首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The recent characterization of glioma stem cells (GSCs) prompts a necessary examination of the signaling pathways that facilitate invasiveness. Molecular crosstalk between expression mechanisms has been identified in a range of cancers, including glioblastoma multiforme. However, hardly any literature exists that addresses whether cancer stem cells utilize these same interconnected pathways. Protein factors commonly implicated in malignant tumors include extracellular signal-regulated kinase (ERK), N-cadherin, and integrin α6. Although studies have reported the molecular crosstalk involved among these proteins, the present study illustrates the importance of the ERK transduction pathway in N-cadherin and integrin α6 regulated invasion in GSCs. Conversely, the data also suggests that GSCs rely on N-cadherin and integrin α6 interaction to regulate ERK signaling. Moreover, confocal visualization revealed the co-localization of N-cadherin and integrin α6 in GSCs and clinical surgical biopsies extracted from glioma patients. Interestingly, ERK knockdown reduced this co-localization. Upon co-culturing GSCs with human umbilical cord blood stem cells (hUCBSCs), we observed a subsequent decrease in pERK, N-cadherin and integrin α6 expression. In addition, co-culturing hUCBSCs with GSCs decreased co-localization of N-cadherin and integrin α6 in GSCs. Our results demonstrate the dynamic interplay among ERK, N-cadherin and integrin α6 in GSC invasion and also reveal the therapeutic potential of hUCBSCs in treating the molecular crosstalk observed in GSC-regulated invasion.  相似文献   

2.
Whether evolution is erratic due to random historical details, or is repeatedly directed along similar paths by certain constraints, remains unclear. Epistasis (i.e. non-additive interaction between mutations that affect fitness) is a mechanism that can contribute to both scenarios. Epistasis can constrain the type and order of selected mutations, but it can also make adaptive trajectories contingent upon the first random substitution. This effect is particularly strong under sign epistasis, when the sign of the fitness effects of a mutation depends on its genetic background. In the current study, we examine how epistatic interactions between mutations determine alternative evolutionary pathways, using in vitro evolution of the antibiotic resistance enzyme TEM-1 β-lactamase. First, we describe the diversity of adaptive pathways among replicate lines during evolution for resistance to a novel antibiotic (cefotaxime). Consistent with the prediction of epistatic constraints, most lines increased resistance by acquiring three mutations in a fixed order. However, a few lines deviated from this pattern. Next, to test whether negative interactions between alternative initial substitutions drive this divergence, alleles containing initial substitutions from the deviating lines were evolved under identical conditions. Indeed, these alternative initial substitutions consistently led to lower adaptive peaks, involving more and other substitutions than those observed in the common pathway. We found that a combination of decreased enzymatic activity and lower folding cooperativity underlies negative sign epistasis in the clash between key mutations in the common and deviating lines (Gly238Ser and Arg164Ser, respectively). Our results demonstrate that epistasis contributes to contingency in protein evolution by amplifying the selective consequences of random mutations.  相似文献   

3.
4.
Rewiring the specificity of two-component signal transduction systems   总被引:1,自引:0,他引:1  
Two-component signal transduction systems are the predominant means by which bacteria sense and respond to environmental stimuli. Bacteria often employ tens or hundreds of these paralogous signaling systems, comprised of histidine kinases (HKs) and their cognate response regulators (RRs). Faithful transmission of information through these signaling pathways and avoidance of detrimental crosstalk demand exquisite specificity of HK-RR interactions. To identify the determinants of two-component signaling specificity, we examined patterns of amino acid coevolution in large, multiple sequence alignments of cognate kinase-regulator pairs. Guided by these results, we demonstrate that a subset of the coevolving residues is sufficient, when mutated, to completely switch the substrate specificity of the kinase EnvZ. Our results shed light on the basis of molecular discrimination in two-component signaling pathways, provide a general approach for the rational rewiring of these pathways, and suggest that analyses of coevolution may facilitate the reprogramming of other signaling systems and protein-protein interactions.  相似文献   

5.
A variety of organisms have independently evolved proteins exhibiting antifreeze activity that allows survival at subfreezing temperatures. The antifreeze proteins (AFPs) bind ice nuclei and depress the freezing point by a noncolligative absorption–inhibition mechanism. Many organisms have a heterogeneous suite of AFPs with variation in primary sequence between paralogous loci. Here, we demonstrate that the diversification of the AFP paralogues is promoted by positive Darwinian selection in two independently evolved AFPs from fish and beetle. First, we demonstrate an elevated rate of nonsynonymous substitutions compared to synonymous substitutions in the mature protein coding region. Second, we perform phylogeny-based tests of selection to demonstrate a subset of codons is subjected to positive selection. When mapped onto the three-dimensional structure of the fish antifreeze type III antifreeze structure, these codons correspond to amino acid positions that surround but do not interrupt the putative ice-binding surface. The selective agent may be related to efficient binding to diverse ice surfaces or some other aspect of AFP function. Received: 27 February 2001 / Accepted: 12 September 2001  相似文献   

6.
The ancestors of mitochondria, or proto-mitochondria, played a crucial role in the evolution of eukaryotic cells and derived from symbiotic α-proteobacteria which merged with other microorganisms - the basis of the widely accepted endosymbiotic theory. However, the identity and relatives of proto-mitochondria remain elusive. Here we show that methylotrophic α-proteobacteria could be the closest living models for mitochondrial ancestors. We reached this conclusion after reconstructing the possible evolutionary pathways of the bioenergy systems of proto-mitochondria with a genomic survey of extant α-proteobacteria. Results obtained with complementary molecular and genetic analyses of diverse bioenergetic proteins converge in indicating the pathway stemming from methylotrophic bacteria as the most probable route of mitochondrial evolution. Contrary to other α-proteobacteria, methylotrophs show transition forms for the bioenergetic systems analysed. Our approach of focusing on these bioenergetic systems overcomes the phylogenetic impasse that has previously complicated the search for mitochondrial ancestors. Moreover, our results provide a new perspective for experimentally re-evolving mitochondria from extant bacteria and in the future produce synthetic mitochondria.  相似文献   

7.
BACKGROUND: Signal transduction pathways with shared components must be insulated from each other to avoid the inappropriate activation of multiple pathways by a single stimulus. Scaffold proteins are thought to contribute to this specificity by binding select substrates. RESULTS: We have studied the ability of scaffold proteins to influence signaling by the yeast kinase Ste11, a MAPKKK molecule that participates in three distinct MAP kinase pathways: mating, filamentation, and HOG. We used protein fusions to force Ste11 to associate preferentially with a subset of its possible binding partners in vivo, including Ste5, Ste7, and Pbs2. Signaling became confined to a particular pathway when Ste11 was covalently attached to these scaffolds or substrates. This pathway bias was conferred upon both stimulus-activated and constitutively active forms of Ste11. We also used membrane-targeted derivatives of the mating pathway scaffold, Ste5, to show that stimulus-independent signaling initiated by this scaffold remained pathway specific. Finally, we demonstrate that loss of pathway insulation has a negative physiological consequence, as nonspecific activation of both the HOG and mating pathways interfered with proper execution of the mating pathway. CONCLUSIONS: The signaling properties of these kinase fusions support a model in which scaffold proteins dictate substrate choice and promote pathway specificity by presenting preferred substrates in high local concentration. Furthermore, insulation is inherent to scaffold-mediated signaling and does not require that signaling be initiated by pathway-specific stimuli or activator proteins. Our results give insight into the mechanisms and physiological importance of pathway insulation and provide a foundation for the design of customized signaling proteins.  相似文献   

8.
9.
《Autophagy》2013,9(5):701-703
The ubiquitin-proteasome and autophagy-lysosomal pathways are the two main routes of protein and organelle clearance in eukaryotic cells. The proteasome system is responsible for unfolded, short-lived proteins, which precludes the clearance of oligomeric and aggregated proteins, whereas macroautophagy, a process generally referred to as autophagy, mediates mainly the bulk degradation of long-lived cytoplasmic proteins, large protein complexes or organelles.1 Recently, the autophagy-lysosomal pathway has been implicated in neurodegenerative disorders as an important pathway for the clearance of abnormally accumulated intracellular proteins, such as huntingtin, tau, and mutant and modified α-synuclein.1-6 Our recent study illustrated the induction of adaptive autophagy in response to mutant glial fibrillary acidic protein (GFAP) accumulation in astrocytes, in the brains of patients with Alexander disease (AxD), and in mutant GFAP knock-in mouse brains.7 This autophagic response is negatively regulated by mammalian target of rapamycin (mTOR). The activation of p38 MAPK by GFAP accumulation is responsible for mTOR inactivation and the induction of autophagy. We also found that the accumulation of GFAP impairs proteasome activity.8 In this commentary we discuss the potential compensatory relationship between an impaired proteasome and activated autophagy, and propose that the MLK-MAPK (mixed lineage kinase–mitogen-activated protein kinase) cascade is a regulator of this crosstalk.

Addendum to: Tang G, Yue Z, Talloczy, Z, Hagemann T, Cho W, Sulzer D, Messing A, Goldman JE. Alexander disease-mutant GFAP accumulation stimulates autophagy through p38 MAPK and mTOR signaling pathways. Hum Mol Genetics 2008; In press.  相似文献   

10.
Cellular adaptation relies on the development of proper regulatory schemes for accurate control of gene expression levels in response to environmental cues. Over- or under-expression can lead to diminished cell fitness due to increased costs or insufficient benefits. Positive autoregulation is a common regulatory scheme that controls protein expression levels and gives rise to essential features in diverse signaling systems, yet its roles in cell fitness are less understood. It remains largely unknown how much protein expression is ‘appropriate’ for optimal cell fitness under specific extracellular conditions and how the dynamic environment shapes the regulatory scheme to reach appropriate expression levels. Here, we investigate the correlation of cell fitness and output response with protein expression levels of the E. coli PhoB/PhoR two-component system (TCS). In response to phosphate (Pi)-depletion, the PhoB/PhoR system activates genes involved in phosphorus assimilation as well as genes encoding themselves, similarly to many other positively autoregulated TCSs. We developed a bacteria competition assay in continuous cultures and discovered that different Pi conditions have conflicting requirements of protein expression levels for optimal cell fitness. Pi-replete conditions favored cells with low levels of PhoB/PhoR while Pi-deplete conditions selected for cells with high levels of PhoB/PhoR. These two levels matched PhoB/PhoR concentrations achieved via positive autoregulation in wild-type cells under Pi-replete and -deplete conditions, respectively. The fitness optimum correlates with the wild-type expression level, above which the phosphorylation output saturates, thus further increase in expression presumably provides no additional benefits. Laboratory evolution experiments further indicate that cells with non-ideal protein levels can evolve toward the optimal levels with diverse mutational strategies. Our results suggest that the natural protein expression levels and feedback regulatory schemes of TCSs are evolved to match the phosphorylation output of the system, which is determined by intrinsic activities of TCS proteins.  相似文献   

11.

Background

Proper phosphate signaling is essential for robust growth of Escherichia coli and many other bacteria. The phosphate signal is mediated by a classic two component signal system composed of PhoR and PhoB. The PhoR histidine kinase is responsible for phosphorylating/dephosphorylating the response regulator, PhoB, which controls the expression of genes that aid growth in low phosphate conditions. The mechanism by which PhoR receives a signal of environmental phosphate levels has remained elusive. A transporter complex composed of the PstS, PstC, PstA, and PstB proteins as well as a negative regulator, PhoU, have been implicated in signaling environmental phosphate to PhoR.

Results

This work confirms that PhoU and the PstSCAB complex are necessary for proper signaling of high environmental phosphate. Also, we identify residues important in PhoU/PhoR interaction with genetic analysis. Using protein modeling and docking methods, we show an interaction model that points to a potential mechanism for PhoU mediated signaling to PhoR to modify its activity. This model is tested with direct coupling analysis.

Conclusions

These bioinformatics tools, in combination with genetic and biochemical analysis, help to identify and test a model for phosphate signaling and may be applicable to several other systems.
  相似文献   

12.
Bacterial signaling pathways provide wonderful systems for analyzing protein evolution in?vivo. A systematic dissection of the phosphate-sensing machinery in proteobacteria shows that adaptive, not neutral, mutations disable deleterious crosstalk with closely related signaling systems.  相似文献   

13.
Evolution is driven by mutations, which lead to new protein functions but come at a cost to protein stability. Non-conservative substitutions are of interest in this regard because they may most profoundly affect both function and stability. Accordingly, organisms must balance the benefit of accepting advantageous substitutions with the possible cost of deleterious effects on protein folding and stability. We here examine factors that systematically promote non-conservative mutations at the proteome level. Intrinsically disordered regions in proteins play pivotal roles in protein interactions, but many questions regarding their evolution remain unanswered. Similarly, whether and how molecular chaperones, which have been shown to buffer destabilizing mutations in individual proteins, generally provide robustness during proteome evolution remains unclear. To this end, we introduce an evolutionary parameter λ that directly estimates the rate of non-conservative substitutions. Our analysis of λ in Escherichia coli, Saccharomyces cerevisiae, and Homo sapiens sequences reveals how co- and post-translationally acting chaperones differentially promote non-conservative substitutions in their substrates, likely through buffering of their destabilizing effects. We further find that λ serves well to quantify the evolution of intrinsically disordered proteins even though the unstructured, thus generally variable regions in proteins are often flanked by very conserved sequences. Crucially, we show that both intrinsically disordered proteins and highly re-wired proteins in protein interaction networks, which have evolved new interactions and functions, exhibit a higher λ at the expense of enhanced chaperone assistance. Our findings thus highlight an intricate interplay of molecular chaperones and protein disorder in the evolvability of protein networks. Our results illuminate the role of chaperones in enabling protein evolution, and underline the importance of the cellular context and integrated approaches for understanding proteome evolution. We feel that the development of λ may be a valuable addition to the toolbox applied to understand the molecular basis of evolution.  相似文献   

14.
The E6 oncoprotein from high-risk genus alpha human papillomaviruses (α-HPVs), such as HPV 16, has been well characterized with respect to the host-cell proteins it interacts with and corresponding signaling pathways that are disrupted due to these interactions. Less is known regarding the interacting partners of E6 from the genus beta papillomaviruses (β-HPVs); however, it is generally thought that β-HPV E6 proteins do not interact with many of the proteins known to bind to α-HPV E6. Here we identify p300 as a protein that interacts directly with E6 from both α- and β-HPV types. Importantly, this association appears much stronger with β-HPV types 5 and 8-E6 than with α-HPV type 16-E6 or β-HPV type 38-E6. We demonstrate that the enhanced association between 5/8-E6 and p300 leads to p300 degradation in a proteasomal-dependent but E6AP-independent manner. Rather, 5/8-E6 inhibit the association of AKT with p300, an event necessary to ensure p300 stability within the cell. Finally, we demonstrate that the decreased p300 protein levels concomitantly affect downstream signaling events, such as the expression of differentiation markers K1, K10 and Involucrin. Together, these results demonstrate a unique way in which β-HPV E6 proteins are able to affect host-cell signaling in a manner distinct from that of the α-HPVs.  相似文献   

15.
Salmonella-epithelial cell interactions are known to activate the proinflammatory NF-kappaB signaling pathway and have recently been found to also influence the beta-catenin signaling pathway, an important regulator of epithelial cell proliferation and differentiation. Here, using polarized epithelial cell models, we demonstrate that these same bacteria-mediated effects also direct the molecular crosstalk between the NF-kappaB and beta-catenin signaling pathways. Convergence of these two pathways is a result of the direct interaction between the NF-kappaB p50 subunit and beta-catenin. We show that PhoP(c), the avirulent derivative of a wild-type Salmonella strain, attenuates NF-kappaB activity by stabilizing the association of beta-catenin with NF-kappaB. In cell lines expressing constitutively active beta-catenin, IkappaBalpha protein was indirectly stabilized and NF-kappaB activity was repressed after wild-type Salmonella colonization. Accordingly, constitutively active beta-catenin was found to inhibit the secretion of IL-8. Thus our findings strongly suggest that the crosstalk between the beta-catenin and NF-kappaB signaling pathways is an important regulator of intestinal inflammation.  相似文献   

16.
17.
18.
Antagonistic host-parasite interactions can drive rapid adaptive evolution in genes of the immune system, and such arms races may be an important force shaping polymorphism in the genome. The RNA interference pathway gene Argonaute-2 (AGO2) is a key component of antiviral defense in Drosophila, and we have previously shown that genes in this pathway experience unusually high rates of adaptive substitution. Here we study patterns of genetic variation in a 100-kbp region around AGO2 in three different species of Drosophila. Our data suggest that recent independent selective sweeps in AGO2 have reduced genetic variation across a region of more than 50 kbp in Drosophila melanogaster, D. simulans, and D. yakuba, and we estimate that selection has fixed adaptive substitutions in this gene every 30-100 thousand years. The strongest signal of recent selection is evident in D. simulans, where we estimate that the most recent selective sweep involved an allele with a selective advantage of the order of 0.5-1% and occurred roughly 13-60 Kya. To evaluate the potential consequences of the recent substitutions on the structure and function of AGO2, we used fold-recognition and homology-based modeling to derive a structural model for the Drosophila protein, and this suggests that recent substitutions in D. simulans are overrepresented at the protein surface. In summary, our results show that selection by parasites can consistently target the same genes in multiple species, resulting in areas of the genome that have markedly reduced genetic diversity.  相似文献   

19.
20.
Organisms’ reactions to adverse events result in the generation of immune effectors, which, in the case of insects, may be produced from the direct activation of pathways such as Toll, Jak-STAT, Imd, or RNAi or may be derived from the crosstalk of different intracellular pathways. One such pathway, the unfolded protein response (UPR), has the primary objective of restoring homeostasis in the endoplasmic reticulum. In addition, the UPR participates in signaling crosstalk with the immune pathways, generating protection against pathogenic organisms. Dengue virus is a plus-strand RNA virus belonging to the Flavivirus genus that uses the ER as a replication site; during the infection, there are indicators of the activation of the UPR, which in turn, induces the synthesis of internal membranes and preferential translation of viral proteins enhancing the replication. One of the dengue virus proteins, the NS4B can block the pathway of α/β interferon in mammals. However, what happen in insects is interesting because the lack of the main antiviral pathway, the interferon and the role of the NS4B protein in the UPR-immunity relationship can be better understood. Thus, in this study, we demonstrated that the DENV2/16681 NS4B protein is capable of modulating the immune effectors that result from the activation of the UPR in insect cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号