首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human skin harbours multiple different stem cell populations. In contrast to the relatively well-characterized niches of epidermal and hair follicle stem cells, the localization and niches of stem cells in other human skin compartments are as yet insufficiently investigated. Previously, we had shown in a pilot study that human sweat gland stroma contains Nestin-positive stem cells. Isolated sweat gland stroma-derived stem cells (SGSCs) proliferated in vitro and expressed Nestin in 80% of the cells. In this study, we were able to determine the precise localization of Nestin-positive cells in both eccrine and apocrine sweat glands of human axillary skin. We established a reproducible isolation procedure and characterized the spontaneous, long-lasting multipotent differentiation capacity of SGSCs. Thereby, a pronounced ectodermal differentiation was observed. Moreover, the secretion of prominent cytokines demonstrated the immunological potential of SGSCs. The comparison to human adult epidermal stem cells (EpiSCs) and bone marrow stem cells (BMSCs) revealed differences in protein expression and differentiation capacity. Furthermore, we found a coexpression of the stem cell markers Nestin and Iα6 within SGSCs and human sweat gland stroma. In conclusion the initial results of the pilot study were confirmed, indicating that human sweat glands are a new source of unique stem cells with multilineage differentiation potential, high proliferation capacity and remarkable self renewal. With regard to the easy accessibility of skin tissue biopsies, an autologous application of SGSCs in clinical therapies appears promising.  相似文献   

2.
Evolutionary origins of the mammary gland   总被引:1,自引:0,他引:1  
Because the mammary gland has no known homologue among the extant reptiles, attempts to reconstruct its evolution must focus on evidence from living mammals. Of the numerous structures that have been hypothesized to have given rise to the mammary gland, only three remain as plausible progenitors: sebaceous glands, eccrine glands and apocrine glands. Ancestral mammary glands are usually assumed to have produced a copious watery secretion like that of human eccrine sweat glands. However, in terms of anatomy, physiology, development and topographical distribution, mammary glands are more similar to apocrine and sebaceous glands than to typical eccrine glands. Nevertheless, each of the three populations of cutaneous glands exhibit specializations unlikely to be primitive for the mammary gland. The mammary gland either predated full differentiation of mammalian cutaneous glands or, more probably, evolved as a neomorphic mosaic that combined the properties of apocrine and sebaceous glands. Consequently, ancestral, prototypic lacteal glands may have had the capacity to synthesize and secrete small amounts of organic substances, as do sebaceous and apocrine glands of living mammals.  相似文献   

3.
The hierarchical relationships between stem cells and progenitors that guide mammary gland morphogenesis are still poorly defined. While multipotent basal stem cells have been found within the myoepithelial compartment, the in vivo lineage potential of luminal progenitors is unclear. Here we used the expression of the Notch1 receptor, previously implicated in mammary gland development and tumorigenesis, to elucidate the hierarchical organization of mammary stem/progenitor cells by lineage tracing. We found that Notch1 expression identifies multipotent stem cells in the embryonic mammary bud, which progressively restrict their lineage potential during mammary ductal morphogenesis to exclusively generate an ERαneg luminal lineage postnatally. Importantly, our results show that Notch1-labelled cells represent the alveolar progenitors that expand during pregnancy and survive multiple successive involutions. This study reveals that postnatal luminal epithelial cells derive from distinct self-sustained lineages that may represent the cells of origin of different breast cancer subtypes.  相似文献   

4.
Isolation and characterization of functional mammary gland stem cells   总被引:12,自引:0,他引:12  
Abstract.  Significant advances in the stem-cell biology of several tissues, including the mammary gland, have occurred over the past several years. Recent progress on stem-cell fate determination, molecular markers, signalling pathways and niche interactions in haematopoietic, neuronal and muscle tissue may provide parallel insight into the biology of mammary epithelial stem cells. Taking advantage of approaches similar to those employed to isolate and characterize haematopoietic and epidermal stem cells, we have identified a mammary epithelial cell population with several stem/progenitor cell qualities. In this article, we review some recent data on mammary epithelial stem/progenitor cells in genetically engineered mouse models. We also discuss several potential molecular markers, including stem-cell antigen-1 (Sca-1), which may be useful for both the isolation of functional mammary epithelial stem/progenitor cells and the analysis of tumour aetiology and phenotype in genetically engineered mouse models. In different transgenic mammary tumour models, Sca-1 expression levels, as well as several other putative markers of progenitors including keratin-6, possess dramatically altered expression profiles. These data suggest that the heterogeneity of mouse models of breast cancer may partially reflect the selection or expansion of different progenitors.  相似文献   

5.

Background

In the bovine species milk production is well known to correlate with mammary tissue mass. However, most advances in optimizing milk production relied on improvements of breeding and husbandry practices. A better understanding of the cells that generate bovine mammary tissue could facilitate important advances in milk production and have global economic impact. With this possibility in mind, we show that a mammary stem cell population can be functionally identified and isolated from the bovine mammary gland. We also demonstrate that this stem cell population may be a promising target for manipulating the composition of cow''s milk using gene transfer.

Methods and Findings

We show that the in vitro colony-forming cell assay for detecting normal primitive bipotent and lineage-restricted human mammary clonogenic progenitors are applicable to bovine mammary cells. Similarly, the ability of normal human mammary stem cells to regenerate functional bilayered structures in collagen gels placed under the kidney capsule of immunodeficient mice is shared by a subset of bovine mammary cells that lack aldehyde dehydrogenase activity. We also find that this activity is a distinguishing feature of luminal-restricted bovine progenitors. The regenerated structures recapitulate the organization of bovine mammary tissue, and milk could be readily detected in these structures when they were assessed by immunohistochemical analysis. Transplantation of the bovine cells transduced with a lentivirus encoding human β-CASEIN led to expression of the transgene and secretion of the product by their progeny regenerated in vivo.

Conclusions

These findings point to a common developmental hierarchy shared by human and bovine mammary glands, providing strong evidence of common mechanisms regulating the maintenance and differentiation of mammary stem cells from both species. These results highlight the potential of novel engineering and transplant strategies for a variety of commercial applications including the production of modified milk components for human consumption.  相似文献   

6.
We studied the distribution of vitamin B12 R binder in various normal human tissues by use of an immunoperoxidase technique. Positive staining for R binder was observed in almost all glandular epithelia of digestive system, bronchial glands, renal proximal tubules, prostate, uterus, Fallopian tube, mammary gland, and sweat glands. The distribution of R binder was similar to that of lactoferrin and secretory component. These findings support the hypothesis that R binder plays a role in the local defense mechanism.  相似文献   

7.
Here, we show that a caveolin-1 (Cav-1) deficiency leads to an amplification of the adult mammary stem cell population, both in vivo and in vitro. First, the expression of two stem cell markers, Sca-1 and Keratin 6, is dramatically increased in the hyperplastic mammary ducts of Cav-1 deficient mice, suggesting that loss of Cav-1 induces the accumulation of a progenitor cell population in the mammary gland. To independently validate these results, we reconstituted mammary acini formation in vitro via a 3D Matrigel assay system--using primary cultures of mammary epithelial cells derived from WT and Cav-1 deficient mice. We show that Cav-1 null 3D epithelial structures display an intense increase in the expression of three stem cell markers, i.e., Sca-1, keratin 6 and keratin 5. Overall, we observed a 2-to-3 fold increase in the number of Cav-1 KO acini that are positive for a given stem cell marker. Also, we show that such amplification of progenitor cells has functional consequences, as demonstrated by the abnormal presence of myoepithelial cells in the hyperplastic lesions of Cav-1 deficient mammary glands. Finally, we provide evidence that hyper-activation of Wnt/?-catenin signaling may constitute one of the down-stream mechanisms leading to mammary stem cell accumulation. The longevity and slow-dividing properties of mammary stem cells facilitates the accumulation of genetic alterations, and renders these progenitor cells the likely precursors of malignant derivatives. As such, we propose that loss of Cav-1 induces the accumulation of mammary stem cells, and that this event may be an initiating factor during mammary tumorigenesis.  相似文献   

8.
9.
In embryogenesis, p63 is essential to develop mammary glands. In the adult mammary gland, p63 is highly expressed in the basal cell layer that comprises myoepithelial and interspersed stem/progenitor cells, and has limited expression in luminal epithelial cells. In adult skin, p63 has a crucial role in the maintenance of epithelial stem cells. However, it is unclear whether p63 also has an equivalent role as a stem/progenitor cell factor in adult mammary epithelium. We show that p63 is essential in vivo for the survival and maintenance of parity-identified mammary epithelial cells (PI-MECs), a pregnancy-induced heterogeneous population that survives post-lactational involution and contain multipotent progenitors that give rise to alveoli and ducts in subsequent pregnancies. p63+/− glands are normal in virgin, pregnant and lactating states. Importantly, however, during the apoptotic phase of post-lactational involution p63+/− glands show a threefold increase in epithelial cell death, concomitant with increased activation of the oncostatin M/Stat3 and p53 pro-apoptotic pathways, which are responsible for this phase. Thus, p63 is a physiologic antagonist of these pathways specifically in this regressive stage. After the restructuring phase when involution is complete, mammary glands of p63+/− mice again exhibit normal epithelial architecture by conventional histology. However, using RosaLSL-LacZ;WAP-Cre transgenics (LSL-LacZ, lox-stop-lox β-galactosidase), a genetic in vivo labeling system for PI-MECs, we find that p63+/− glands have a 30% reduction in the number of PI-MEC progenitors and their derivatives. Importantly, PI-MECs are also cellular targets of pregnancy-promoted ErbB2 tumorigenesis. Consistent with their PI-MEC pool reduction, one-time pregnant p63+/− ErbB2 mice are partially protected from breast tumorigenesis, exhibiting extended tumor-free and overall survival, and reduced tumor multiplicity compared with their p63+/+ ErbB2 littermates. Conversely, in virgin ErbB2 mice p63 heterozygosity provides no survival advantage. In sum, our data establish that p63 is an important survival factor for pregnancy-identified PI-MEC progenitors in breast tissue in vivo.  相似文献   

10.
Parity-induced mammary epithelial cells (PI-MECs) are defined as a pregnancy hormone-responsive cell population that activates the promoter of late milk protein genes during the second half of pregnancy and lactation. However, unlike their terminally differentiated counterparts, these cells do not undergo programmed cell death during post-lactational remodeling of the gland. We previously demonstrated that upon transplantation into an epithelial-free mammary fat pad, PI-MECs exhibited two important features of multipotent mammary epithelial progenitors: a) self-renewal, and b) contribution to ductal and alveolar morphogenesis. In this new report, we introduce a new method to viably label PI-MECs. Using this methodology, we analyzed the requirement of ovarian hormones for the maintenance of this epithelial subtype in the involuted mammary gland. Furthermore, we examined the expression of putative stem cell markers and found that a portion of GFP-labeled PI-MECs were part of the CD24(+)/CD49f(high) mammary epithelial subtype, which has recently been suggested to contain multipotent stem cells. Subsequently, we demonstrated that isolated PI-MECs were able to form mammospheres in culture, and upon transplantation, these purified epithelial cells were capable of establishing a fully functional mammary gland. These observations suggest that PI-MECs contain multipotent progenitors that are able to self renew and generate diverse epithelial lineages present in the murine mammary gland.  相似文献   

11.
12.
Normal and neoplastic human breast tissue as well as lactating and nonlactating rat mammary glands and 7,12-dimethylbenz(alpha)-anthracene-induced mammary adenocarcinomas of rat, were examined by indirect immunofluorescence microscopy using guinea pig antibodies to human and bovine epidermal prekeratin and to cytokeratin polypeptide D from mouse hepatocytes. In normal mammary glands of both species, lactating rats included, the antibodies raised against human and bovine epidermal prekeratins strongly stained ductal and myoepithelial cells, whereas antibodies to hepatic cytokeratin D revealed, in addition, fibrillar staining in cells of the alveolus-like terminal lobular units and in milk secreting cells of the rat. The presence of some finely dispersed intermediate-sized filaments of the cytokeratin type in lactating alveolar cells of rat mammary gland was also demonstrated by electron microscopy. In human intraductal mammary carcinomas the antibodies to epidermal prekeratins showed staining in myoepithelial cells and intralumenal papillary protrusions of the tumor, whereas the antibodies to hepatic cytokeratin D presented an almost complementary pattern in that they showed strongest staining in the more basally located layers of tumor cells. Intraductal adenocarcinomas of rats showed strong staining with all keratin antibodies examined. In contrast to previous studies using exclusively antisera raised against epidermal prekeratin, out results show that all types of neoplastic and non-neoplastic epithelial cells of mammary gland of both species contain-at least some-filaments of the cytokeratin type identifiable by immunologic reaction, if antibodies are used that recognize a broad range of epidermal and nonepidermal cytokeratins. Consequently, such broad range antibodies to keratin-like proteins provide adequate tools to identify and characterize neoplastic and non-neoplastic epithelial cells and to eliminate false negative immunocytochemical findings in tumor diagnosis. In addition, our observation that in the same human carcinoma two cell types can be distinguished by their reaction with two different antibodies to cytokeratins from epidermis and liver, respectively, indicates that the cells of a given carcinoma can differ in their cytoskeletal composition, thus presenting further criteria for diagnostic differentiation.  相似文献   

13.
Cell-surface markers expressed on mammary stem cells and progenitors have helped to establish a preliminary mammary cell lineage hierarchy. Further characterization of these cells depends on overcoming several technical obstacles.Remarkable progress has been made in the past decade in the isolation and characterization of mouse mammary stem cells and progenitors, as nicely reviewed in the article by Visvader and Smith (2011). Following in the footsteps of the hematopoietic system and analogous to bone marrow transplantation, the mammary gland can be reconstituted following transplantation of cells into the cleared mammary fat pad (see review by Medina 2011). Taking advantage of these similarities as well as the availability of genetically engineered mice (GEM), our laboratory initially used magnetic bead and fluorescence-activated cell sorting (FACS) and SCA enhanced green fluorescent protein (EGFP) knock-in mice to identify mammary gland progenitors (Welm et al. 2002). We also attempted to identify and isolate quiescent cells using a BrdU label retention strategy that had been successfully applied in the epidermal and intestinal epithelium. Subsequently, the identification of several cell-surface markers expressed on mammary stem cells and progenitors has resulted in an explosion in the field, and helped to define a preliminary mammary cell lineage hierarchy. These studies on the normal mammary gland have also provided the basis for hypotheses into potential mechanisms accounting for the heterogeneity of breast cancer subtypes (Behbod and Rosen 2004).One intrinsic difference between the hematopoietic system and the mammary gland, however, is the requirement for tissue dissociation in the latter case to facilitate the isolation of single cells required for FACS sorting. Even when using freshly isolated cells, there is a concern that these rather lengthy dissociation protocols may alter the expression of cell-surface molecules and properties of cells following disruption of the mammary gland architecture. Even short-term cell culture of primary mammary epithelial cells may alter the expression of cell-surface molecules. At present, single gene markers of mammary stem cells have not been identified, so the application of knock-in mice, e.g., the use of LGR5-EGFP to identify intestinal stem cells and perform lineage-tracing experiments (Barker et al. 2007), has not been feasible. One alternative approach may be to use pathway reporters, as recently described by Zeng and Nusse (2010), who used an axin-lacZ knock-in mouse to identify cells with canonical Wnt signaling with increased mammary repopulating activity. We have used a similar approach in a p53-null mouse mammary cancer model following lentiviral transduction with a Wnt reporter construct to identify cells with enhanced canonical Wnt signaling. These cells displayed a significant overlap with cell-surface markers in the basal-like tumors shown to enrich for tumor-initiating cells (Zhang et al. 2010).The use of multiple pathway reporters with different fluorescent reporters may provide a new approach to complement the current dependence on cell-surface markers. Fluorescent reporters also have the potential to help precisely visualize and model the location of mammary stem cells and progenitors in situ using multiphoton and other sophisticated microscopic techniques. The ability to visualize single stem cells in their niche environment and to follow both symmetric versus asymmetric division ultimately will be required for the next advances in the field. Recent studies on the paracrine effects of the steroid hormones, estrogen and progesterone, on mammary gland stem cells and progenitors illustrate the need to understand the spatial relationships among the various epithelial and stromal cell types present in the mammary gland. These studies will need to include cells from the immune system such as macrophages, neutrophils, etc., and derivatives of mesenchymal stem cells. Hopefully, in the near future it may be feasible to reconstitute and study these interactions in vitro, but for the present time this can be studied in GEM models. In addition, there is increasing evidence for the coexistence of quiescent and active adult stem cells in mammals (Li and Clevers 2010), but these distinct populations and their spatial and temporal relationships in the mammary gland remain to be discovered. Application of single-cell analysis using newly developed microfluidic platforms has the potential to help elucidate the potential heterogeneity of signaling pathways and gene expression in mammary stem cells and progenitors. Finally, there is a critical need for lineage-tracing experiments in the normal mammary gland to validate the proposed hierarchy for stem cells and progenitors, as well as to identify the cells of origin for different subtypes of breast cancer. Comparative studies of the murine and human stem cell populations in both the normal mammary gland and different breast cancer subtypes hold enormous potential for the future. Thus, despite the remarkable progress in this field, much remains to be done.  相似文献   

14.
Mammary gland biologists have long assumed that differentiated secretory epithelial cells undergo programmed cell death at the end of lactation and that the alveolar compartment is reconstituted from undifferentiated precursor cells in subsequent pregnancies. It is generally agreed that the remodeled gland in a parous animal resembles that of a mature virgin at the morphological level. However, several physiological differences have been noted in comparing the responses of mammary epithelia from nulliparous versus parous females to hormonal stimulation and carcinogenic agents. We present genetic evidence that an involuted mammary gland is fundamentally different from a virgin gland, despite its close morphological resemblance. This difference results from the formation of a new mammary epithelial cell population that originates from differentiating cells during pregnancy. In contrast to the majority of fully committed alveolar cells, this epithelial population does not undergo cell death during involution or remodeling after lactation. We show that these cells can function as alveolar progenitors in subsequent pregnancies and that they can play an important role in functional adaptation in genetically engineered mice, which exhibit a reversion of a lactation-deficient phenotype in multiparous animals. In transplantation studies, this parity-induced epithelial population shows the capacity for self-renewal and contributes significantly to the reconstitution of the resulting mammary outgrowth (i.e. ductal morphogenesis and lobulogenesis). We propose that this parity-induced population contributes importantly to the biological differences between the mammary glands of parous and nulliparous females.  相似文献   

15.
关于野大豆盐腺问题的探讨   总被引:6,自引:0,他引:6  
以中国3个省的盐生野大豆(Glycine soja Sieb. et Zucc.)为材料,在沙基培养、溶液培养和大田种植3种种植条件下用不同浓度的盐处理,观测了茎叶表面附着物的形态分布和腺毛的超微结构,测定了叶片腺毛分泌物中和叶片组织内部Na^ 和Cl^-的含量变化,并对腺毛的3个细胞以及表皮细胞和叶肉细胞内的Na^ 相对含量变化进行了X射线微区分析。结果发现:盐生野大豆茎叶表皮上生长的附着物中只有表皮毛和腺毛,腺毛的形态类似于禾本科植物中的一些盐腺,叶片上的腺毛均生长在叶脉上;腺毛细胞内部结构具有一般盐腺的特点,如有大液泡,稠密的细胞质,大量的线粒体、叶绿体、胞间连丝以及较厚的细胞壁等。通过测定在无盐对照、盐处理和盐处理加盐腺泌盐抑制剂条件下盐生野大豆叶片腺毛分泌物中和叶片组织内部的Na^ 和Cl^-含量,结果显示,盐生野大豆腺毛具有泌盐功能,加入泌盐抑制剂后,其泌盐作用停止;腺毛的3个细胞以及表皮细胞和叶肉细胞内的Na^ 在不同的盐浓度下的微区定位分析结果表明,盐生野大豆叶片的腺毛细胞有较强的积累Na^ 的能力。综合分析认为,盐生野生大豆的腺毛就是具有泌盐功能的盐腺,没有发现其他类型的盐腺。  相似文献   

16.
The glandular secretory system in Cannabis sativa L. (marihuana) consists of three types of capitate glandular hairs (termed bulbous, capitate-sessile, and capitate-stalked) distinguishable by their morphology, development, and physiology. These gland types occur together in greatest abundance and developmental complexity on the abaxial surface of bracts which ensheath the developing ovary. Bulbous and capitate-sessile glands are initiated on very young bract primordia and attain maturity during early stages of bract growth. Capitate-stalked glands are initiated later in bract growth and undergo development and maturation on medium, to full sized bracts. Glands are epidermal in origin and derived, with one exception, from a single epidermal initial. The capitate-stalked gland is the exception and is of special interest because it possesses a multicellular stalk secondarily derived from surrounding epidermal and subepidermal cells. Glands differentiate early in development into an upper secretory portion and a subtending auxiliary portion. The secretory portion, depending on gland type, may range from a few cells to a large, flattened multicellular disc of secretory cells. The secretory portion produces a membrane-bound resinous product which caps the secretory cells. Capitate-stalked glands are considered to be of particular evolutionary significance because they may represent a gland type secondarily derived from existing capitate-sessile glands.  相似文献   

17.
BACKGROUND: Somatic stem and progenitor cell division is likely to be an important determinant of tumor development. Each division is accompanied by a risk of fixing genetic mutations, and/or generating innately immortal cells that escape normal physiological controls. AIM: Using biological information, we aimed to devise a theoretical model for mammary gland development that described the effect of various stem/progenitor cells activities on the demographics of adult mammary epithelial cell populations. RESULTS: We found that mammary ductal trees should develop in juvenile mice despite widely variant levels of activity in the progenitor compartment. Sequestration (inactivation) of progenitor cells dramatically affected the aging-maturation of the population without affecting the total regenerative capacity of the gland. Our results showed that if stem and progenitor cells can be demonstrated in glands regenerated by serial transplantation, they originated in a canonical primary stem cell (providing a functional definition of mammary stem cells). Finally, when the probability of symmetric division of stem cells increased above a threshold, the mammary epithelial population overall was immortal during serial transplantation. CONCLUSIONS: This model provides, (1) a theoretical framework for testing whether the phenotypes of genetically modified mice (many of which are breast cancer models) derive from changes of stem and progenitor activity, and (2) a means to evaluate the resolving power of functional assays of regenerative capacity in mammary epithelial cell populations.  相似文献   

18.
We examined the “rosette-like” structures (RS), found in Archaeognatha and Thysanura, in the compound eyes and the antennae of the machilid Petrobius brevistylis using SEM and TEM. The nature of the RS was unknown until now, and hypothesized to be either a sensillum or the opening of a gland. Our studies show that RS are the orifices of epidermal glands. A gland consists of a single glandular unit of 4 cells: a duct cell, a secretory cell, a ciliary cell and an enveloping cell. The glands are class 3 epidermal glands as defined by Noirot and Quennedey (1974).  相似文献   

19.
Stem cells appear to retain labeled DNA for extended periods because of their selective segregation of template DNA strands during mitosis. In this study, proliferating cells in the prepubertal bovine mammary gland were labeled using five daily injections of 5-bromo-2-deoxyuridine (BrdU). Five weeks later, BrdU-labeled mammary epithelial cells were still evident. The percentage of BrdU-labeled epithelial cells was greatest in the lower region of the mammary gland, near the gland cistern, and was decreased toward the periphery of the parenchymal region, where the ducts were invading the mammary fat pad. Increased numbers of BrdU-labeled epithelial cells in basal regions of the gland are likely a consequence of decreased proliferation rates and increased cell cycle arrest in this area. In peripheral regions of mammary parenchyma, the percentage of heavily labeled epithelial cells averaged 0.24%, a number that is consistent with estimates of the frequency of stem cells in the mouse mammary gland. Epithelial label-retaining cells seemingly represent a slowly proliferating population of cells, as 5.4% of heavily labeled cells were positive for the nuclear proliferation antigen Ki67. Because epithelial label-retaining cells contain estrogen receptor (ER)-negative and ER-positive cells, they apparently comprise a mixed population, which I suggest is composed of ER-negative stem cells and ER-positive progenitors. Continuing studies will address the usefulness of this technique to identify bovine mammary stem cells and to facilitate studies of stem cell biology.  相似文献   

20.
The maxilla I-gland of Scutigera coleoptrata was investigated using light and electron microscopy methods. This is the first ultrastructural investigation of a salivary gland in Chilopoda. The paired gland opens via the hypopharynx into the foregut and extends up to the third trunk segment. The gland is of irregular shape and consists of numerous acini consisting of several gland units. The secretion is released into an arborescent duct system. Each acinus consists of multiple of glandular units. The units are composed of three cell types: secretory cells, a single intermediary cell, and canal cells. The pear-shaped secretory cell is invaginated distally, forming an extracellular reservoir lined with microvilli, into which the secretion is released. The intermediary cell forms a conducting canal and connects the secretory cell with the canal cell. Proximally, the intermediary cell bears microvilli, whereas the distal part is covered with a distinct cuticle. The cuticle is a continuation of the cuticle of the canal cells. This investigation shows that the structure of the glandular units of the salivary maxilla I-gland is comparable to that of the glandular units of epidermal glands. Thus, it is likely that in Chilopoda salivary glands and epidermal glands share the same ground pattern. It is likely that in compound acinar glands a multiplication of secretory and duct cells has taken place, whereas the number of intermediary cells remains constant. The increase in the number of salivary acini leads to a shifting of the secretory elements away from the epidermis, deep into the head. Comparative investigations of the different head glands provide important characters for the reconstruction of myriapod phylogeny and the relationships of Myriapoda and Hexapoda.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号