首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytoplasmic dynein is a multisubunit, minus end-directed microtubule motor that uses dynactin as an accessory complex to perform various in vivo functions including vesicle transport, spindle assembly, and nuclear distribution [1]. We previously showed that in the filamentous fungus Aspergillus nidulans, a GFP-tagged cytoplasmic dynein heavy chain (NUDA) forms comet-like structures that exhibited microtubule-dependent movement toward and back from the hyphal tip [2]. Here we demonstrate that another protein in the NUDA pathway, NUDF, which is homologous to the human LIS1 protein involved in brain development [3, 4], also exhibits such dynamic behavior. Both NUDA and NUDF are located at the ends of microtubules, and this observation suggests that the observed dynamic behavior is due to their association with the dynamic microtubule ends. To address whether NUDA and NUDF play a role in regulating microtubule dynamics in vivo, we constructed a GFP-labeled alpha-tubulin strain and used it to compare microtubule dynamics in vivo in wild-type A. nidulans versus temperature-sensitive loss-of-function mutants of nudA and nudF. The mutants showed a lower frequency of microtubule catastrophe, a lower rate of shrinkage during catastrophe, and a lower frequency of rescue. The microtubules in the mutant cells also paused longer at the hyphal tip than wild-type microtubules. These results indicate that cytoplasmic dynein and the LIS1 homolog NUDF affect microtubule dynamics in vivo.  相似文献   

2.
Taxol, a microtubule stabilizing drug, induces the formation of numerous microtubule asters in the cytoplasm of mitotic cells (De Brabander, M., G. Geuens, R. Nuydens, R. Willebrords, J. DeMey. 1981. Proc. Natl. Acad. Sci. USA. 78:5608-5612). The center of these asters share with spindle poles some characteristics such as the presence of centrosomal material and calmodulin. We have recently reproduced the assembly of taxol asters in a cell-free system (Buendia, B., C. Antony, F. Verde, M. Bornens, and E. Karsenti. 1990. J. Cell Sci. 97:259-271) using extracts of Xenopus eggs. In this paper, we show that taxol aster assembly requires phosphorylation, and that they do not grow from preformed centers, but rather by a reorganization of microtubules first crosslinked into bundles. This process seems to involve sliding of microtubules along each other and we show that cytoplasmic dynein is required for taxol aster assembly. This result provides a possible functional basis to the recent findings, that dynein is present in the spindle and enriched near spindle poles (Pfarr, C. M., M. Cove, P. M. Grissom, T. S. Hays, M. E. Porter, and J. R. McIntosh. 1990. Nature (Lond.). 345:263-265; Steuer, E. R., L. Wordeman, T. A. Schroer, and M. P. Sheetz. 1990. Nature (Lond.). 345:266-268).  相似文献   

3.
Podosomes are dynamic, actin-containing adhesion structures that collectively self-organize as rings. In this study, we first show by observing osteoclasts plated on bead-seeded soft substrates that podosome assemblies, such as rings, are involved in tension forces. During the expansion of a podosome ring, substrate displacement is oriented outward, suggesting that podosomal structures push the substrate away. To further elucidate the function of forces generated by podosomes, we analyze osteoclast migration. Determining the centers of mass of the whole cell (G) and of actin (P), we demonstrate that osteoclasts migrate by "jumps" and that the trajectories of G and P are strongly correlated. The velocity of the center of mass as a function of time reveals that osteoclasts rapidly catch up with podosomal structures in a periodic pattern. We conclude that actin dynamics inside the cell are not only correlated with cell migration, but drive it.  相似文献   

4.
Cortical microtubule contacts position the spindle in C. elegans embryos   总被引:2,自引:0,他引:2  
Kozlowski C  Srayko M  Nedelec F 《Cell》2007,129(3):499-510
Interactions between microtubules and the cell cortex play a critical role in positioning organelles in a variety of biological contexts. Here we used Caenorhabditis elegans as a model system to study how cortex-microtubule interactions position the mitotic spindle in response to polarity cues. Imaging EBP-2::GFP and YFP::alpha-tubulin revealed that microtubules shrink soon after cortical contact, from which we propose that cortical adaptors mediate microtubule depolymerization energy into pulling forces. We also observe association of dynamic microtubules to form astral fibers that persist, despite the catastrophe events of individual microtubules. Computer simulations show that these effects, which are crucially determined by microtubule dynamics, can explain anaphase spindle oscillations and posterior displacement in 3D.  相似文献   

5.
ATP-dependent chromatin remodeling complexes are implicated in many areas of chromosome biology. However, the physiological role of many of these enzymes is still unclear. In budding yeast, the Isw2 complex slides nucleosomes along DNA. By analyzing the native chromatin structure of Isw2 targets, we have found that nucleosomes adopt default, DNA-directed positions when ISW2 is deleted. We provide evidence that Isw2 targets contain DNA sequences that are inhibitory to nucleosome formation and that these sequences facilitate the formation of nuclease-accessible open chromatin in the absence of Isw2. Our data show that the biological function of Isw2 is to position nucleosomes onto unfavorable DNA. These results reveal that antagonistic forces of Isw2 and the DNA sequence can control nucleosome positioning and genomic access in vivo.  相似文献   

6.
Dynein is a minus-end-directed microtubule motor with critical roles in mitosis, membrane transport and intracellular transport. Several proteins regulate dynein activity, including dynactin, LIS1 (refs 2, 3) and NudEL (NudE-like). Here, we identify a NUDEL homologue in budding yeast and name it Ndl1. The ndl1delta null mutant shows decreased targeting of dynein to microtubule plus ends, an essential element of the model for dynein function. We find that Ndl1 regulates dynein targeting through LIS1, with which it interacts biochemically, but not through CLIP170, another plus-end protein involved in dynein targeting. Ndl1 is found at far fewer microtubule ends than are LIS1 and dynein. However, when Ndl1 is present at a plus end, the molar amount of Ndl1 approaches that of LIS1 and dynein. We propose a model in which Ndl1 binds transiently to the plus end to promote targeting of LIS1, which cooperatively recruits dynein.  相似文献   

7.
The centrosome position in many types of interphase cells is actively maintained in the cell center. Our previous work indicated that the centrosome is kept at the center by pulling force generated by dynein and actin flow produced by myosin contraction and that an unidentified factor that depends on microtubule dynamics destabilizes position of the centrosome. Here, we use modeling to simulate the centrosome positioning based on the idea that the balance of three forces-dyneins pulling along microtubule length, myosin-powered centripetal drag, and microtubules pushing on organelles-is responsible for the centrosome displacement. By comparing numerical predictions with centrosome behavior in wild-type and perturbed interphase cells, we rule out several plausible hypotheses about the nature of the microtubule-based force. We conclude that strong dynein- and weaker myosin-generated forces pull the microtubules inward competing with microtubule plus-ends pushing the microtubule aster outward and that the balance of these forces positions the centrosome at the cell center. The model also predicts that kinesin action could be another outward-pushing force. Simulations demonstrate that the force-balance centering mechanism is robust yet versatile. We use the experimental observations to reverse engineer the characteristic forces and centrosome mobility.  相似文献   

8.
9.
Caveolae are specialized compartments of the plasma membrane that are involved in signaling, endocytosis, and cholesterol transport. Their formation requires the transport of caveolin-1 to the plasma membrane, but the molecular mechanisms regulating the transport are largely unknown. Here, we?identify a critical role for adhesion-mediated signaling through β1 integrins and integrin-linked kinase (ILK) in caveolae formation. Mice lacking β1 integrins or ILK in keratinocytes have dramatically reduced numbers of plasma membrane caveolae in?vivo, which is due to impaired transport of caveolin-1-containing vesicles along microtubules (MT) to the plasma membrane. Mechanistically, ILK promotes the recruitment of the F-actin binding protein IQGAP1 to the cell cortex, which, in turn, cooperates with its?effector mDia1 to locally stabilize MTs and to allow?stable insertion of caveolae into the plasma membrane. Our results assign an important role to the integrin/ILK complex for caveolar trafficking to the cell surface.  相似文献   

10.
Cytoplasmic dynein mediates spindle orientation from the cell cortex through interactions with astral microtubules, but neither the mechanism governing its cortical targeting nor the regulation thereof is well understood. Here we show that yeast dynein offloads from microtubule plus ends to the daughter cell cortex. Mutants with an engineered peptide inserted between the tail domain and the motor head retain wild-type motor activity but exhibit enhanced offloading and cortical targeting. Conversely, shortening the "neck" sequence between the tail and motor domains precludes offloading from the microtubule plus ends. Furthermore, chimeric mutants with mammalian dynein "neck" sequences rescue targeting and function. These findings provide direct support for an active microtubule-mediated delivery process that appears to be regulated by a conserved masking/unmasking mechanism.  相似文献   

11.
Li Y  Yu W  Liang Y  Zhu X 《Cell research》2007,17(8):701-712
For proper chromosome segregation, all kinetochores must achieve bipolar microtubule (MT) attachment and subsequently align at the spindle equator before anaphase onset. The MT minus end-directed motor dynein/dynactin binds kinetoehores in prometaphase and has long been implicated in chromosome congression. Unfortunately, inactivation of dynein usually disturbs spindle organization, thus hampering evaluation of its kinetochore roles. Here we specifically eliminated kinetochore dynein/dynactin by RNAi-mediated depletion of ZW10, a protein essential for kinetochore localization of the motor. Time-lapse microscopy indicated markedly-reduced congression efficiency, though congressing chromosomes displayed similar velocities as in control cells. Moreover, cells frequently failed to achieve full chromosome alignment, despite their normal spindles. Confocal microcopy revealed that the misaligned kinetochores were monooriented or unattached and mostly lying outside the spindle, suggesting a difficulty to capture MTs from the opposite pole. Kinetoehores on monoastral spindles were dispersed farther away from the pole and exhibited only mild oscillation. Furthermore, inactivating dynein by other means generated similar phenotypes. Therefore, kinetochore dynein produces on monooriented kinetochores a poleward pulling force, which may contribute to efficient bipolar attachment by facilitating their proper microtubule captures to promote congression as well as full chromosome alignment.  相似文献   

12.
Human herpesvirus 8 (HHV-8; also called Kaposi's sarcoma-associated herpesvirus), which is implicated in the pathogenesis of Kaposi's sarcoma (KS) and lymphoproliferative disorders, infects a variety of target cells both in vivo and in vitro. HHV-8 binds to several in vitro target cells via cell surface heparan sulfate and utilizes the alpha3beta1 integrin as one of its entry receptors. Interactions with cell surface molecules induce the activation of host cell signaling cascades and cytoskeletal changes (P. P. Naranatt, S. M. Akula, C. A. Zien, H. H. Krishnan, and B. Chandran, J. Virol. 77:1524-1539, 2003). However, the mechanism by which the HHV-8-induced signaling pathway facilitates the complex events associated with the internalization and nuclear trafficking of internalized viral DNA is as yet undefined. Here we examined the role of HHV-8-induced cytoskeletal dynamics in the infectious process and their interlinkage with signaling pathways. The depolymerization of microtubules did not affect HHV-8 binding and internalization, but it inhibited the nuclear delivery of viral DNA and infection. In contrast, the depolymerization of actin microfilaments did not have any effect on virus binding, entry, nuclear delivery, or infection. Early during infection, HHV-8 induced the acetylation of microtubules and the activation of the RhoA and Rac1 GTPases. The inactivation of Rho GTPases by Clostridium difficile toxin B significantly reduced microtubular acetylation and the delivery of viral DNA to the nucleus. In contrast, the activation of Rho GTPases by Escherichia coli cytotoxic necrotizing factor significantly augmented the nuclear delivery of viral DNA. Among the Rho GTPase-induced downstream effector molecules known to stabilize the microtubules, the activation of RhoA-GTP-dependent diaphanous 2 was observed, with no significant activation in the Rac- and Cdc42-dependent PAK1/2 and stathmin molecules. The nuclear delivery of viral DNA increased in cells expressing a constitutively active RhoA mutant and decreased in cells expressing a dominant-negative mutant of RhoA. HHV-8 capsids colocalized with the microtubules, as observed by confocal microscopic examination, and the colocalization was abolished by the destabilization of microtubules with nocodazole and by the phosphatidylinositol 3-kinase inhibitor affecting the Rho GTPases. These results suggest that HHV-8 induces Rho GTPases, and in doing so, modulates microtubules and promotes the trafficking of viral capsids and the establishment of infection. This is the first demonstration of virus-induced host cell signaling pathways in the modulation of microtubule dynamics and in the trafficking of viral DNA to the infected cell nucleus. These results further support our hypothesis that HHV-8 manipulates the host cell signaling pathway to create an appropriate intracellular environment that is conducive to the establishment of a successful infection.  相似文献   

13.
Fibroblast locomotion is thought to generate tractional forces which lead to contraction and reorganisation of collagen in tissue development and repair. A culture force monitor device (CFM) was used to measure changes in force in fibroblast populated collagen lattices, which resulted from cytoskeletal reorganisation by cytochalasin B, colchicine, vinblastine, and taxol. Microfilament disruption abolished contraction forces, microtubule disruption elicited a new peak of contraction, while taxol stabilisation of microtubules produced a gradual fall in measured force across the collagen gel. Based on these measurements, it is suggested that the cell can be viewed as an engineering structure in which residual intracellular forces, from contractile microfilaments, exert compressive loading on microtubular elements. This microtubular structure appears to act as a “balanced space frame” (analogous to an aeroplane chassis), maintaining cell shape and consequently storing a residual internal tension (RIT). In dermal fibroblasts this hidden RIT was up to 33% of the measurable force exerted on the collagen gel. Phenotypic differences between space frame organisation and RIT levels could explain site and pathological variations in fibroblast contraction. © 1996 Wiley-Liss, Inc.  相似文献   

14.
The NK cell-activating receptor NKG2D recognizes several MHC class I-related molecules expressed on virally infected and tumor cells. Human NKG2D transduces activation signals exclusively via an associated DAP10 adaptor containing a YxNM motif, whereas murine NKG2D can signal through either DAP10 or the DAP12 adaptor, which contains an ITAM sequence. DAP10 signaling is thought to be mediated, at least in part, by PI3K and is independent of Syk/Zap-70 kinases; however, the exact mechanism by which DAP10 induces natural cytotoxicity is incompletely understood. Herein, we identify Vav1, a Rho GTPase guanine nucleotide exchange factor, as a critical signaling mediator downstream of DAP10 in NK cells. Specifically, using mice deficient in Vav1 and DAP12, we demonstrate an essential role for Vav1 in DAP10-induced NK cell cytoskeletal polarization involving both actin and microtubule networks, maturation of the cytolytic synapse, and target cell lysis. Mechanistically, we show that Vav1 interacts with DAP10 YxNM motifs through the adaptor protein Grb2 and is required for activation of PI3K-dependent Akt signaling. Based on these findings, we propose a novel model of ITAM-independent signaling by Vav downstream of DAP10 in NK cells.  相似文献   

15.
Bidirectional transport of early endosomes (EEs) involves microtubules (MTs) and associated motors. In fungi, the dynein/dynactin motor complex concentrates in a comet-like accumulation at MT plus-ends to receive kinesin-3-delivered EEs for retrograde transport. Here, we analyse the loading of endosomes onto dynein by combining live imaging of photoactivated endosomes and fluorescent dynein with mathematical modelling. Using nuclear pores as an internal calibration standard, we show that the dynein comet consists of ~55 dynein motors. About half of the motors are slowly turned over (T(1/2): ~98 s) and they are kept at the plus-ends by an active retention mechanism involving an interaction between dynactin and EB1. The other half is more dynamic (T(1/2): ~10 s) and mathematical modelling suggests that they concentrate at MT ends because of stochastic motor behaviour. When the active retention is impaired by inhibitory peptides, dynein numbers in the comet are reduced to half and ~10% of the EEs fall off the MT plus-ends. Thus, a combination of stochastic accumulation and active retention forms the dynein comet to ensure capturing of arriving organelles by retrograde motors.  相似文献   

16.
Membrane motility is a fundamental characteristic of all eukaryotic cells. One of the best-known examples is that of the mammalian Golgi apparatus, where constant inward movement of Golgi membranes results in its characteristic position near the centrosome. While it is clear that the minus-end-directed motor dynein is required for this process, the mechanism and regulation of dynein recruitment to Golgi membranes remains unknown. Here, we show that the Golgi protein golgin160 recruits dynein to Golgi membranes. This recruitment confers centripetal motility to membranes and is regulated by the GTPase Arf1. Further, during cell division, motor association with membranes is regulated by the dissociation of the receptor-motor complex from membranes. These results identify a cell-cycle-regulated membrane receptor for a molecular motor and?suggest a mechanistic basis for achieving the dramatic changes in organelle positioning seen during cell division.  相似文献   

17.
Dynamic turnover of the spindle is a driving force for chromosome congression and segregation in mitosis. Through a functional genomic analysis, we identify DDA3 as a previously unknown regulator of spindle dynamics that is essential for mitotic progression. DDA3 depletion results in a high frequency of unaligned chromosomes, a substantial reduction in tension across sister kinetochores at metaphase, and a decrease in the velocity of chromosome segregation at anaphase. DDA3 associates with the mitotic spindle and controls microtubule (MT) dynamics. Mechanistically, DDA3 interacts with the MT depolymerase Kif2a in an MT-dependent manner and recruits Kif2a to the mitotic spindle and spindle poles. Depletion of DDA3 increases the steady-state levels of spindle MTs by reducing the turnover rate of the mitotic spindle and by increasing the rate of MT polymerization, which phenocopies the effects of partial knockdown of Kif2a. Thus, DDA3 represents a new class of MT-destabilizing protein that controls spindle dynamics and mitotic progression by regulating MT depolymerases.  相似文献   

18.
19.
One of the most intriguing aspects of mitosis is the ability of kinetochores to hold onto plus ends of microtubules that are actively gaining or losing tubulin subunits. Here, we show that CLASP1, a microtubule-associated protein, localizes preferentially near the plus ends of growing spindle microtubules and is also a component of a kinetochore region that we term the outer corona. A truncated form of CLASP1 lacking the kinetochore binding domain behaves as a dominant negative, leading to the formation of radial arrays of microtubule bundles that are highly resistant to depolymerization. Microinjection of CLASP1-specific antibodies suppresses microtubule dynamics at kinetochores and throughout the spindle, resulting in the formation of monopolar asters with chromosomes buried in the interior. Incubation with microtubule-stabilizing drugs rescues the kinetochore association with microtubule plus ends at the periphery of the asters. Our data suggest that CLASP1 is required at kinetochores for attached microtubules to exhibit normal dynamic behavior.  相似文献   

20.
The mitotic spindle is a self-organizing structure that is constructed primarily from microtubules. Among the most important spindle microtubules are those that bind to kinetochores and form the fibers along which chromosomes move. Chemotherapeutics such as taxol and the vinca alkaloids perturb kinetochore—microtubule attachment and disrupt chromosome segregation. This activates a checkpoint pathway that delays cell cycle progression and induces programmed cell death. Recent work has identified at least four mammalian spindle assembly checkpoint proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号