首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Critical cellular functions, including stem cell maintenance, fate determination, and cellular behavior, are governed by canonical Wnt signaling, an evolutionarily conserved pathway whose intracellular signal is transduced by beta-catentin. Emerging evidence suggests that canonical Wnt signaling influences cellular aging, indicating that increases in Wnt signaling delay age-related deficits.1 However, recent Science papers suggest that Wnt signaling accelerates the onset of aging.2,3 In an attempt to resolve this paradox and clarify how Wnt signaling affects aging, we provide a selective review of research relevant to Wnt signaling and aging.  相似文献   

2.
Wnt signaling is known to regulate multiple processes including angiogenesis, inflammation, and fibrosis. Here, we identified a novel inhibitor of the Wnt pathway, pigment epithelium-derived factor (PEDF), a multifunctional serine proteinase inhibitor. Both overexpression of PEDF in transgenic mice and administration of PEDF protein attenuated Wnt signaling induced by retinal ischemia. Furthermore, PEDF knockdown by small interfering RNA (siRNA) and PEDF knockout in PEDF(-/-) mice induced activation of Wnt signaling. PEDF bound to LRP6, a Wnt coreceptor, with high affinity (K(d) [dissociation constant] of 3.7 nM) and blocked the Wnt signaling induced by Wnt ligand. The physical interaction of PEDF with LRP6 was confirmed by a coprecipitation assay, which showed that PEDF bound to LRP6 at the E1E2 domain. In addition, binding of PEDF to LRP6 blocked Wnt ligand-induced LRP6-Frizzled receptor dimerization, an essential step in Wnt signaling. These results suggest that PEDF is an endogenous antagonist of LRP6, and blocking Wnt signaling may represent a novel mechanism for its protective effects against diabetic retinopathy.  相似文献   

3.
Wu J  Yang J  Klein PS 《Developmental biology》2005,279(1):220-232
While Wnt signaling is known to be involved in early steps of neural crest development, the mechanism remains unclear. Because Wnt signaling is able to posteriorize anterior neural tissues, neural crest induction by Wnts has been proposed to be an indirect consequence of posteriorization of neural tissues rather than a direct effect of Wnt signaling. To address the relationship between posteriorization and neural crest induction by Wnt signaling, we have used gain of function and loss of function approaches in Xenopus to modulate the level of Wnt signaling at multiple points in the pathway. We find that modulating the level of Wnt signaling allows separation of neural crest induction from the effects of Wnts on anterior-posterior neural patterning. We also find that activation of Wnt signaling induces ectopic neural crest in the anterior region without posteriorizing anterior neural tissues. In addition, Wnt signaling induces neural crest when its posteriorizing activity is blocked by inhibition of FGF signaling in neuralized explants. Finally, depletion of beta-catenin confirms that the canonical Wnt pathway is required for initial neural crest induction. While these observations do not exclude a role for posteriorizing signals in neural crest induction, our data, together with previous observations, strongly suggest that canonical Wnt signaling plays an essential and direct role in neural crest induction.  相似文献   

4.
5.
Normal heart formation requires reiterative phases of canonical Wnt/β-catenin (Wnt) signaling. Understanding the mechanisms by which Wnt signaling directs cardiomyocyte (CM) formation in vivo is critical to being able to precisely direct differentiated CMs from stem cells in vitro. Here, we investigate the roles of Wnt signaling in zebrafish CM formation using heat-shock inducible transgenes that increase and decrease Wnt signaling. We find that there are three phases during which CM formation is sensitive to modulation of Wnt signaling through the first 24 h of development. In addition to the previously recognized roles for Wnt signaling during mesoderm specification and in the pre-cardiac mesoderm, we find a previously unrecognized role during CM differentiation where Wnt signaling is necessary and sufficient to promote the differentiation of additional atrial cells. We also extend the previous studies of the roles of Wnt signaling during mesoderm specification and in pre-cardiac mesoderm. Importantly, in pre-cardiac mesoderm we define a new mechanism where Wnt signaling is sufficient to prevent CM differentiation, in contrast to a proposed role in inhibiting cardiac progenitor (CP) specification. The inability of the CPs to differentiate appears to lead to cell death through a p53/Caspase-3 independent mechanism. Together with a report for an even later role for Wnt signaling in restricting proliferation of differentiated ventricular CMs, our results indicate that during the first 3days of development in zebrafish there are four distinct phases during which CMs are sensitive to Wnt signaling.  相似文献   

6.
Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling.  相似文献   

7.
Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6.   总被引:25,自引:0,他引:25  
BACKGROUND: Dickkopf-1 (Dkk-1) is a head inducer secreted from the vertebrate head organizer and induces anterior development by antagonizing Wnt signaling. Although several families of secreted antagonists have been shown to inhibit Wnt signal transduction by binding to Wnt, the molecular mechanism of Dkk-1 action is unknown. The Wnt family of secreted growth factors initiates signaling via the Frizzled (Fz) receptor and its candidate coreceptor, LDL receptor-related protein 6 (LRP6), presumably through Fz-LRP6 complex formation induced by Wnt. The significance of the Fz-LRP6 complex in signal transduction remains to be established. RESULTS: We report that Dkk-1 is a high-affinity ligand for LRP6 and inhibits Wnt signaling by preventing Fz-LRP6 complex formation induced by Wnt. Dkk-1 binds neither Wnt nor Fz, nor does it affect Wnt-Fz interaction. Dkk-1 function in head induction and Wnt signaling inhibition strictly correlates with its ability to bind LRP6 and to disrupt the Fz-LRP6 association. LRP6 function and Dkk-1 inhibition appear to be specific for the Wnt/Fz beta-catenin pathway. CONCLUSIONS: Our results demonstrate that Dkk-1 is an LRP6 ligand and inhibits Wnt signaling by blocking Wnt-induced Fz-LRP6 complex formation. Our findings thus reveal a novel mechanism for Wnt signal modulation. LRP6 is a Wnt coreceptor that appears to specify Wnt/Fz signaling to the beta-catenin pathway, and Dkk-1, distinct from Wnt binding antagonists, may be a specific inhibitor for Wnt/beta-catenin signaling. Our findings suggest that Wnt-Fz-LRP6 complex formation, but not Wnt-Fz interaction, triggers Wnt/beta-catenin signaling.  相似文献   

8.
Wnt signaling is an evolutionarily ancient pathway used to regulate many events during metazoan development. Genetic results from Caenorhabditis elegans more than a dozen years ago suggested that Wnt signaling in this nematode worm might be different than in vertebrates and Drosophila: the worm had a small number of Wnts, too many β-catenins, and some Wnt pathway components functioned in an opposite manner than in other species. Work over the ensuing years has clarified that C. elegans does possess a canonical Wnt/β-catenin signaling pathway similar to that in other metazoans, but that the majority of Wnt signaling in this species may proceed via a variant Wnt/β-catenin signaling pathway that uses some new components (mitogen-activated protein kinase signaling enzymes), and in which some conserved pathway components (β-catenin, T-cell factor [TCF]) are used in new and interesting ways. This review summarizes our current understanding of the canonical and novel TCF/β-catenin-dependent signaling pathways in C. elegans.  相似文献   

9.
The Wnt signaling pathway is increasingly recognized as a highly branched signaling network. Experimental uncoupling of the different branches of this pathway has proven difficult, as many single components are shared downstream by multiple, distinct pathways. In this report, we demonstrate that the upstream Wnt antagonists Xwnt5a and Nxfz-8, which inhibit normal morphogenetic movements during Xenopus gastrulation, act independently of the canonical Wnt signaling pathway. This finding is important, as it highlights the promiscuity of upstream Wnt signaling components and further establishes an important role for non-canonical Wnt signaling in Xenopus morphogenesis.  相似文献   

10.
Wnt signal transduction has emerged as an increasingly complex pathway due to the numerous ligands, receptors, and modulators identified in multiple developmental systems. Wnt signaling has been implicated in the renewal of the intestinal epithelium within adult animals and the progression of cancer in the colon. The Wnt family, however, has not been explored for function during embryonic gut development. Thus, to dissect the role of Wnt signaling in the developing gastrointestinal tract, it is necessary to first obtain a complete picture of the spatiotemporal expression of the Wnt signaling factors with respect to the different tissue layers of the gut. Here, we offer an in depth in situ gene expression study of Wnt ligands, frizzled receptors, and frizzled related modulators over several days of chicken gut development. These data show some expected locations of Wnt signaling as well as a surprising lack of expression of factors in the hindgut. This paper describes the first comprehensive characterization of the dynamic expression of Wnt signaling molecules during gut development. These data form the basis for future studies to determine the role of Wnt signaling in the developing gastrointestinal tract.  相似文献   

11.
12.
The effect of a noncanonical Wnt, Wnt11, on canonical Wnt signaling stimulated by Wnt1 and activated forms of LRP5 (low density lipoprotein receptor-related protein-5), Dishevelled1 (Dvl1), and beta-catenin was examined in NIH3T3 cells and P19 embryonic carcinoma cells. Wnt11 repressed Wnt1-mediated activation of LEF-1 reporter activity in both cell lines. However, Wnt11 was unable to inhibit canonical signaling activated by LRP5, Dvl1, or beta-catenin in NIH3T3 cells, although it could in P19 cells. In addition, Wnt11-mediated inhibition of canonical signaling in NIH3T3 cells is ligand-specific; Wnt11 could effectively repress canonical signaling activated by Wnt1, Wnt3, or Wnt3a but not by Wnt7a or Wnt7b. Co-culture experiments with NIH3T3 cells showed that the co-expression of Wnt11 with Wnt1 was not an essential requirement for the inhibition, suggesting receptor competition as a possible mechanism. Moreover, in both cell types, elevation of intracellular Ca(2+) levels, which can result from Wnt11 treatment, led to the inhibition of canonical signaling. This result suggests that Wnt11 might not be able to signal in NIH3T3. Furthermore, P19 cells were found to express both endogenous canonical Wnts and Wnt11. Knockdown of Wnt11 expression using siRNA resulted in increased LEF-1 reporter activity, thus indicating that Wnt11-mediated suppression of canonical signaling exists in vivo.  相似文献   

13.
Wnts are lipid-modified secreted glycoproteins that regulate diverse biological processes. We report that Wnt5a, which functions in noncanonical Wnt signaling, has activity on endothelial cells. Wnt5a is endogenously expressed in human primary endothelial cells and is expressed in murine vasculature at several sites in mouse embryos and tissues. Expression of exogenous Wnt5a in human endothelial cells promoted angiogenesis. Wnt5a induced noncanonical Wnt signaling in endothelial cells, as measured by Dishevelled and ERK1/2 phosphorylation, and inhibition of canonical Wnt signaling, a known property of Wnt5a. Wnt5a induced endothelial cell proliferation and enhanced cell survival under serum-deprived conditions. The Wnt5a-mediated proliferation was blocked by Frizzled-4 extracellular domain. Wnt5a expression enhanced capillary-like network formation, whereas reduction of Wnt5a expression decreased network formation. Reduced Wnt5a expression inhibited endothelial cell migration. Screening for Wnt5a-regulated genes in cultured endothelial cells identified several encoding angiogenic regulators, including matrix metalloproteinase-1, an interstitial collagenase, and Tie-2, a receptor for angiopoietins. Thus, Wnt5a acts through noncanonical Wnt signaling to promote angiogenesis.  相似文献   

14.
15.
The temporal switch from progenitor cell proliferation to differentiation is essential for effective adult tissue repair. We previously reported the critical role of Notch signaling in the proliferative expansion of myogenic progenitors in mammalian postnatal myogenesis. We now show that the onset of differentiation is due to a transition from Notch signaling to Wnt signaling in myogenic progenitors and is associated with an increased expression of Wnt in the tissue and an increased responsiveness of progenitors to Wnt. Crosstalk between these two pathways occurs via GSK3beta, which is maintained in an active form by Notch but is inhibited by Wnt in the canonical Wnt signaling cascade. These results demonstrate that the temporal balance between Notch and Wnt signaling orchestrates the precise progression of muscle precursor cells along the myogenic lineage pathway, through stages of proliferative expansion and then differentiation, during postnatal myogenesis.  相似文献   

16.
Wnt信号通路包括经典通路和非经典通路两种,其中Wnt经典通路又称为Wnt/β-catenin通路,其在成骨细胞的分化、增殖过程中发挥这重要的作用。Wnt信号通路实现过程中有多种因子参与,包括Wnt蛋白、β-catenin、蛋白激酶GSK-3β以及APC蛋白等多种。Wnt蛋白家族是由19种Wnt蛋白组成的,主要分为经典Wnt蛋白和非经典Wnt蛋白,其本质是一系列高度保守的分泌性糖蛋白,并且不同的Wnt蛋白对成骨细胞发挥着不同的作用,其中经典Wnt蛋白通过经典Wnt信号作用于成骨细胞对成骨细胞的增殖、分化有着重要的影响。本综述通过对Wnt经典信号通路过程中的多种因子与成骨细胞分化、增殖的关系进行分析总结,了解Wnt/β-catenin通路对成骨细胞的作用。  相似文献   

17.
18.
Canonical Wnt signaling has been implicated in the regulation of hematopoiesis. By employing a Wnt-reporter mouse, we observed that Wnt signaling is differentially activated during hematopoiesis, suggesting an important regulatory role for specific Wnt signaling levels. To investigate whether canonical Wnt signaling regulates hematopoiesis in?a dosage-dependent fashion, we analyzed the effect of different mutations in the Adenomatous polyposis coli gene (Apc), a negative modulator of the canonical Wnt pathway. By combining different targeted hypomorphic alleles and a conditional deletion allele of Apc, a gradient of five different Wnt signaling levels was obtained in?vivo. We here show that different, lineage-specific Wnt dosages regulate hematopoietic stem cells (HSCs), myeloid precursors, and T lymphoid precursors during hematopoiesis. Differential, lineage-specific optimal Wnt dosages provide a unifying concept that explains the differences reported among inducible gain-of-function approaches, leading to either HSC expansion or depletion of the HSC pool.  相似文献   

19.
Wnt proteins are a family of secreted proteins that regulate many aspects of cellular functions. The discovery that mutations in low-density lipoprotein receptor-related protein 5, a putative Wnt coreceptor, could positively and negatively affect bone mass in humans generated an enormous amount of interest in the possible role of the Wnt signaling pathway in skeletal biology. Over the last decade, considerable progress has been made in determining the role of the canonical Wnt signaling pathway in various aspects of skeletal development. Furthermore, recent evidence indicates the important role of non-canonical Wnt signaling in skeletal development. In this review we discuss the current understanding of the role of Wnt signaling in chondrogenesis, osteoblastogenesis, and osteoclastogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号