首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The tumor suppressor gene TP53, one of the most frequently mutated genes, is recognized as the guardian of genome and can provide a significant barrier to neoplastic transformation and tumor progression. Traditional theory believes that TP53 mutations are equal among cancer types. However, to date, no study has explored the TP53 mutation profile from a holistic and systematic standpoint to discovery its relevance and feature with cancers. Mutation signature, an unbiased approach to identify the mutational processes, can be a potent indicator for exploring mutation-driven tumor occurrence and progression. In this research, several features such as hotspots, mutability and mutation signature of somatic TP53 mutations derived from 18 types of cancer tissues from cBioPortal were analyzed and manifested the organizational preference among cancers. Mutation signatures found in almost all cancer types were Signature 6 related to mismatch repair deficiency, and Signature 1 that reflects the natural decomposition of 5-methylcytosine into thymine associated with aging. Meanwhile, several signatures of TP53 mutations displayed tissue-selective. Mutations enriched in bladder, skin, lung cancer were associated with signatures of APOBEC activity (Signature 2 and 13), alkylating agents (Signature 11), and tobacco smoke (Signature 4), respectively. Moreover, Signature 4 and 29 associated with tobacco smoking or chewing found in lung, sarcoma, esophageal, and head and neck cancer may be related to their smoking history. In addition, several digestive cancers, including colorectal, stomach, pancreatic and esophageal cancers, showed the high correlation in context and mutation signature profiles. Our study suggests that the tissue-selective activity of mutational processes would reflect the tissue-specific enrichment of TP53 mutations and provides a new perspective to understand the relevance of diverse diseases based on the spectrum of TP53 mutations.  相似文献   

2.
3.
Somatic mutations in cancer genomes are associated with DNA replication timing (RT) and chromatin accessibility (CA), however these observations are based on normal tissues and cell lines while primary cancer epigenomes remain uncharacterised. Here we use machine learning to model megabase-scale mutation burden in 2,500 whole cancer genomes and 17 cancer types via a compendium of 900 CA and RT profiles covering primary cancers, normal tissues, and cell lines. CA profiles of primary cancers, rather than those of normal tissues, are most predictive of regional mutagenesis in most cancer types. Feature prioritisation shows that the epigenomes of matching cancer types and organ systems are often the strongest predictors of regional mutation burden, highlighting disease-specific associations of mutational processes. The genomic distributions of mutational signatures are also shaped by the epigenomes of matched cancer and tissue types, with SBS5/40, carcinogenic and unknown signatures most accurately predicted by our models. In contrast, fewer associations of RT and regional mutagenesis are found. Lastly, the models highlight genomic regions with overrepresented mutations that dramatically exceed epigenome-derived expectations and show a pan-cancer convergence to genes and pathways involved in development and oncogenesis, indicating the potential of this approach for coding and non-coding driver discovery. The association of regional mutational processes with the epigenomes of primary cancers suggests that the landscape of passenger mutations is predominantly shaped by the epigenomes of cancer cells after oncogenic transformation.  相似文献   

4.
The accuracy of replicating the genetic code is fundamental. DNA repair mechanisms protect the fidelity of the genome ensuring a low error rate between generations. This sustains the similarity of individuals whilst providing a repertoire of variants for evolution. The mutation rate in the human genome has recently been measured to be 50–70 de novo single nucleotide variants (SNVs) between generations. During development mutations accumulate in somatic cells so that an organism is a mosaic. However, variation within a tissue and between tissues has not been analysed. By reprogramming somatic cells into induced pluripotent stem cells (iPSCs), their genomes and the associated mutational history are captured. By sequencing the genomes of polyclonal and monoclonal somatic cells and derived iPSCs we have determined the mutation rates and show how the patterns change from a somatic lineage in vivo through to iPSCs. Somatic cells have a mutation rate of 14 SNVs per cell per generation while iPSCs exhibited a ten-fold lower rate. Analyses of mutational signatures suggested that deamination of methylated cytosine may be the major mutagenic source in vivo, whilst oxidative DNA damage becomes dominant in vitro. Our results provide insights for better understanding of mutational processes and lineage relationships between human somatic cells. Furthermore it provides a foundation for interpretation of elevated mutation rates and patterns in cancer.  相似文献   

5.
Mutational processes shape the genomes of cancer patients and their understanding has important applications in diagnosis and treatment. Current modeling of mutational processes by identifying their characteristic signatures views each base substitution in a limited context of a single flanking base on each side. This context definition gives rise to 96 categories of mutations that have become the standard in the field, even though wider contexts have been shown to be informative in specific cases. Here we propose a data-driven approach for constructing a mutation categorization for mutational signature analysis. Our approach is based on the assumption that tumor cells that are exposed to similar mutational processes, show similar expression levels of DNA damage repair genes that are involved in these processes. We attempt to find a categorization that maximizes the agreement between mutation and gene expression data, and show that it outperforms the standard categorization over multiple quality measures. Moreover, we show that the categorization we identify generalizes to unseen data from different cancer types, suggesting that mutation context patterns extend beyond the immediate flanking bases.  相似文献   

6.

Background

Increased number of single nucleotide substitutions is seen in breast and ovarian cancer genomes carrying disease-associated mutations in BRCA1 or BRCA2. The significance of these genome-wide mutations is unknown. We hypothesize genome-wide mutation burden mirrors deficiencies in DNA repair and is associated with treatment outcome in ovarian cancer.

Methods and Results

The total number of synonymous and non-synonymous exome mutations (Nmut), and the presence of germline or somatic mutation in BRCA1 or BRCA2 (mBRCA) were extracted from whole-exome sequences of high-grade serous ovarian cancers from The Cancer Genome Atlas (TCGA). Cox regression and Kaplan-Meier methods were used to correlate Nmut with chemotherapy response and outcome. Higher Nmut correlated with a better response to chemotherapy after surgery. In patients with mBRCA-associated cancer, low Nmut was associated with shorter progression-free survival (PFS) and overall survival (OS), independent of other prognostic factors in multivariate analysis. Patients with mBRCA-associated cancers and a high Nmut had remarkably favorable PFS and OS. The association with survival was similar in cancers with either BRCA1 or BRCA2 mutations. In cancers with wild-type BRCA, tumor Nmut was associated with treatment response in patients with no residual disease after surgery.

Conclusions

Tumor Nmut was associated with treatment response and with both PFS and OS in patients with high-grade serous ovarian cancer carrying BRCA1 or BRCA2 mutations. In the TCGA cohort, low Nmut predicted resistance to chemotherapy, and for shorter PFS and OS, while high Nmut forecasts a remarkably favorable outcome in mBRCA-associated ovarian cancer. Our observations suggest that the total mutation burden coupled with BRCA1 or BRCA2 mutations in ovarian cancer is a genomic marker of prognosis and predictor of treatment response. This marker may reflect the degree of deficiency in BRCA-mediated pathways, or the extent of compensation for the deficiency by alternative mechanisms.  相似文献   

7.
Paul Little  Li Hsu  Wei Sun 《Biometrics》2023,79(3):2705-2718
Somatic mutations in cancer patients are inherently sparse and potentially high dimensional. Cancer patients may share the same set of deregulated biological processes perturbed by different sets of somatically mutated genes. Therefore, when assessing the associations between somatic mutations and clinical outcomes, gene-by-gene analysis is often under-powered because it does not capture the complex disease mechanisms shared across cancer patients. Rather than testing genes one by one, an intuitive approach is to aggregate somatic mutation data of multiple genes to assess their joint association with clinical outcomes. The challenge is how to aggregate such information. Building on the optimal transport method, we propose a principled approach to estimate the similarity of somatic mutation profiles of multiple genes between tumor samples, while accounting for gene–gene similarities defined by gene annotations or empirical mutational patterns. Using such similarities, we can assess the associations between somatic mutations and clinical outcomes by kernel regression. We have applied our method to analyze somatic mutation data of 17 cancer types and identified at least five cancer types, where somatic mutations are associated with overall survival, progression-free interval, or cytolytic activity.  相似文献   

8.
Breast cancer is one of the most frequent malignancies affecting women. The human breast cancer gene 1 (BRCA1) gene is mutated in a distinct proportion of hereditary breast and ovarian cancers. Tumourigenesis in individuals with germline BRCA1 mutations requires somatic inactivation of the remaining wild-type allelle. Although, this evidence supports a role for BRCA1 as a tumour suppressor, the mechanisms through which its loss leads to tumourigenesis remain to be determined. Neither the expression pattern nor the described functions of human BRCA1 and murine breast cancer gene 1 (Brca1) can explain the specific association of mutations in this gene with the development of breast and ovarian cancer. Investigation of the role of Brca1 in normal cell differentiation processes might provide the basis to understand the tissue-restricted properties.  相似文献   

9.
Cheung LW  Lee YF  Ng TW  Ching WK  Khoo US  Ng MK  Wong AS 《FEBS letters》2007,581(24):4668-4674
The range of BRCA1/BRCA2 gene mutations is diverse and the mechanism accounting for this heterogeneity is obscure. To gain insight into the endogenous mutational mechanisms involved, we evaluated the association of specific sequences (i.e. CpG/CpNpG motifs, homonucleotides, short repeats) and mutations within the genes. We classified 1337 published mutations in BRCA1 (1765 BRCA2 mutations) for each specific sequence, and employed computer simulation combined with mathematical calculations to estimate the true underlying tendency of mutation occurrence. Interestingly, we found no mutational bias to homonucleotides and repeats in deletions/insertions and substitutions but striking bias to CpG/CpNpG in substitutions in both genes. This suggests that methylation-dependent DNA alterations would be a major mechanism for mutagenesis.  相似文献   

10.
We are studying the induction and repair of DNA damage in lymphocytes of women from families with familial breast cancer and mutations in the breast cancer susceptibility genes BRCA1 and BRCA2. Our previous results indicated a close relationship between the presence of a BRCA1 mutation and sensitivity for the induction of micronuclei by gamma irradiation and hydrogen peroxide (H2O2). To further characterize the mutagen sensitivity and to better understand the underlying mechanisms, we now tested the effect of various cytostatics on the micronucleus frequencies in lymphocytes of women with various BRCA1 mutations in comparison to controls. The results presented here indicate enhanced sensitivity towards bleomycin, cisplatin, cyclophosphamide and bischloroethylnitosurea (BCNU). However, mutagen sensitivity towards cisplatin and BCNU was not accompanied by enhanced induction of sister chromatid exchanges (SCE), suggesting that intrachromosomal recombination is not affected. In contrast to the various DNA-damaging agents, there was no clear difference in the response to vincristine and taxol. FISH analysis revealed that the two aneugens mainly induced centromere-positive micronuclei to a similar extent in lymphocytes with and without a BRCA1 mutation. We conclude that cells containing a heterozygous mutation in BRCA1 are more sensitive towards different kinds of DNA damage in accordance with the proposed central role of BRCA1 in maintaining genomic integrity. Although BRCA1 has been shown to interact with the mitotic spindle, spindle poisons do not cause enhanced induction of micronuclei. Since some of the DNA-damaging mutagens tested here are used as cytostatics in breast cancer chemotherapy, it might be that women with a BRCA1 mutation are at higher risk for the induction of mutations and secondary cancers by standard therapies.  相似文献   

11.
There are very few reports that describe the mutational landscape of cervical cancer, one of the leading cancers in Indian women. The aim of the present study was to investigate the somatic mutations that occur in cervical cancer. Whole exome sequencing of 10 treatment naïve tumour biopsies with matched blood samples, from a cohort of Indian patients with locally advanced disease, was performed. The data revealed missense mutations across 1282 genes, out of 1831 genes harbouring somatic mutations. These missense mutations (nonsynonymous + stop-gained) when compared with pre-existing mutations in the COSMIC database showed that 272 mutations in 250 genes were already reported although from cancers other than cervical cancer. More than 1000 novel somatic variations were obtained in matched tumour samples. Pathways / genes that are frequently mutated in various other cancers were found to be mutated in cervical cancers. A significant enrichment of somatic mutations in the MAPK pathway was observed, some of which could be potentially targetable. This is the first report of whole exome sequencing of well annotated cervical cancer samples from Indian women and helps identify trends in mutation profiles that are found in an Indian cohort of cervical cancer.  相似文献   

12.
Cancer is the result of mutagenic processes that can be inferred from tumor genomes by analyzing rate spectra of point mutations, or “mutational signatures”. Here we present SparseSignatures, a novel framework to extract signatures from somatic point mutation data. Our approach incorporates a user-specified background signature, employs regularization to reduce noise in non-background signatures, uses cross-validation to identify the number of signatures, and is scalable to large datasets. We show that SparseSignatures outperforms current state-of-the-art methods on simulated data using a variety of standard metrics. We then apply SparseSignatures to whole genome sequences of pancreatic and breast tumors, discovering well-differentiated signatures that are linked to known mutagenic mechanisms and are strongly associated with patient clinical features.  相似文献   

13.
Tumours with mutations in the BRCA1/BRCA2 genes have impaired double-stranded DNA break repair, compromised replication fork protection and increased sensitivity to replication blocking agents, a phenotype collectively known as ‘BRCAness’. Tumours with a BRCAness phenotype become dependent on alternative repair pathways that are error-prone and introduce specific patterns of somatic mutations across the genome. The increasing availability of next-generation sequencing data of tumour samples has enabled identification of distinct mutational signatures associated with BRCAness. These signatures reveal that alternative repair pathways, including Polymerase θ-mediated alternative end-joining and RAD52-mediated single strand annealing are active in BRCA1/2-deficient tumours, pointing towards potential therapeutic targets in these tumours. Additionally, insight into the mutations and consequences of unrepaired DNA lesions may also aid in the identification of BRCA-like tumours lacking BRCA1/BRCA2 gene inactivation. This is clinically relevant, as these tumours respond favourably to treatment with DNA-damaging agents, including PARP inhibitors or cisplatin, which have been successfully used to treat patients with BRCA1/2-defective tumours. In this review, we aim to provide insight in the origins of the mutational landscape associated with BRCAness by exploring the molecular biology of alternative DNA repair pathways, which may represent actionable therapeutic targets in in these cells.  相似文献   

14.
Hereditary breast cancer comprises 10% of all breast cancers. The most prevalent genes causing this pathology are BRCA1 and BRCA2 (breast cancer early onset 1 and 2), which also predispose to other cancers. Despite the outstanding relevance of genetic screening of BRCA deleterious variants in patients with a history of familial cancer, this practice is not common in Latin American public institutions. In this work we assessed mutations in the entire exonic and splice-site regions of BRCA in 39 patients with breast and ovarian cancer and with familial history of breast cancer or with clinical features suggestive for BRCA mutations by massive parallel pyrosequencing. First we evaluated the method with controls and found 41-485 reads per sequence in BRCA pathogenic mutations. Negative controls did not show deleterious variants, confirming the suitability of the approach. In patients diagnosed with cancer we found 4 novel deleterious mutations (c.2805_2808delAGAT and c.3124_3133delAGCAATATTA in BRCA1; c.2639_2640delTG and c.5114_5117delTAAA in BRCA2). The prevalence of BRCA mutations in these patients was 10.2%. Moreover, we discovered 16 variants with unknown clinical significance (11 in exons and 5 in introns); 4 were predicted as possibly pathogenic by in silico analyses, and 3 have not been described previously. This study illustrates how massive pyrosequencing technology can be applied to screen for BRCA mutations in the whole exonic and splice regions in patients with suspected BRCA-related cancers. This is the first effort to analyse the mutational status of BRCA genes on a Mexican-mestizo population by means of pyrosequencing.  相似文献   

15.
To gain insight into the molecular mechanisms underlying the inherited predisposition to breast cancer in non-Ashkenazi Jews, we genotyped 54 Jewish Moroccan women with breast cancer, unselected for family history of cancer, for the predominant Jewish mutations in BRCA1, BRCA2, and ATM. One patient (2%) was found to have the 185de1AG BRCA1 mutation, none was a carrier of the 6174delT BRCA2 mutation, and 2/54 (4%) were heterozygous for the ATM mutation. These rates were not significantly different from the rates in the general non-Ashkenazi population. These preliminary data may indicate that the predominant Jewish mutations in BRCA1, BRCA2, and ATM genes contribute little, if any, to breast cancer predisposition and risk among Moroccan Jews.  相似文献   

16.
A low proportion of BRCA2 mutations in Finnish breast cancer families.   总被引:4,自引:1,他引:3  
One hundred breast cancer families were identified at the Helsinki University Central Hospital in Finland and were screened for germ-line mutations in the coding regions and splice boundaries of the BRCA2 gene. Eight families (8%) were found to carry five different mutations, all of which are predicted to prematurely truncate the protein product. These BRCA2 families have early-onset breast cancer (mean and median age = 49 years), with four of the eight families including ovarian cancer but with no families including male breast cancer. A wide spectrum of other cancers also is seen in these families. Three mutations were identified in more than one family, and haplotype analysis in the families suggested a common founder for each recurrent mutation. One recurrent mutation, 999del5, previously has been noted as a common mutation in Iceland. The relationship between the Icelandic 999del5 mutation and the Finnish 999del5 mutation was explored by comparison of families from both countries. A common haplotype covering a minimal region intragenic to the BRCA2 gene was shared between the Icelandic and the Finnish mutation carriers.  相似文献   

17.
Several BRCA1 mutations have now been found to occur in geographically diverse breast and ovarian cancer families. To investigate mutation origin and mutation-specific phenotypes due to BRCA1, we constructed a haplotype of nine polymorphic markers within or immediately flanking the BRCA1 locus in a set of 61 breast/ovarian cancer families selected for having one of six recurrent BRCA1 mutations. Tests of both mutations and family-specific differences in age at diagnosis were not significant. A comparison of the six mutations in the relative proportions of cases of breast and ovarian cancer was suggestive of an effect (P = .069), with 57% of women presumed affected because of the 1294 del 40 BRCA1 mutation having ovarian cancer, compared with 14% of affected women with the splice-site mutation in intron 5 of BRCA1. For the BRCA1 mutations studied here, the individual mutations are estimated to have arisen 9-170 generations ago. In general, a high degree of haplotype conservation across the region was observed, with haplotype differences most often due to mutations in the short-tandem-repeat markers, although some likely instances of recombination also were observed. For several of the instances, there was evidence for multiple, independent, BRCA1 mutational events.  相似文献   

18.
Hereditary cancers account for approximately 10 % of breast and ovarian cancers. Mutations of the BRCA1 and BRCA2 genes, encoding two proteins involved in DNA repair, underlie most cases of such hereditary cancers. Women with BRCA mutations develop breast cancer in 50–80 % of cases and ovarian cancer in 10–40 % of cases. Assessing BRCA mutational status is needed to direct the clinical management of women with predisposition to these hereditary cancers. However, BRCA screening constitutes a bottleneck in terms of costs and time to deliver results. We developed a PCR-based assay using 73 primer pairs covering the entire coding regions of BRCA1 and BRCA2. PCR primers, containing at the 5’ end the universal M13 primer sequences, were pre-spotted in 96-well plates. Following PCR, direct sequencing was performed using M13 primers, allowing to standardize the conditions. PCR amplification and sequencing were successful for each amplicon. We tested and validated the assay on 10 known gDNAs from patients with Hereditary breast and ovarian cancer (HBOC). Our strategy is a promising time and cost-effective method to detect BRCA mutations in the clinical setting, which is essential to formulate a personalized therapy for patients with HBOC.  相似文献   

19.
To define the prevalence and relative contributions of BRCA1 and BRCA2 mutations among African American families with breast cancer, we analyzed 28 DNA samples from patients identified through two oncology clinics. The entire coding regions of BRCA1 and BRCA2 were screened by protein truncation test, heteroduplex analysis, or single-stranded conformation polymorphism followed by DNA sequencing of variant bands. Deleterious protein-truncating BRCA1 and BRCA2 mutations were identified in five patients or 18% of the entire cohort. Only 8% (1 of 13) of women with a family history of breast cancer, but no ovarian cancer, had mutations. The mutation rates were higher for women from families with a history of breast cancer and at least one ovarian cancer (three of six, 50%). One woman with a family history of undocumented cancers was also found to carry a deleterious mutation in BRCA2. The spectrum of mutations was unique in that one novel BRCA1 mutation (1625del5) and three novel BRCA2 mutations (1536del4, 6696delTC, and 7795delCT) were identified. No recurrent mutations were identified in this cohort, although one BRCA2 (2816insA) mutation had been previously reported. In addition, two BRCA1 and four BRCA2 missense mutations of unknown significance were identified, one of which was novel. Taken together with our previous report on recurrent mutations seen in unrelated families, we conclude that African Americans have a unique mutation spectrum in BRCA1 and BRCA2 genes, but recurrent mutations are likely to be more widely dispersed and therefore not readily identifiable in this population.  相似文献   

20.
Yang Z  Ro S  Rannala B 《Genetics》2003,165(2):695-705
The role of somatic mutation in cancer is well established and several genes have been identified that are frequent targets. This has enabled large-scale screening studies of the spectrum of somatic mutations in cancers of particular organs. Cancer gene mutation databases compile the results of many studies and can provide insight into the importance of specific amino acid sequences and functional domains in cancer, as well as elucidate aspects of the mutation process. Past studies of the spectrum of cancer mutations (in particular genes) have examined overall frequencies of mutation (at specific nucleotides) and of missense, nonsense, and silent substitution (at specific codons) both in the sequence as a whole and in a specific functional domain. Existing methods ignore features of the genetic code that allow some codons to mutate to missense, or stop, codons more readily than others (i.e., by one nucleotide change, vs. two or three). A new codon-based method to estimate the relative rate of substitution (fixation of a somatic mutation in a cancer cell lineage) of nonsense vs. missense mutations in different functional domains and in different tumor tissues is presented. Models that account for several potential influences on rates of somatic mutation and substitution in cancer progenitor cells and allow biases of mutation rates for particular dinucleotide sequences (CGs and dipyrimidines), transition vs. transversion bias, and variable rates of silent substitution across functional domains (useful in detecting investigator sampling bias) are considered. Likelihood-ratio tests are used to choose among models, using cancer gene mutation data. The method is applied to analyze published data on the spectrum of p53 mutations in cancers. A novel finding is that the ratio of the probability of nonsense to missense substitution is much lower in the DNA-binding and transactivation domains (ratios near 1) than in structural domains such as the linker, tetramerization (oligomerization), and proline-rich domains (ratios exceeding 100 in some tissues), implying that the specific amino acid sequence may be less critical in structural domains (e.g., amino acid changes less often lead to cancer). The transition vs. transversion bias and effect of CpG dinucleotides on mutation rates in p53 varied greatly across cancers of different organs, likely reflecting effects of different endogenous and exogenous factors influencing mutation in specific organs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号