首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zhang J  Gao G  Chen JJ  Taylor G  Cui KM  He XQ 《The New phytologist》2011,192(4):869-884
Regeneration is a common strategy for plants to repair damage to their tissue after attacks from other organisms or physical assaults. However, how differentiating cells acquire regenerative competence and rebuild the pattern of new tissues remains largely unknown. Using anatomical observation and microarray analysis, we investigated the morphological process and molecular features of secondary vascular tissue regeneration after bark girdling in trees. After bark girdling, new phloem and cambium regenerate from differentiating xylem cells and rebuild secondary vascular tissue pattern within 1 month. Differentiating xylem cells acquire regenerative competence through epigenetic regulation and cell cycle re-entry. The xylem developmental program was blocked, whereas the phloem or cambium program was activated, resulting in the secondary vascular tissue pattern re-establishment. Phytohormones play important roles in vascular tissue regeneration. We propose a model describing the molecular features of secondary vascular tissue regeneration after bark girdling in trees. It provides information for understanding mechanisms of tissue regeneration and pattern formation of the secondary vascular tissues in plants.  相似文献   

2.
Water movement between cells in a plant body is the basic phenomenon of plant solute transport; however, it has not been well documented due to limitations in observational techniques. This paper reports a visualization technique to observe water movement among plant cells in different tissues using a time of flight-secondary ion mass spectrometry (Tof-SIMS) cryo-system. The specific purpose of this study is to examine the route of water supply from xylem to stem tissues. The maximum resolution of Tof-SIMS imaging was 1.8 μm (defined as the three pixel step length), which allowed detection of water movement at the cellular level. Deuterium-labelled water was found in xylem vessels in the stem 2.5 min after the uptake of labelled water by soybean plants. The water moved from the xylem to the phloem, cambium, and cortex tissues within 30-60 min after water absorption. Deuterium ion counts in the phloem complex were slightly higher than those in the cortex and cambium tissue seen in enlarged images of stem cell tissue during high transpiration. However, deuterium ion counts in the phloem were lower than those in the cambium at night with no evaporative demand. These results indicate that the stem tissues do not receive water directly from the xylem, but rather from the phloem, during high evaporative demand. In contrast, xylem water would be directly supplied to the growing sink during the night without evaporative demand.  相似文献   

3.
The quantification of cambial growth over short time periods has been hampered by problems to discern between growth and the swelling and shrinking of a tree stem. This paper presents a model, which separates cambial growth and reversible water‐potential induced diurnal changes from simultaneously measured whole stem and xylem radial variations, from field‐measured Scots pine trees in Finland. The modelled growth, which includes osmotic concentration changes, was compared with (direct) dendrometer measurements and microcore samples. In addition, the relationship of modelled growth and dendrometer measurements to environmental factors was analysed. The results showed that the water‐potential induced changes of tree radius were successfully separated from stem growth. Daily growth predicted by the model exhibited a high correlation with the modelled daily changes of osmotic concentration in phloem, and a temperature dependency in early summer. Late‐summer growth saw higher dependency on water availability and temperature. Evaluation of the model against dendrometer measurements showed that the latter masked a true environmental signal in stem growth due to water‐potential induced changes. The model provides better understanding of radial growth physiology and offers potential to examine growth dynamics and changes due to osmotic concentration, and how the environment affects growth.  相似文献   

4.
The radial growth of plant stem is based on the development of cribro-vascular cambium tissues. It affects the transport efficiency of water, mineral nutrients and photoassimilates and, ultimately, also plant height. The rate of cambial cell divisions for the assembly of new xylem and phloem tissue primordia and the rate of differentiation of the primordia into mature tissues determine the amount of biomass produced and, in the case of woody species, the wood quality. These complex physiological processes proceed at a rate which depends on several factors, acting at various levels: growth regulators, resource availability and environmental factors. Several hormonal signals and, more recently, further regulatory molecules, have been shown to be involved in the induction and maintenance of cambium and the formation of secondary vascular tissues. The control of xylem cell patterning is of particular interest, because it determines the diameter of xylem vessels, which is central to the efficiency of water and nutrient transport from roots to leaves through the stem and may strongly influence the growth in height of the tree. Increasing scientific evidence have proved the role of other hormones in cambial cell activities and the study of the hormonal signals and their crosstalking in cambial cells may foster our understanding of the dynamics of xylogenesis and of the mechanism of vessel size control along the stem. In this article, the role of the hormonal signals involved in the control of cambium and xylem development in trees and their crosstalking are reviewed.  相似文献   

5.
Abstract. Gas chromatography – selected ion monitoring – mass spectrometry was used to measure the level of indole-3-acetic acid (IAA) in the cambial region at the top and bottom of the branchless portion of the main stem of three large Scots pine trees, at weekly intervals from 28 April to 13 July. During this period, the cambium reactivated from the dormant state and entered its 'grand' period of xylem and phloem production, which was monitored by microscopy. The total amount of IAA (ng cm−2) increased steadily from 28 April until late June, and thereafter remained constant. In contrast, the concentration of IAA (ng g−1 fresh weight) was high at the start of cambial reactivation, declined when the number of differentiating tracheids began to increase, and then rose as the number of cells decreased. The timing and magnitude of the changes in xylem and phloem production and in IAA level were similar at the two sampling positions. It is concluded that the seasonal changes in cambial activity in the conifer stem cannot be ascribed simply to a fluctuation in the level of endogenous IAA in the cambial region.  相似文献   

6.
BACKGROUND AND AIMS The effect of heating and cooling on cambial activity and cell differentiation in part of the stem of Norway spruce (Picea abies) was investigated. METHODS: A heating experiment (23-25 degrees C) was carried out in spring, before normal reactivation of the cambium, and cooling (9-11 degrees C) at the height of cambial activity in summer. The cambium, xylem and phloem were investigated by means of light- and transmission electron microscopy and UV-microspectrophotometry in tissues sampled from living trees. KEY RESULTS: Localized heating for 10 d initiated cambial divisions on the phloem side and after 20 d also on the xylem side. In a control tree, regular cambial activity started after 30 d. In the heat-treated sample, up to 15 earlywood cells undergoing differentiation were found to be present. The response of the cambium to stem cooling was less pronounced, and no anatomical differences were detected between the control and cool-treated samples after 10 or 20 d. After 30 d, latewood started to form in the sample exposed to cooling. In addition, almost no radially expanding tracheids were observed and the cambium consisted of only five layers of cells. Low temperatures reduced cambial activity, as indicated by the decreased proportion of latewood. On the phloem side, no alterations were observed among cool-treated and non-treated samples. CONCLUSIONS: Heating and cooling can influence cambial activity and cell differentiation in Norway spruce. However, at the ultrastructural and topochemical levels, no changes were observed in the pattern of secondary cell-wall formation and lignification or in lignin structure, respectively.  相似文献   

7.
This paper describes the differentiation process of regenerated tissue after ordinary girdling or after removal of a section of xylem from the stem, and the disparity in differentiation of the regenerated tissues after being differently treateds in Broussonetia papyrifera. After ordinary girdling for 3–4 weeks, new bark regenerated in the xylem. During the process of rind' formation, many specks of meristematic tissue were formed in the callus, from which vascular tissue clusters were developed. In addition, the new periderm appeared almost at the same time as the new vascular cambium was seen. When a section of xylem was removed from the stem, numerous calli developed rapidly on the inner surface of the bark. Meanwhile, the vascular cambium appeared in the immature phloem. Soon after, discontinued meristematic tissue bands also occurred in the callus. These meristematic tissues then connected with each other to form a concave oblate cambial ring which developed xylem inward and phloem outward. About 2–3 weeks later, the concave oblate trunk grew lengthwisely connecting with the upper anct lower portions of the normal stem. By then, the tree continued to grow. The inner surface tissue of the bark, after the xylem was removed, differentiated about one week earlier than the tissue on the surface of the xylem after girdling.  相似文献   

8.
Circular patches of bark were surgically isolated on the sides of trembling aspen (Populus tremuloides Michx.) trees at breast height at various times during the dormant and growing seasons. Subsequently, samples of wood and attached bark were taken from isolated and control sites to determine the effects of isolation of the bark on cambial activity and xylem and phloem development. In control trees cambial activity and xylem and phloem development occurred normally. Isolation of bark during the dormant season (in November, February, or March) did not prevent initiation of cambial activity and of phloem differentiation in spring but continued normal cambial activity and phloem developmented were prevent. Xylem differentiation was essentially prevented by isolation of tissues during the dormant season. The ultimate effect of isolation of the bark on the cambium, either during the dormant season or during the growing season, was subdivision of all fusiform cambial cells into strands of parenchymatous elements; the ultimate effect on the newly formed phloem was early death of the sieve elements. The most conspicuous effect of isolation of the bark after xylem differentiation had begun was the curtailment of secondary wall formation. Shortening of cells of the cambial region was reflected in the length of the vessel members which differentiated from such cells. These results indicate that normal cambial activity and xylem and phloem development require a supply of currently translocated regulatory substances from the shoots.  相似文献   

9.
李金亭  胡正海  高鹏 《广西植物》2008,28(2):173-178
应用植物解剖学方法研究了牛膝茎的发育过程。研究结果表明,牛膝茎的发育包括原分生组织、初生分生组织、初生结构、次生结构和三生生长5个发育阶段。原分生组织具有典型分生组织的细胞特征;初生分生组织包括原表皮、基本分生组织和原形成层。在茎的发育过程中,初生生长和早期的次生生长是正常的,但在次生生长过程中,次生维管组织仅有束中形成层产生,而没有束间形成层的分化和活动。茎的三生生长是由维管柱外侧保留的原形成层细胞发生的额外形成层的活动产生的。额外形成层开始只向内交替产生三生木质部和其间的结合组织,后来向外产生三生韧皮部,形成一轮三生维管束。牛膝茎内的韧皮纤维来源于原形成层,应属于原生韧皮部性质。牛膝茎中的2个外韧型髓维管束也来源于原形成层,与正常维管束在位置上没有相关性。但其结构类型具有多样性,有时可形成不完全的周木型髓维管束。  相似文献   

10.
When explants for tissue cultures taken from mature spruce trees, consisting only of xylem-cambium-phloem without pith or cortex, are placed on nutrient agar, callus forms first from the cambium, then from phloem parenchyma, and finally from the lining of xylem resin ducts. The proliferating cells of the phloem are the tannin cells which in situ give rise to sclereids in the bark.  相似文献   

11.
12.
Song D  Xi W  Shen J  Bi T  Li L 《Plant molecular biology》2011,76(1-2):97-115
The constituents of plasma membrane proteins, particularly the integral membrane proteins, are closely associated with the differentiation of plant cells. Secondary vascular differentiation, which gives rise to the increase in plant stem diameter, is the key process by which the volume of the plant body grows. However, little is known about the plasma membrane proteins that specifically function in the vascular differentiation process. Proteomic analysis of the membrane proteins in poplar differentiating secondary vascular tissues led to the identification 226 integral proteins in differentiating xylem and phloem tissues. A majority of the integral proteins identified were receptors (55 proteins), transporters (34 proteins), cell wall formation related (27 proteins) or intracellular trafficking (17 proteins) proteins. Gene expression analysis in developing vascular cells further demonstrated that cambium differentiation involves the expression of a group of receptor kinases which mediate an array of signaling pathways during secondary vascular differentiation. This paper provides an outline of the protein composition of the plasma membrane in differentiating secondary vascular tissues and sheds light on the role of receptor kinases during secondary vascular development.  相似文献   

13.
Changes in the stem radius of young Norway spruce [Picea abies (L.) Karst.] were related to changes in stem water content in order to investigate the relationship between diurnal stem size fluctuations and internally stored water. Experiments were performed on living trees and on cut stem segments. The defoliated stem segments were dried under room conditions and weight (W), volume (V), and xylem water potential (Os) were continuously monitored for 95 h. Additionally, photos of cross-sections of fresh and air-dried stem segments were taken. For stem segments we found that the change in V was linearly correlated to the change in W as long as Os was >-2.3ǂ.3 MPa (phase transition point). Stem contraction occurred almost solely in the elastic tissues of the bark (cambium, phloem, and parenchyma), and the stem radius changes were closely coupled to bark water content. For living trees, it is therefore possible to estimate the daily contribution of "bark water" to transpiration from knowledge of the stem size and continuous measurements of the stem radius fluctuations. When Os reaches the phase-transition point, water is also withdrawn from the inelastic tissue of the stem (xylem), which - in the experiment with stem segments - was indicated by an increasing ratio between (V and (W. We assume that for Os below the transition point, air is sucked into the tracheids (cavitation) and water is also withdrawn from the xylem. Due to the fact that in living P. abies Os rarely falls below -2.3ǂ.3 MPa and the xylem size is almost unaffected by radius fluctuations, dendrometers are useful instruments with which to derive the diurnal changes in the bark water contents of Norway spruce trees.  相似文献   

14.
The root bark structure of Quercus robur L. was analysed at different stages of root development and compared to the structure of stem bark. Root bark thickness varied considerably between different roots. Sclereid quantity decreased with increasing distance from the stem, which means it increased with age. Visible growth increments diminished with increasing distance from the stem. In lateral roots crystal quantity decreased with increasing distance from the stem. In lateral roots secondary phloem fibre length, sieve tube member length, and sieve tube diameter showed no regular trend. There were only a few basic structural differences between root and stem bark. The zone of cell differentiation (cell expansion, lignification) was wider in root bark; sieve tube collapse was delayed. In lateral root bark fewer sclereids were formed. The first-formed periderm often originated from deeper cell layers. Thus, primary elements were lacking after periderm formation. In root bark the phellem cell walls were of equal thickness. Thus, phellem lacked visible growth increments. Root bark phellem cells were slightly larger. The root phelloderm was more distinct. The secondary phloem fibres were slightly shorter than those in stem bark. Sieve tube members of stem and root bark were of similar length and diameter. The qualitative bark anatomical characters of oak root bark are suitable for root identifications. Due to minor structural differences between root and stem bark the characters must be used with care.  相似文献   

15.
Preconditions of phloem transport in conifers are relatively unknown. We studied the variation of needle and inner bark axial osmotic gradients and xylem water potential in Scots pine and Norway spruce by measuring needle and inner bark osmolality in saplings and mature trees over several periods within a growing season. The needle and inner bark osmolality was strongly related to xylem water potential in all studied trees. Sugar concentrations were measured in Scots pine, and they had similar dynamics to inner bark osmolality. The sucrose quantity remained fairly constant over time and position, whereas the other sugars exhibited a larger change with time and position. A small osmotic gradient existed from branch to stem base under pre‐dawn conditions, and the osmotic gradient between upper stem and stem base was close to zero. The turgor in branches was significantly driven by xylem water potential, and the turgor loss point in branches was relatively close to daily minimum needle water potentials typically reported for Scots pine. Our results imply that xylem water potential considerably impacts the turgor pressure gradient driving phloem transport and that gravitation has a relatively large role in phloem transport in the stems of mature Scots pine trees.  相似文献   

16.
Anaerobic fermentation in plants is usually thought to be a transient phenomenon, brought about by environmental limitations to oxygen availability, or by structural constraints to oxygen transport. The vascular cambium of trees is separated from the air by the outer bark and secondary phloem, and we hypothesized that the cambium may experience sufficient hypoxia to induce anaerobic fermentation. We found high alcohol dehydrogenase activity in the cambium of several tree species. Mean activity of alcohol dehydrogenase in Populus deltoides was 165 micromoles NADH oxidized per minute per gram fresh weight in May. Pyruvate decarboxylase activity was also present in the cambium of P. deltoides, with mean activity of 26 micromoles NADH oxidized per minute per gram fresh weight in May. Lactate dehydrogenase activity was not present in any tree species we examined. Contrary to our expectation, alcohol dehydrogenase activity was inversely related to bark thickness in Acer saccharum and unrelated to bark thickness in two Populus species. Bark thickness may be less important in limiting oxygen availability to the cambium than is oxygen consumption by rapidly respiring phloem and cambium in actively growing trees. Ethanol was present in the vascular cambium of all species examined, with mean concentrations of 35 to 143 nanomoles per gram fresh weight, depending on species. Ethanol was also present in xylem sap and may have been released from the cambium into the transpiration stream. The presence in the cambium of the enzymes necessary for fermentation as well as the products of fermentation is evidence that respiration in the vascular cambium of trees may be oxygen-limited, but other biosynthetic origins of ethanol have not been ruled out.  相似文献   

17.
Time lags for xylem and stem diameter variations in a Scots pine tree   总被引:9,自引:1,他引:8  
Diameter variations in the xylem and whole stem (i.e. over bark) stem of a Scots pine (Pinus sylvestris L.) tree were measured at four heights over a 23 d period at 5 min intervals. Cross‐correlation analysis was used to calculate time lags between the measurements. Xylem diameter measurements at the different heights had time lags varying from 10 to 50 min, measurements at the lower heights lagging behind the most. This result was in good agreement with the cohesion theory of transpiration. For the whole stem diameter measurements, the treetop lagged behind all other heights and the shortest lags were midway along the stem. Changes in whole stem diameter always lagged behind those of xylem stem diameter (30–110 min), and at all heights. The considerable differences in the behaviour of xylem and whole stem diameter support the Münch hypothesis of phloem flow. Time lags calculated separately for the shrinkage (morning) and swelling (afternoon) periods indicated shorter time lags during the swelling periods. The non‐destructive methods used show promise in the simultaneous study of flow dynamics of xylem and phloem in trees.  相似文献   

18.
Seasonal development of phloem in scots pine stems   总被引:2,自引:0,他引:2  
The formation of phloem was studied for two years in stems of 50 to 60 year old trees of Scots pine (Pinus sylvestris L.) growing in nature. The development of phloem of the current year begins 10 to 20 days before the xylem formation and is completed with the termination of shoot growth in the end of June. Observations over the seasonal activity of cambium producing sieve cells of phloem and duration of their differentiation as compared to the xylem derivatives of cambium have shown that the maxima of formation of phloem and xylem cells could coincide or not coincide by season, while the activities of their differentiation were always in antiphase. The sieve cells of early phloem were separated from those of late phloem by a layer of tannin-containing cells, which are formed simultaneously with the formation of late xylem cells by the cambium. Seasonal dynamics of accumulation of starch grain in structural elements of the phloem is related to the xylem development. The content of metabolites in differentiating and mature phloem elements, in the cambium zone, and in the xylem cells growing in the radial direction depended on cell specificity, stage of their development, and type of forming wood, early or late, which differ in the cell wall parameters and, hence, requirement of assimilates. Significant differences were described between the content of low molecular weigh carbohydrates, amino acids, organic acids, and phenol compounds using two methods of calculation: per dry weight and per cell.  相似文献   

19.
Ice formation and tissue response in apple twigs   总被引:7,自引:0,他引:7  
Abstract. The response of apple twig tissue to a freezing stress was examined using a combination of low temperature scanning electron microscopy and freeze substitution techniques. Bark and wood tissues responded differently. In the bark, large extracellular ice crystals were observed in the cortex. The adjacent cortical cells collapsed and a large reduction in cell volume was observed. The extent of cell collapse throughout the bark was not uniform. Cells in the periderm, phloem and cambium exhibited little change in cell volume compared to cortical cells. Large extracellular ice crystals were not observed in the xylem or pith tissues. The xylem ray parenchyma and pith cells did not collapse in response to a freezing stress, but retained their original shape. The pattern of ice formation and cell response was not observed to change with season or the level of cold acclimation. This study supported the concept that bark and xylem tissues exhibit contrasting freezing behaviour. The observations were consistent with the idea that water in bark freezes extracellularly while water in xylem ray parenchyma and pith cells may supercool to temperatures approaching –40 °C prior to freezing intracellularly.  相似文献   

20.
Eucommia ulmoides Oliv. (Eucommiaceae), a traditional Chinesemedicinal plant, was used to study phloem cell differentiationduring bark regeneration after girdling on a large scale. Hereit is shown that new sieve elements (SEs) appeared in the regeneratedtissues before the formation of wound cambium during bark regenerationafter girdling, and they could originate from the transdifferentiationof immature/differentiating axial xylem cells left on the trunk.Assays of water-cultured twigs revealed that girdling blockedsucrose transport until the formation of new SEs, and the regenerationof the functional SEs was not dependent on the substance providedby the axis system outside the girdled areas, while exogenousindole acetic acid (IAA) applied on the wound surface acceleratedSE differentiation. The experiments suggest that the immaturexylem cells can transdifferentiate into phloem cells under certainconditions, which means xylem and phloem cells might share someidentical features at the beginning of their differentiationpathway. This study also showed that the bark regeneration systemcould provide a novel method for studying xylem and phloem celldifferentiation. Key words: Bark regeneration, Eucommia ulmoides Oliv., immature xylem cells, sieve elements, transdifferentiation Received 19 November 2007; Revised 23 January 2008 Accepted 24 January 2008  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号