The inhibition of chlorophyll breakdown by red light was absent when AMO-1618, ancymidol or tetcyclasis were included in the water. The results indicate that leaf yellowing is controlled by endogenous gibberellins and that the effect of phytochrome is mediated by gibberellin synthesis.  相似文献   

9.
10.
The major components of the scent of cut sweet pea flowers ( Lathyrus odoratus L. cv Royal Wedding) are (E) and (Z)-ocimene, linalool, nerol, geraniol and phenylacetaldehyde. The aroma is almost exclusively produced by the standard and wing petals, with very little emanating from the keel petals and other floral structures. Only traces of these volatiles were detected in the liquid excreted by glandular trichomes on the surface of the scented petals. Once flowers are cut for display they produce increasing amounts of ethylene which induces wilting after 48 h and petal abscission 24 h later. The rate of linalool and ocimene emission declines over the first 48 h to approximately 10% of that directly after harvest. Ethylene production is not saturating during the first 24 h of vase life and exogenous ethylene further accelerates the senescence processes and loss of fragrance. Addition of the ethylene antagonists 1-methylcyclopropene (1-MCP) and silver thiosulphate (STS) delayed wilting and abscission for several days and similarly inhibits the decline in terpenoid emission.  相似文献   

11.
12.
13.
Evolution of the isoprene biosynthetic pathway in kudzu   总被引:1,自引:0,他引:1       下载免费PDF全文
Isoprene synthase converts dimethylallyl diphosphate, derived from the methylerythritol 4-phosphate (MEP) pathway, to isoprene. Isoprene is made by some plants in substantial amounts, which affects atmospheric chemistry, while other plants make no isoprene. As part of our long-term study of isoprene synthesis, the genetics of the isoprene biosynthetic pathway of the isoprene emitter, kudzu (Pueraria montana), was compared with similar genes in Arabidopsis (Arabidopsis thaliana), which does not make isoprene. The MEP pathway genes in kudzu were similar to the corresponding Arabidopsis genes. Isoprene synthase genes of kudzu and aspen (Populus tremuloides) were cloned to compare their divergence with the divergence seen in MEP pathway genes. Phylogenetic analysis of the terpene synthase gene family indicated that isoprene synthases are either within the monoterpene synthase clade or sister to it. In Arabidopsis, the gene most similar to isoprene synthase is a myrcene/ocimene (acyclic monoterpenes) synthase. Two phenylalanine residues found exclusively in isoprene synthases make the active site smaller than other terpene synthase enzymes, possibly conferring specificity for the five-carbon substrate rather than precursors of the larger isoprenoids. Expression of the kudzu isoprene synthase gene in Arabidopsis caused Arabidopsis to emit isoprene, indicating that whether or not a plant emits isoprene depends on whether or not it has a terpene synthase capable of using dimethylallyl diphosphate.  相似文献   

14.
Alstroemeria hygrophila andA. orchidioides are both described as new from the state of Goiás (including Distrito Federal) in Brazil.Alstroemeria hygrophila is a cerrado bog-dwelling species that grows semi-epiphytically on the culms of a sedge. The vegetative stems of this species characteristically zig-zag between the pseudonodes. Like other wetlandAlstroemeria in Brazil (e.g.,A. apertiflora, A. isabellana, andA. sellowiana),A. hygrophila has wiry stems bearing narrow, lanceolate, nonresupinate leaves, and does not form root tubers.Alstroemeria orchidioides is a hysteranthus forest understory species with large vegetative leaves aggregated at the apex of the stems. The leaves on flowering stems are reduced to scarious bract-like scales. Its flowers are a pale, nearly white, greenish yellow, a color not reported in any other Brazilian species. Both species have 2n=16 chromosomes.  相似文献   

15.
Hattan  Jun-ichiro  Shindo  Kazutoshi  Ito  Tomoko  Shibuya  Yurica  Watanabe  Arisa  Tagaki  Chie  Ohno  Fumina  Sasaki  Tetsuya  Ishii  Jun  Kondo  Akihiko  Misawa  Norihiko 《Planta》2016,243(4):959-972
Planta - A novel terpene synthase ( Tps ) gene isolated from Camellia brevistyla was identified as hedycaryol synthase, which was shown to be expressed specifically in flowers. Camellia plants are...  相似文献   

16.
Arabidopsis is believed to be mostly self-pollinated, although several lines of genetic and morphological evidence indicate that insect-mediated outcrossing occurs with at least a low frequency in wild populations. Here, we show that Arabidopsis flowers emit both monoterpenes and sesquiterpenes, potential olfactory cues for pollinating insects. Of the 32 terpene synthase genes in the Arabidopsis genome, 20 were found to be expressed in flowers, 6 of these exclusively or almost exclusively so. Two terpene synthase genes expressed exclusively in the flowers and one terpene synthase gene expressed almost exclusively in the flowers were characterized and found to encode proteins that catalyze the formation of major floral volatiles. A beta-glucuronidase fusion construct with a promoter of one of these genes demonstrated that gene expression was restricted to the sepals, stigmas, anther filaments, and receptacles, reaching a peak when the stigma was receptive to cross pollen. The observation that Arabidopsis flowers synthesize and emit volatiles raises intriguing questions about the reproductive behavior of Arabidopsis in the wild and allows detailed investigations of floral volatile biosynthesis and its regulation to be performed with this model plant system.  相似文献   

17.
18.
Lilium ‘Siberia’ flowers produce a strong scent, with monoterpenes serving as the main volatile component. Using a homology-based PCR strategy, we cloned a monoterpene synthase gene (LiTPS) from Lilium ‘Siberia’ petals. The gene consisted of a 1761-bp open reading frame, and encoded a 587-amino acid protein. The deduced amino acid sequence contained a highly conserved DDxxD domain at the C-terminus and RRx8W motifs at the N-terminus, which are both characteristic features of terpene synthase genes. Additionally, LiTPS was 40–50% similar to already known monoterpene synthases from other plants. Phylogenetic analysis of LiTPS revealed that it belonged to the TPS-b terpene synthase subfamily. LiTPS was predicted to contain an organelle-targeting peptide and function as a monoterpene synthase in plastids. Analyses of the structure of LiTPS suggested that it is a Class III terpene synthase gene. Furthermore, LiTPS was highly expressed in petals, but almost undetectable in stamens, styles, and leaves. During floral development in Lilium ‘Siberia’ plants, LiTPS was expressed in mature flower buds, with the highest expression levels registered on day 4 after anthesis (i.e., with fully open flowers), followed by a gradual decrease in expression levels. To the best of our knowledge, this is the first report describing cloning a Lilium terpene synthase gene. We report a positive correlation between the LiTPS expression level and floral scent component emission rate. This study provides potentially useful information for future research into the possible roles of LiTPS in the monoterpene metabolic pathway.  相似文献   

19.
Many plants emit significant amounts of isoprene, which is hypothesized to help leaves tolerate short episodes of high temperature. Isoprene emission is found in all major groups of land plants including mosses, ferns, gymnosperms, and angiosperms; however, within these groups isoprene emission is variable. The patchy distribution of isoprene emission implies an evolutionary pattern characterized by many origins or many losses. To better understand the evolution of isoprene emission, we examine the phylogenetic relationships among isoprene synthase and monoterpene synthase genes in the angiosperms. In this study we identify nine new isoprene synthases within the rosid angiosperms. We also document the capacity of a myrcene synthase in Humulus lupulus to produce isoprene. Isoprene synthases and (E)‐β‐ocimene synthases form a monophyletic group within the Tps‐b clade of terpene synthases. No asterid genes fall within this clade. The chemistry of isoprene synthase and ocimene synthase is similar and likely affects the apparent relationships among Tps‐b enzymes. The chronology of rosid evolution suggests a Cretaceous origin followed by many losses of isoprene synthase over the course of evolutionary history. The phylogenetic pattern of Tps‐b genes indicates that isoprene emission from non‐rosid angiosperms likely arose independently.  相似文献   

20.
Inclusion of IAA in the vase water had little effect on leaf yellowing in cut flowering branches of Alstroemeria pelegrina L. while kinetin delayed leaf yellowing at 10–4M (continuous treatment). Chlorophyll was effectively retained by 10–7M gibberellic acid (GA) in the vase water or by a 20h pulse at 5°C with 10–5/10–4M GA. After 16h of 14C-GA3 uptake at 20°C relatively high levels of 14C were found in leaves and low levels in stems and flowers. After this treatment about half of the 14C-GA3 in leaves was metabolized into unknown compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号