首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kite GC  Stoneham CA  Veitch NC 《Phytochemistry》2007,68(10):1407-1416
Two flavonol tetraglycosides comprising a trisaccharide at C-3 and a monosaccharide at C-7 were isolated from the leaves of Styphnolobium japonicum (L.) Schott and characterised as the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-glucopyranoside-7-O-alpha-rhamnopyranosides of quercetin and kaempferol. The 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-galactopyranoside-7-O-alpha-rhamnopyranoside of kaempferol, the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-glucopyranosides of kaempferol and quercetin and the 3-O-alpha-rhamnopyranosyl(1-->2)[alpha-rhamnopyranosyl(1-->6)]-beta-galactopyranoside of kaempferol were also obtained from this species for the first time. Some or all of these flavonol tetra- and triglycosides were detected in 17 of 18 specimens of S. japonicum examined from living and herbarium material, although the most abundant flavonoid in the leaves was generally quercetin 3-O-alpha-rhamnopyranosyl(1-->6)-beta-glucopyranoside (rutin). The triglycosides, but not the tetraglycosides, were detected in herbarium specimens of Styphnolobium burseroides M. Sousa, Rudd & Medrano and Styphnolobium monteviridis M. Sousa & Rudd, but specimens of Styphnolobium affine (Torrey & A. Gray) Walp. contained a different profile of flavonol glycosides. The flavonol tetra- and triglycosides of S. japonicum were also present in leaves of Cladrastis kentukea (Dum. Cours.) Rudd, a representative of a genus placed close to Styphnolobium in current molecular phylogenies. An additional constituent obtained from leaves of Styphnolobium japonicum was identified as the maltol derivative, 3-hydroxy-2-methyl-4H-pyran-4-one 3-O-(4'-O-p-coumaroyl-6'-O-(3-hydroxy-3-methylglutaroyl))-beta-glucopyranoside.  相似文献   

2.
The importance of flavonoids for the antileishmanial activity of Kalanchoe pinnata was previously demonstrated by the isolation of quercitrin, a potent antileishmanial flavonoid. In the present study, the aqueous leaf extract from the medicinal plant K. pinnata (Crassulaceae) afforded a kaempferol di-glycoside, named kapinnatoside, identified as kaempferol 3-O-alpha-L-arabinopyranosyl (1-->2) alpha-L-rhamnopyranoside (1). In addition, two unusual flavonol and flavone glycosides already reported, quercetin 3-O-alpha-L-arabinopyranosyl (1-->2) alpha-L-rhamnopyranoside (2) and 4',5-dihydroxy-3',8-dimethoxyflavone 7-O-beta-D-glucopyranoside (3), have been isolated. Their structures were determined via analyses of mono and bi-dimensional (1)H and (13)C NMR spectroscopic experiments and HR-MALDI mass spectra. Because of its restricted occurrence and its abundance in K. pinnata, flavonoid (2) may be a chemical marker for this plant species of high therapeutic potential. The three flavonoids were tested separately against Leishmania amazonenis amastigotes in comparison with quercitrin, quercetin and afzelin. The quercetin aglycone - type structure, as well as a rhamnosyl unit linked at C-3, seem to be important for antileishmanial activity.  相似文献   

3.
J Chen  W L Li  J L Wu  B R Ren  H Q Zhang 《Phytomedicine》2008,15(1-2):98-102
Sesquiterpene glycoside, nerolidol-3-O-alpha-l-rhamnopyranosyl(1-->4)-alpha-l-rhamnopyranosyl(1-->2)-[alpha-l-rhamnopyranosyl(1-->6)]-beta-d-glucopyranoside was isolated from dried leaves of loquat [Eriobotrya japonica (Thunb.) Lindl., Rosaceae]. Hypoglycemic effects of this natural product were assessed in normal and alloxan-diabetic mice model. Animals received orally administration of the sesquiterpene glycoside in dose of 25 and 75 mg/kg. The anti-hyperglycemic effect was compared with gliclazide's. The dose of 25 and 75 mg/kg both exerted a significant (p<0.05) hypoglycemic effect in alloxan-diabetic mice throughout the test and a slight effect in normal mice.  相似文献   

4.
Four new flavonol gycosides: kaempferide 3-O-beta-xylosyl (1-->2)-beta-glucoside, kaempferol 3-O-alpha-rhamnoside-7,4'-di-O-beta-galactoside, kaempferol 3,7,4'-tri-O-beta-glucoside and quercetin 3-O-[alpha-rhamnosyl (1-->6)] [beta-glucosyl (1-->2)]-beta-glucoside-7-O-alpha-rhamnoside, were characterized from a methanolic leaf extract of Warburgia ugandensis. The known flavonols: kaempferol, kaempferol 3-rhamnoside, kaempferol 3-rutinoside, myricetin, quercetin 3-rhamnoside, kaempferol 3-arabinoside, quercetin 3-glucoside, quercetin, kaempferol 3-rhamnoside-4'-galactoside, myricetin 3-galactoside and kaempferol 3-glucoside were also isolated. Structures were established by spectroscopic and chemical methods and by comparison with authentic samples.  相似文献   

5.
A flavonol tetraglycoside from Sophora japonica seeds   总被引:2,自引:0,他引:2  
Wang JH  Lou FC  Wang YL  Tang YP 《Phytochemistry》2003,63(4):463-465
A flavonol tetraglycoside, kaempferol 3-O-alpha-L-rhamnopyranosyl(1-->6)-beta-D-glucopyranosyl(1-->2)- beta-D-glucopyranoside-7-O-alpha-L rhamnopyranoside, together with nine known compounds were isolated from the seeds of Sophora japonica L. Their structures were elucidated on the basis of spectral and chemical evidence.  相似文献   

6.
We have isolated and identified seven flavonoid compounds from the foliar extracts ofHeloniopsis orientalis, a member of Liliaceae, which is habituated at Namhansanseong and Maranggol (Jinburyung). All are glycosylated derivatives of the flavonols isorhamnetin, kaempferol, and quercetin. Among them, quercetin 3-O-galactoside is the major compound, while isorhamnetin 3-O-arabinosylgalactoside, isorhamnetin 3-O-digalactoside, kaempferol 3,7-O-galactoside, kaempferol 3-O-arabinosylgalactoside, kaempferol 3-O-glycoside, and quercetin 3-O-arabinosylgalactoside are present in smaller amounts. Although the two populations do not differ significantly in their overall flavonol profiles, their relative amounts indicate that flavonoid levels, especially for isorhamnetin, are geographically controlled and specifically depend on the origin of the individual population.  相似文献   

7.
The dried fruits and seeds of Styphnolobium japonicum (L.) Schott (syn. Sophora japonica L.) are used in traditional Chinese medicine and known as Fructus Sophorae or Huai Jiao. The major flavonoids in these fruits and seeds were studied by LC-MS and other spectroscopic techniques to aid the chemical authentication of Fructus Sophorae. Among the flavonoids were two previously unreported kaempferol glycosides: kaempferol 3-O-β-glucopyranosyl(1 → 2)-β-galactopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-xylopyranosyl(1 → 3)-α-rhamnopyranosyl(1 → 6)[β-glucopyranosyl(1 → 2)]-β-glucopyranoside, the structures of which were determined by NMR. Two further tetraglycosides were identified for the first time in S. japonicum as kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-glucopyranoside-7-O-α-rhamnopyranoside and kaempferol 3-O-β-glucopyranosyl(1 → 2)[α-rhamnopyranosyl(1 → 6)]-β-galactopyranoside-7-O-α-rhamnopyranoside; the latter was the main flavonoid in mature seeds. The chromatographic profiles of 27 recorded flavonoids were relatively consistent among fruits of similar ages collected from five trees of S. japonicum, and those of maturing unripe and ripe fruits were similar to a market sample of Fructus Sophorae, and thus provide useful markers for authentication of this herbal ingredient. The flower buds (Huai Mi) and flowers (Huai Hua) of S. japonicum (collectively Flos Sophorae) contained rutin as the main flavonoid and lacked the flavone glycosides that were present in flower buds and flowers of Sophora flavescens Ait., reported to be occasional substitutes for Flos Sophorae. The single major flavonoid in fruits of S. flavescens was determined as 3′-hydroxydaidzein.  相似文献   

8.
Three new flavonoid glycosides, 3-O-[beta-D-glucopyranosyl-(1-->3)-(4-O-trans-p-coumaroyl)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyl]-7-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl]kaempferol, 3-O-[beta-D-glucopyranosyl-(1-->3)-(4-O-trans-p-coumaroyl)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-glucopyranosyl]-7-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl]quercetin and 7-O-[beta-D-glucopyranosyl-(1-->3)-alpha-L-rhamnopyranosyl]quercetin were isolated from the aqueous extract of the aerial parts of Aconitum naviculare. Their structures were elucidated by spectral analysis (HRAPI-TOF MS, 1H, 13C NMR, HMQC, HMBC, DFQ-COSY, ROESY and TOCSY).  相似文献   

9.
Shang XY  Wang YH  Li C  Zhang CZ  Yang YC  Shi JG 《Phytochemistry》2006,67(5):511-515
Four acetylated flavonol diglucosides, quercetin 3-O-[2'-O-acetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], quercetin 3-O-[2',6'-O-diacetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], isorhamnetin 3-O-[2'-O-acetyl-beta-d-glucopyranosyl-(1-->6)-beta-d-glucopyranoside], and quercetin 3-O-[2'-O-acetyl-alpha-l-arabinopyranosyl-(1-->6)-beta-d-glucopyranoside], together with five known flavonol glycosides quercetin 3-O-beta-d-glucopyranoside, kaempferol 3-O-beta-d-glucopyranoside, quercetin 3-O-[beta-d-galactopyranosyl-(1-->6)-glucopyranoside], isorhamnetin 3-O-[beta-d-galactopyranosyl-(1-->6)-beta-d-glucopyranoside], and kaempferol 3-O-[beta-d-glucopyranosyl-(1-->2)-beta-d-glucopyranoside] have been isolated from Meconopsis quintuplinervia. Their structures were determined using chemical and spectroscopic methods including HRFABMS, (1)H-(1)H COSY, HSQC and HMBC experiments.  相似文献   

10.
In this paper, we report studies on morphological, phytochemical, and biological aspects of a population belonging to Aconitum anthora L. Two compounds, quercetin 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (1) and kaempferol 3-O-((beta-D-glucopyranosyl-(1-->3)-(4-O-(E-p-coumaroyl))-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside))-7-O-alpha-L-rhamnopyranoside (2), together with two known flavonol glycosides (3-4) were isolated and identified from A. anthora. The antioxidant activity of the four identified flavonoids was screened by three in vitro tests.  相似文献   

11.
Among papilionoid legumes known to express the phenotype of quinolizidine alkaloid production, only Dermatophyllum occurs outside of the genistoid clade in phylogenetic analyses of DNA sequence data. Analysis of the foliar flavonoid glycosides of Dermatophyllum and possibly related clades, by liquid chromatography-UV spectrophotometry-mass spectrometry, revealed that taxa sampled from Dermatophyllum, Amphimas and the Cladrastis, lecointeoid and vataireoid clades contained mostly flavonol O-glycosides whereas taxa sampled from early-branching genistoid clades, the Andira clade and Aldina contained mostly flavone C-glycosides. Furthermore, leaves of Dermatophyllum secundiflorum and Dermatophyllum arizonicum contained, as their main flavonoids, two highly glycosylated flavonols: kaempferol 3-O-α-rhamnopyranosyl(1  2)[α-rhamnopyranosyl(1  6)]-β-galactopyranoside-7-O-α-rhamnopyranoside and its quercetin analogue. These compounds also occurred in Cladrastis kentukea, Styphnolobium japonicum and Pickeringia montana in the Cladrastis clade, Uribea tamarindoides and some samples of Zollernia in the lecointeoid clade, and in Amphimas pterocarpoides (another genus of uncertain relationships). The alkaloid and flavonoid phenotypes of Dermatophyllum each suggest affinities to different groups — a conflict which is accommodated by the current phylogenetic hypothesis, based on molecular data, that the genus is a possible sister to the genistoid clade but not a member of it.  相似文献   

12.
In addition to apigenin, apigenin 7-O-glucoside, kaempferol 3-O-glucoside, kaempferol 3,7-di-O-rhamnoside, quercetin, and quercetin 3-O-glucoside, the methanolic extract of Fagonia taeckholmiana afforded a new compound identified as kaempferol 3-O-beta-l-arabinopyranosyl-(1-->4)-alpha-l-rhamnopyranoside-7-O-alpha-l-rhamnopyranoside. Identification of the isolated compounds was based on chemical and spectroscopic analyses including UV, FABMS, (1)H, (13)C and 2D NMR, and DEPT. The cytotoxic activities of the compounds against several cancer cell lines were determined.  相似文献   

13.
Furanoflavonoid glycosides from Pongamia pinnata fruits   总被引:2,自引:0,他引:2  
Ahmad G  Yadav PP  Maurya R 《Phytochemistry》2004,65(7):921-924
Pongamia pinnata fruits afforded three new furanoflavonoid glucosides, pongamosides A-C (1-3), and a new flavonol glucoside, pongamoside D (4). The structures of these compounds were established on the basis of spectroscopic studies. This is the first time that furanoflavone glucosides have been found as naturally occurring compounds.  相似文献   

14.
Flavonoid glycosides and isoquinolinone alkaloids from Corydalis bungeana   总被引:3,自引:0,他引:3  
Two flavonol O-glycosides identified as the 3-O-alpha-arabinopyranosyl(1'-->6')-beta-glucopyranoside 7-O-beta-glucopyranosides of kaempferol and quercetin were isolated from the whole plant of Corydalis bungeana Turcz. together with eight known flavonol O-glycosides. Two isoquinolinone alkaloids were also obtained from the same source, including the new derivative, 6,7-methylenedioxy-2-(6-acetyl-2,3-methylenedioxybenzyl)-1(2H)-isoquinolinone. The structures were determined by spectroscopic methods (NMR and high-resolution MS).  相似文献   

15.
Liu X  Ye W  Yu B  Zhao S  Wu H  Che C 《Carbohydrate research》2004,339(4):891-895
Two new flavonol glycosides, namely kaempferol 3-O-beta-D-glucopyranosyl-(1-->4)-alpha-L-rhamnopyranosyl-(1-->6)-beta-D-galactopyranoside (1) and quercetin 3-O-6"-(3-hydroxyl-3-methylglutaryl)-beta-D-glucopyranoside (2), have been isolated from the aerial parts of Gymnema sylvestre and Euphorbia ebracteolata, respectively. Their structures were determined on the basis of chemical and spectroscopic methods.  相似文献   

16.
A bean aphid, Megoura crassicauda, which feeds selectively on the plant genus Vicia (Fabaceae), was found to be stimulated to probe an extract solution of the host plant, narrowleaf vetch, Vicia angustifolia L., depositing characteristic stylet sheaths on a parafilm membrane. Two acylated flavonol glycosides were isolated as the specific probing stimulants from the extracts and characterized as quercetin 3-O-alpha-L-arabinopyranosyl-(1-->6)-[2"-O-(E)-p-coumaroyl]-beta-D-glucopyranoside and quercetin 3-O-alpha-L-arabinopyranosyl-(1-->6)-[2"-O-(E)-p-coumaroyl]-beta-D-galactopyranoside. A mixture of these compounds in the same equivalency strongly induced the probing response from M. crassicauda, suggesting their kairomonal roles during host recognition.  相似文献   

17.
Seven flavonol glycosides were identified from the main taxa of theF. bruguieri complex. Of these, kaempferol 3-rhamno-galactoside, Quercetin 3-rhamnogalactoside and Quercetin 3-galactoside are new records for the genusFagonia L. and theZygophyllaceae s. str. The distribution of these flavonoid glycosides is discussed with respect to the morphology, chemosystematics, and possible phylogeny of the complex and the genus.Dedicated to Hofrat Univ.-Prof. DrKarl Heinz Rechinger on the occasion of his 80th birthday.  相似文献   

18.
The glucans of lichenized fungi are an important class of polysaccharides with structural and chemotaxonomic roles. The water-insoluble glucans of the genus Parmotrema (P. austrosinense, P. delicatulum, P. mantiqueirense, P. schindleri, and P. tinctorum) and those of Rimelia (R. cetrata and R. reticulata), were investigated in order to evaluate the significance in chemotyping, with nigeran [(1-->3),(1-->4)-alpha-glucan] and lichenan [(1-->3),(1-->4)-beta-glucan] characterized using (1)H and (13)C NMR, methylation analysis, and controlled Smith degradations. Results from all species were similar, suggesting that glucan chemistry does not support separation of Rimelia from Parmotrema.  相似文献   

19.
Malonylated flavonol glycosides from the petals of Clitoria ternatea   总被引:2,自引:0,他引:2  
Kazuma K  Noda N  Suzuki M 《Phytochemistry》2003,62(2):229-237
Three flavonol glycosides, kaempferol 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, quercetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside, and myricetin 3-O-(2",6"-di-O-alpha-rhamnosyl)-beta-glucoside were isolated from the petals of Clitoria ternatea cv. Double Blue, together with eleven known flavonol glycosides. Their structures were identified using UV, MS, and NMR spectroscopy. They were characterized as kaempferol and quercetin 3-(2(G)- rhamnosylrutinoside)s, kaempferol, quercetin, and myricetin 3-neohesperidosides, 3-rutinosides, and 3-glucosides in the same tissue. In addition, the presence of myricetin 3-O-(2"-O-alpha-rhamnosyl-6"-O-malonyl)-beta-glucoside was inferred from LC/MS/MS data for crude petal extracts. The flavonol compounds identified in the petals of C. ternatea differed from those reported in previous studies.  相似文献   

20.
A survey of the flavonoid glycosides of selected taxa in the genus Veronica yielded two new acylated 5,6,7,3',4'-pentahydroxyflavone (6-hydroxyluteolin) glycosides and two unusual allose-containing acylated 5,7,8,4'-tetrahydroxyflavone (isoscutellarein) glycosides. The new compounds were isolated from V. liwanensis and V. longifolia and identified using NMR spectroscopy as 6-hydroxyluteolin 4'-methyl ether 7-O-alpha-rhamnopyranosyl(1"'-->2")[6"-O-acetyl-beta-glucopyranoside] and 6-hydroxyluteolin 7-O-(6"-O-(E)-caffeoyl)-beta-glucopyranoside, respectively. Isoscutellarein 7-O-(6"'-O-acetyl)-beta-allopyranosyl(1"'-->2")-beta-glucopyranoside was obtained from both V. intercedens and V. orientalis and its 4'-methyl ether from V. orientalis only. Complete 1H and 13C NMR spectral assignments are presented for both isoscutellarein glycosides. Two iridoid glucosides new to the genus Veronica (melittoside and globularifolin) were also isolated from V. intercedens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号