首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Shyur LF  Huang CC  Lo CP  Chiu CY  Chen YP  Wang SY  Chang ST 《Phytochemistry》2008,69(6):1348-1358
Cryptomeria japonica is an important plantation conifer tree in Asia. This study aimed to characterize the anti-inflammatory and hepatoprotective activities of the phytocompounds from C. japonica wood on LPS- or TPA-induced activation of proinflammatory mediators and CCl(4)-induced acute liver injury in mice. A CJH7-2 fraction was purified from C. japonica extracts following bioactivity-guided fractionation, and it exhibited significant activities on inhibition of NO production and iNOS expression as well as up-regulating HO-1 expression in LPS-stimulated macrophages. CJH7-2 also potently inhibits COX-2 enzymatic activity (IC(50)=5 microg/mL) and TPA-induced COX-2 protein expression in mouse skin (1mg/200 microL/site). CJH7-2 (10 mg/kg BW) can prevent CCl(4)-induced liver injury and aminotransferases activities in mice. Chemical fingerprinting analysis showed that terpenes are the major bioactive compounds in the CJH7-2 fraction. This is the first study to demonstrate that chemical constituents from the wood extract of C. japonica possess anti-inflammatory activities in vitro and in vivo that may play a role in hepatoprotection.  相似文献   

2.
ALK is a receptor tyrosine kinase with an oncogenic role in various types of human malignancies. Despite constitutive activation of the kinase through gene alterations, such as chromosomal translocation, gene amplification or mutation, treatments with kinase inhibitors invariably lead to the development of resistance. Aiming to develop new tools for ALK targeting, we took advantage of our previous demonstration identifying ALK as a dependence receptor, implying that in the absence of ligand the kinase-inactive ALK triggers or enhances apoptosis. Here, we synthesized peptides mimicking the proapoptotic domain of ALK and investigated their biological effects on tumor cells. We found that an ALK-derived peptide of 36 amino acids (P36) was cytotoxic for ALK-positive anaplastic large-cell lymphoma and neuroblastoma cell lines. In contrast, ALK-negative tumor cells and normal peripheral blood mononuclear cells were insensitive to P36. The cytotoxic effect was due to caspase-dependent apoptosis and required N-myristoylation of the peptide. Two P36-derived shorter peptides as well as a cyclic peptide also induced apoptosis. Surface plasmon resonance and mass spectrometry analysis of P36-interacting proteins from two responsive cell lines, Cost lymphoma and SH-SY5Y neuroblastoma, uncovered partners that could involve p53-dependent signaling and pre-mRNA splicing. Furthermore, siRNA-mediated knockdown of p53 rescued these cells from P36-induced apoptosis. Finally, we observed that a treatment combining P36 with the ALK-specific inhibitor crizotinib resulted in additive cytotoxicity. Therefore, ALK-derived peptides could represent a novel targeted therapy for ALK-positive tumors.Designing targeted therapy for cancer has been a major goal of the last decade. Oncogenic tyrosine kinases have raised early interest, because elucidation of their structure facilitated the development of small-molecule inhibitors with therapeutic efficiency.1 The pioneer BCR-ABL inhibitor molecule imatinib was approved for therapeutic use as early as 2001 to treat chronic myeloid leukemia and Ph1-positive acute lymphoblastic leukemia.2 Later on, inhibitors targeting receptors for epidermal growth factor or vascular endothelial growth factor were approved for treatment of solid tumors, such as lung and breast cancer. To date, many tyrosine kinase inhibitors (TKIs) are used in the clinic.3 However, cancers treated by TKIs invariably become resistant to therapy and relapse. Acquired resistance develops through various mechanisms including secondary mutations of the targeted oncogene or activation of alternative proliferative signaling pathways.4 It seems thus necessary to invent new strategies designed to attack the tumor on multiple fronts.ALK (anaplastic lymphoma kinase) is an oncogenic receptor tyrosine kinase associated with many tumor types. ALK was first identified in 1994 as a rearranged gene fusion (NPM–ALK) resulting from the t(2;5)(p23;q35) translocation occurring in 75% human anaplastic large-cell lymphomas (ALCLs).5, 6 Other translocations or gene inversions involving ALK were later described in solid tumors including 50–60% inflammatory myofibroblastic tumors, and a small proportion of diffuse large B-cell lymphomas, breast and renal carcinomas.7, 8 Recently, 4–8% non-small-cell lung cancer (NSCLC) were found to harbor an echinoderm microtubule-associated protein-like 4 (EML4)–ALK fusion.7, 9 Resulting fusion proteins associate the N-terminal portion of a protein partner (containing in most cases a dimerization domain) to the entire intracellular portion of ALK, including its tyrosine kinase domain. Subsequent dimerization of this fusion protein leads to constitutive activation of ALK kinase, resulting in enhanced signaling for cell proliferation, survival and oncogenicity.10The full-length ALK receptor cDNA codes for a transmembrane receptor tyrosine kinase of the insulin receptor superfamily, which is essentially expressed in the developing nervous system.11, 12 Some authors proposed the two heparin-binding factors pleiotrophin (PTN) and midkine as ligands for ALK.10 However, their binding to ALK is controversed and might be indirectly mediated by heparin.13 ALK kinase signaling most likely involves co-receptors and/or co-signaling molecules such as the transmembrane receptor tyrosine phosphatase beta/zeta (RPTPb/z), a receptor for PTN and midkine. In the absence of ligand, RPTPb/z dephosphorylates ALK, whereas PTN and midkine direct binding to RPTPb/z inactivates its phosphatase activity.14 Expression of the full-length ALK receptor was also observed in neuroblastoma, a pediatric tumor derived from the neural crest affecting the peripheral nervous system. The ALK kinase in neuroblastoma is most often constitutively active as a result of gain-of-function mutations or protein overexpression, due to ALK gene amplification or copy number increase.10, 15ALK appears therefore as an interesting therapeutic target to treat ALK-positive tumors. Indeed, since the identification of NPM–ALK and other ALK fusions as oncogenes for ALCL and inflammatory myofibroblastic tumors,6, 16, 17 several pharmaceutical companies developed ALK-specific TKIs. In 2010, a TKI targeting ALK and c-MET, crizotinib18 (also called PF-02341066), was authorized in clinical trials as a second-line therapy for advanced stage NSCLC harboring EML4–ALK. The initial clinical responses were so encouraging that crizotinib is currently tested in a growing number of advanced ALK-positive tumors (clinicaltrials.gov). Nevertheless, the tumors invariably develop resistance to the inhibitor, mostly through mutations of the kinase active site.19, 20 Therefore, it appears necessary to design alternate treatments or to associate TKIs with other molecules. One promising strategy would be to impair distinct functions of the oncogenic tyrosine kinase through targeting different sites of the ALK protein.We recently demonstrated that the ALK receptor tyrosine kinase belongs to the functional family of so-called ‘dependence receptors''.21, 22 Such dependence receptors function with a dual signaling: in the presence of ligand (or a situation mimicking a ligand, e.g., inducing receptor dimerization and activation), the receptor exerts a prosurvival/antiapoptotic effect on the cell; in contrast, in absence of ligand and when the cell is submitted to environmental or genotoxic stress, a dependence receptor becomes proapoptotic. The proapoptotic effect is mediated by caspase-dependent cleavage of the receptor, either releasing or exposing a proapoptotic domain/sequence (called ‘addiction/dependence domain'' or ADD), thus amplifying the apoptotic process.23 Molecular analysis of ALK deletion mutants allowed us to map the ADD domain of ALK to a 36-amino-acid (aa) stretch located within the juxtamembrane intracytoplasmic region of ALK. The ADD of ALK lacks homology with any known protein motif implicated in apoptotic processes and is necessary for ALK proapoptotic function.22 The purpose of the present study was to design a novel targeted therapy, taking advantage of the proapoptotic function of ALK.Our hypothesis was that a synthetic peptide could mimic the proapoptotic function of ALK. Therefore, we synthesized several peptides whose sequence reproduced the entire ADD domain (36 aa) of ALK or part of it (12 aa) to assay their effects on various tumor cell lines. We show that several of these ALK-derived peptides are proapoptotic for ALK-expressing, but not ALK-negative, tumor cells. In addition, the ALK-derived 36-aa peptide (P36) enhanced the cytotoxic effect of the ALK kinase inhibitor crizotinib in ALK-positive ALCL and neuroblastoma cell lines. Thus our results uncover a new strategy for targeting ALK-expressing tumors.  相似文献   

3.
Royal jelly (RJ) excreted by honeybees and used as a nutritional and medicinal agent has estrogen-like effects, yet the compounds mediating these effects remain unidentified. The possible effects of three RJ fatty acids (FAs) (10-hydroxy-2-decenoic-10H2DA, 3,10-dihydroxydecanoic-3,10DDA, sebacic acid-SA) on estrogen signaling was investigated in various cellular systems. In MCF-7 cells, FAs, in absence of estradiol (E(2)), modulated the estrogen receptor (ER) recruitment to the pS2 promoter and pS2 mRNA levels via only ERβ but not ERα, while in presence of E(2) FAs modulated both ERβ and ERα. Moreover, in presence of FAs, the E(2)-induced recruitment of the EAB1 co-activator peptide to ERα is masked and the E(2)-induced estrogen response element (ERE)-mediated transactivation is inhibited. In HeLa cells, in absence of E(2), FAs inhibited the ERE-mediated transactivation by ERβ but not ERα, while in presence of E(2), FAs inhibited ERE-activity by both ERβ and ERα. Molecular modeling revealed favorable binding of FAs to ERα at the co-activator-binding site, while binding assays showed that FAs did not bind to the ligand-binding pocket of ERα or ERβ. In KS483 osteoblasts, FAs, like E(2), induced mineralization via an ER-dependent way. Our data propose a possible molecular mechanism for the estrogenic activities of RJ's components which, although structurally entirely different from E(2), mediate estrogen signaling, at least in part, by modulating the recruitment of ERα, ERβ and co-activators to target genes.  相似文献   

4.
We have investigated the effect of a series of bisphosphonates derived from fatty acids against Trypanosoma cruzi proliferation in in vitro assays. Some of these drugs proved to be potent inhibitors against the intracellular form of the parasite exhibiting IC50 values at the low micromolar level. As bisphosphonates are FDA clinically approved for treatment of bone resorption, their potential innocuousness makes them good candidates to control tropical diseases.  相似文献   

5.
Discovery of a series of tert-butyl pyrrolidine derived, potent and orally bioavailable melanocortin receptor subtype-4 (MC4R) selective modulators is disclosed.  相似文献   

6.
Studies on the mode of action of a series of bisphosphonates derived from fatty acids, which had previously proved to be potent inhibitors against Trypanosoma cruzi proliferation in in vitro assays, have been performed. Some of these drugs proved to be potent inhibitors against the intracellular form of the parasite, exhibiting IC(50) values at the low micromolar level. As bisphosphonates are FDA clinically approved for treatment of bone resorption disorders, their potential innocuousness makes them good candidates to control tropical diseases.  相似文献   

7.
The DinI and RecX proteins of Escherichia coli both modulate the function of RecA protein, but have very different effects. DinI protein stabilizes RecA filaments, preventing disassembly but permitting assembly. RecX protein blocks RecA filament extension, which can lead to net filament disassembly. We demonstrate that both proteins can interact with the RecA filament, and propose that each can replace the other. The DinI/RecX displacement reactions are slow, requiring multiple minutes even when a large excess of the challenging protein is present. The effects of RecX protein on RecA filaments are manifest at lower modulator concentrations than the effects of DinI protein. Together, the DinI and RecX proteins constitute a new regulatory network. The two proteins compete directly as mainly positive (DinI) and negative (RecX) modulators of RecA function.  相似文献   

8.
Paracoccidioidomycosis is a systemic granulomatous disease caused by the dimorphic fungus Paracoccidioides brasiliensis. Its major antigen is a 43 kDa glycoprotein whose peptides embody different functions: P10 peptide, a T-cell epitope, induces protective response while P4 and P23 peptides inhibit both, macrophage functions and inflammatory reaction, thus facilitating infection. Here we investigated the modulating mechanisms of the immune response exerted by P4 and P23 involved in the latter inhibitory effect on macrophages. Moreover we analyzed the peptides effects in different models in vivo. While evaluating whether P4 and P23 present systemic anti-inflammatory effects in vivo, we showed that their intraperitonial administration decreased footpad swelling in mice infected with either P. brasiliensis or Mycobacterium bovis. Both, qPCR and ELISA assays suggested that this anti-inflammatory effect depended on alterations in the kinetics of production of innate immunity modulators such as TNF-α, IL6, IL10 and TLR2. IL10 seems to be early produced than TNF-α and IL6, produced later in presence of peptides. Higher doses or intravenously given P4 and P23 resulted in earlier and more prolonged anti-inflammatory effects. Moreover, continuous treatment with P4 and P23 sustained the anti-inflammatory activity throughout.  相似文献   

9.
Structure–activity relationship (SAR) studies on the tricyclic isoxazole series of MRP1 modulators have resulted in the identification of potent and selective inhibitors containing cyclohexyl-based linkers. These studies ultimately identified compound 21b, which reverses drug resistance to MRP1 substrates, such as doxorubicin, in HeLa-T5 cells (EC50 = 0.093 μM), while showing no inherent cytotoxicity. Additionally, 21b inhibits ATP-dependent, MRP1-mediated LTC4 uptake into membrane vesicles prepared from the MRP1-overexpressing HeLa-T5 cells (EC50 = 0.064 μM) and shows selectivity (1115-fold) against the related transporter, P-glycoprotein, in HL60/Adr and HL60/Vinc cells. Finally, when dosed in combination with the oncolytic MRP1 substrate vincristine, 21b showed tumor regression and growth delay in MRP1-overexpressing tumors in vivo.  相似文献   

10.
11.
A series of metabotropic glutamate 5 receptor (mGluR5) allosteric ligands with positive, negative or no modulatory efficacy is described. The ability of this series to yield both mGluR5 PAMs and NAMs with single-digit nanomolar potency is unusual, and the underlying SAR is detailed.  相似文献   

12.
Although traditionally associated with reproductive processes, relaxin is emerging as an important player in renal and cardiovascular function. Much of our recently acquired understanding of relaxin in this new context has arisen from studies of maternal renal and cardiovascular adaptations to pregnancy in rats where the hormone is turning out to be an important mediator. First, we highlight the influence of relaxin on renal hemodynamics and glomerular filtration rate, as well as on other peripheral circulations. Second, we discuss the effect of relaxin on both the steady and pulsatile systemic arterial load, as well as on the heart, in particular, coronary blood flow. Third, we consider the impact of the hormone on cultured endothelial and vascular smooth muscle cells. Fourth, we address the interaction of relaxin with renal and cardiac disease, as well as its role in angiogenesis. Finally, in Perspectives, we point out several key research questions in need of investigation that relate to a potential autocrine/paracrine role of relaxin in renal and cardiovascular tissues. Furthermore, on the basis of its potent vasodilatory and matrix-degrading attributes, we speculate about the therapeutic potential of relaxin in renal and cardiovascular diseases.  相似文献   

13.
The specific function of putative cut2 protein (or CFP25), encoded by the Rv2301 gene from Mycobacterium tuberculosis H37Rv, has not been identified yet. The aim of this study was to assess some of CFP25 characteristics and its possible biological role in Mycobacterium tuberculosis H37Rv invasion process to target cells. Molecular assays indicated that the gene encoding Rv2301 is present and transcribed in M. tuberculosis complex strains. The presence of Rv2301 protein over the bacilli surface was confirmed by Western blot and immunoelectron microscopy analyses, using goats sera inoculated with synthetic peptides derived from Rv2301 protein. Receptor–ligand binding assays with carcinomic human alveolar basal epithelial cells (A549) and macrophages derived from human histolytic lymphoma monocytes (U937) allowed us to identify five high activity binding peptides (HABPs) in both cell lines, and two additional HABPs only in A549 cells. U937 HABPs binding interactions were characterized by saturation assays, finding dissociation constants (K d) within the nanomolar range and positive cooperativity (n H?>?1). Inhibition assays were performed to assess the possible biological role of Rv2301 identified HABPs, finding that some of them were able to inhibit invasion at a 5?μM concentration, compared with the cytochalasin control. On the other hand, HABPs, and especially HABP 36507 located at the N-terminus of the protein, facilitated the internalization of fluorescent latex beads into A549 cells. These findings are of vital importance for the rational selection of Rv2301 HABPs, to be included as components of an antituberculosis vaccine.  相似文献   

14.
We have identified cDNA encoding a new member of the adrenomedullin (AM) family, AM2, for the first time in mammals (mouse, rat and human). The predicted precursor carried mature AM2 in the C-terminus, which had an intramolecular ring formed by an S-S bond and a possibly amidated C-terminus. Phylogenetic analyses clustered AM2 and AM into two distinct but closely related groups. Similarity of exon-intron structure and synteny of neighboring genes showed that mammalian AM2 is an ortholog of pufferfish AM2 and a paralog of mammalian AM. AM2 mRNA was expressed in submaxillary gland, kidney, stomach, ovary, lymphoid tissues and pancreas of mice, but not in adrenal and testis. Intravenous injection of synthetic mature AM2 decreased arterial pressure more potently than AM, and induced antidiuresis and antinatriuresis in mice. These results show that at least two peptides, AM and AM2, comprise an adrenomedullin family in mammals, and that AM2 may play pivotal roles in cardiovascular and body fluid regulation.  相似文献   

15.
Kapusta DR 《Peptides》2000,21(7):1081-1099
Orphanin FQ/Nociceptin (OFQ/N) is a peptide whose structure resembles that of the endogenous opioid peptides (endorphins). OFQ/N and its receptor are distributed in neural tissue and brain regions involved in the regulation of pituitary hormone release. Functional studies have shown that this peptide evokes a unique pattern of cardiovascular and renal excretory responses. This review will focus on the neural and humoral effects of OFQ/N and how this peptide may participate in the regulation of cardiovascular and renal function.  相似文献   

16.
The prevalence of autoimmune diseases is on the rise globally. Currently, autoimmunity presents in over 100 different forms and affects around 9% of the world’s population. Current treatments available for autoimmune diseases are inadequate, expensive, and tend to focus on symptom management rather than cure. Clinical trials have shown that live helminthic therapy can decrease chronic inflammation associated with inflammatory bowel disease and other gastrointestinal autoimmune inflammatory conditions. As an alternative and better controlled approach to live infection, we have identified and characterized two peptides, Acan1 and Nak1, from the excretory/secretory component of parasitic hookworms for their therapeutic activity on experimental colitis. We synthesized Acan1 and Nak1 peptides from the Ancylostoma caninum and Necator americanus hookworms and assessed their structures and protective properties in human cell–based assays and in a mouse model of acute colitis. Acan1 and Nak1 displayed anticolitic properties via significantly reducing weight loss and colon atrophy, edema, ulceration, and necrosis in 2,4,6-trinitrobenzene sulfonic acid–exposed mice. These hookworm peptides prevented mucosal loss of goblet cells and preserved intestinal architecture. Acan1 upregulated genes responsible for the repair and restitution of ulcerated epithelium, whereas Nak1 downregulated genes responsible for epithelial cell migration and apoptotic cell signaling within the colon. These peptides were nontoxic and displayed key immunomodulatory functions in human peripheral blood mononuclear cells by suppressing CD4+ T cell proliferation and inhibiting IL-2 and TNF production. We conclude that Acan1 and Nak1 warrant further development as therapeutics for the treatment of autoimmunity, particularly gastrointestinal inflammatory conditions.  相似文献   

17.
The accumulation of hydrophobic bile acids results in cholestatic liver injury by increasing oxidative stress, mitochondrial dysfunction, and activation of cell signaling pathways. Licorice root and its constituents have been utilized as antihepatotoxic agents. The purpose of this study was to evaluate the potential modulation by a primary component of licorice root, glycyrrhizin (GL), and its metabolite, 18beta-glycyrrhetinic acid (GA), in a hepatocyte model of cholestatic liver injury. Preincubation of fresh rat hepatocyte suspensions with GL or GA reduced glycochenodeoxycholic acid (GCDC)-dependent reactive oxygen species generation, with GA more potent than GL. Interestingly, GL and GA had opposing effects toward GCDC-induced cytotoxicity; GA prevented both necrosis and apoptosis, whereas GL enhanced apoptosis. GCDC promoted activation of caspase 10, caspase 3, and PARP; all were inhibited by GA but not GL. Induction of apoptosis by GCDC was also associated with activation of JNK, which was prevented by GA. Activation of caspase 9 and dissipation of mitochondrial membrane potential were prevented by GA but not GL. In liver mitochondrial studies, GL and GA were both potent inhibitors of the mitochondrial permeability transition, reactive oxygen species generation, and cytochrome c release at submicromolar concentrations. Results from this study suggest that GL exhibits pro-apoptotic properties, whereas GA is a potent inhibitor of bile acid-induced apoptosis and necrosis in a manner consistent with its antioxidative effect.  相似文献   

18.
19.
Lovastatin and simvastatin are HMG-CoA reductase inhibitors widely used as antihyperlipidemic drugs, which also display antiproliferative properties. In the present paper, we provide evidence that both lovastatin and simvastatin are modulators of the purified bovine pituitary 20 S proteasome, since they mildly stimulate the chymotrypsin-like activity and inhibit the peptidylglutamylpeptide hydrolyzing activity without interfering with the trypsin-like activity. However, those effects are only observed when the closed ring forms of the drugs are used, while the opened ring form of lovastatin acts as a mild inhibitor of the chymotrypsin like activity. The closed ring form of lovastatin is much more potent as a cytotoxic agent on the Colon-26 (C-26) colon carcinoma cell line than the opened ring form, which is only mildly cytostatic. Moreover, neither the cytotoxic effects nor the effects on 20 S proteasome activities are prevented by mevalonate, which by itself inhibits the trypsin-like activity of the proteasome. Neither the opened ring nor the closed ring form of lovastatin induces an accumulation of ubiquitin-protein conjugates, which is observed after treatment with lactacystin, a selective proteasome inhibitor. In contrast with the opened ring form of lovastatin, the closed ring form induces the disappearance of detectable p27(kip1) from C-26 cells. Altogether, our results indicate that the closed ring form of lovastatin induces cytotoxic effects independent of its HMG-CoA inhibiting activity, however, those effects are mediated by a complex modulation of proteasome activity rather than by inhibition of the 20 S proteasome.  相似文献   

20.
A chemically diverse library of about 400,000 small molecules was screened for antiviral activity against lentiviral pseudotypes with the Lassa virus envelope glycoprotein (LASV GP) gene incorporated. High-throughput screening resulted in discovery of a hit compound (ST-37) possessing a benzimidazole core which led to a potent compound series. Herein, we report SAR studies which involved structural modifications to the phenyl rings and methylamino linker portion attached to the benzimidazole core. Many analogs in this study possessed single digit nanomolar potency against LASV pseudotypes. Compounds in this benzimidazole series also exhibited nanomolar antiviral activity against pseudotypes generated from other arenavirus envelopes indicating the potential for development of a broad-spectrum inhibitor. Ultimately, lead compound ST-193 was identified and later found to be efficacious in a lethal LASV guinea pig model showing superior protection compared to ribavirin treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号