首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Zakharyevich K  Tang S  Ma Y  Hunter N 《Cell》2012,149(2):334-347
At the final step of homologous recombination, Holliday junction-containing joint molecules (JMs) are resolved to form crossover or noncrossover products. The enzymes responsible for JM resolution in?vivo remain uncertain, but three distinct endonucleases capable of resolving JMs in?vitro have been identified: Mus81-Mms4(EME1), Slx1-Slx4(BTBD12), and Yen1(GEN1). Using physical monitoring of recombination during budding yeast meiosis, we show that all three endonucleases are capable of promoting JM resolution in?vivo. However, in mms4 slx4 yen1 triple mutants, JM resolution and crossing over occur efficiently. Paradoxically, crossing over in this background is strongly dependent on the Blooms helicase ortholog Sgs1, a component of a well-characterized anticrossover activity. Sgs1-dependent crossing over, but not JM resolution per se, also requires XPG family nuclease Exo1 and the MutLγ complex Mlh1-Mlh3. Thus, Sgs1, Exo1, and MutLγ together define a previously undescribed meiotic JM resolution pathway that produces the majority of crossovers in budding yeast and, by inference, in mammals.  相似文献   

2.
RecQ helicases maintain genome stability and suppress tumors in higher eukaryotes through roles in replication and DNA repair. The yeast RecQ homolog Sgs1 interacts with Top3 topoisomerase and Rmi1. In vitro, Sgs1 binds to and branch migrates Holliday junctions (HJs) and the human RecQ homolog BLM, with Top3alpha, resolves synthetic double HJs in a noncrossover sense. Sgs1 suppresses crossovers during the homologous recombination (HR) repair of DNA double-strand breaks (DSBs). Crossovers are associated with long gene conversion tracts, suggesting a model in which Sgs1 helicase catalyzes reverse branch migration and convergence of double HJs for noncrossover resolution by Top3. Consistent with this model, we show that allelic crossovers and gene conversion tract lengths are increased in sgs1Delta. However, crossover and tract length suppression was independent of Sgs1 helicase activity, which argues against helicase-dependent HJ convergence. HJs may converge passively by a "random walk," and Sgs1 may play a structural role in stimulating Top3-dependent resolution. In addition to the new helicase-independent functions for Sgs1 in crossover and tract length control, we define three new helicase-dependent functions, including the suppression of chromosome loss, chromosome missegregation, and synthetic lethality in srs2Delta. We propose that Sgs1 has helicase-dependent functions in replication and helicase-independent functions in DSB repair by HR.  相似文献   

3.
4.
Oh SD  Lao JP  Hwang PY  Taylor AF  Smith GR  Hunter N 《Cell》2007,130(2):259-272
Bloom's helicase (BLM) is thought to prevent crossing-over during DNA double-strand-break repair (DSBR) by disassembling double-Holliday junctions (dHJs) or by preventing their formation. We show that the Saccharomyces cerevisiae BLM ortholog, Sgs1, prevents aberrant crossing-over during meiosis by suppressing formation of joint molecules (JMs) comprising three and four interconnected duplexes. Sgs1 and procrossover factors, Msh5 and Mlh3, are antagonistic since Sgs1 prevents dHJ formation in msh5 cells and sgs1 mutation alleviates crossover defects of both msh5 and mlh3 mutants. We propose that differential activity of Sgs1 and procrossover factors at the two DSB ends effects productive formation of dHJs and crossovers and prevents multichromatid JMs and counterproductive crossing-over. Strand invasion of different templates by both DSB ends may be a common feature of DSBR that increases repair efficiency but also the likelihood of associated crossing-over. Thus, by disrupting aberrant JMs, BLM-related helicases maximize repair efficiency while minimizing the risk of deleterious crossing-over.  相似文献   

5.
An electron microscopic (EM) analysis was performed on regions of Drosophila melanogaster polytene chromosomes that contain inserted DNA segments of 19 and 8 kb. These segments had been inserted by P-elementmediated transformation. The 19 kb segment includes both the Drosophila hsp70 gene fused to the Escherichia coli -galactosidase gene and the rosy gene (Lis et al. 1983). This insert generates a new moderate-size band at the 9D4-9E1-2 region in polytene chromosomes. Upon heat shock, a puff originates from a portion of the new band. The 8 kb segment includes the Sgs7 and Sgs3 genes (Richards et al. 1983). This insert generates very diffuse thin bands that decondense at the stage of activation of the Sgs genes to produce wide interbands or small puffs. In all of the above cases, the insertion appears to occur at interband regions, and the genetically complex DNA segments that are inserted generate only a single detectable band.  相似文献   

6.
Mus81 resolvase and Sgs1 helicase have well-established roles in mitotic DNA repair. Moreover, Mus81 is part of a minor crossover (CO) pathway in the meiosis of budding yeast, plants and vertebrates. The major pathway depends on meiosis-specific synaptonemal complex (SC) formation, ZMM proteins and the MutLγ complex for CO-directed resolution of joint molecule (JM)-recombination intermediates. Sgs1 has also been implicated in this pathway, although it may mainly promote the non-CO outcome of meiotic repair. We show in Tetrahymena, that homologous chromosomes fail to separate and JMs accumulate in the absence of Mus81 or Sgs1, whereas deletion of the MutLγ-component Mlh1 does not affect meiotic divisions. Thus, our results are consistent with Mus81 being part of an essential, if not the predominant, CO pathway in Tetrahymena. Sgs1 may exert functions similar to those in other eukaryotes. However, we propose an additional role in supporting homologous CO formation by promoting homologous over intersister interactions. Tetrahymena shares the predominance of the Mus81 CO pathway with the fission yeast. We propose that in these two organisms, which independently lost the SC during evolution, the basal set of mitotic repair proteins is sufficient for executing meiotic recombination.  相似文献   

7.
Mapping the DNA topoisomerase III binding domain of the Sgs1 DNA helicase   总被引:1,自引:0,他引:1  
Several members of the RecQ family of DNA helicases are known to interact with DNA topoisomerase III (Top3). Here we show that the Saccharomyces cerevisiae Sgs1 and Top3 proteins physically interact in cell extracts and bind directly in vitro. Sgs1 and Top3 proteins coimmunoprecipitate from cell extracts under stringent conditions, indicating that Sgs1 and Top3 are present in a stable complex. The domain of Sgs1 which interacts with Top3 was identified by expressing Sgs1 truncations in yeast. The results indicate that the NH(2)-terminal 158 amino acids of Sgs1 are sufficient for the high affinity interaction between Sgs1 and Top3. In vitro assays using purified Top3 and NH(2)-terminal Sgs1 fragments demonstrate that at least part of the interaction is through direct protein-protein interactions with these 158 amino acids. Consistent with these physical data, we find that mutant phenotypes caused by a point mutation or small deletions in the Sgs1 NH(2) terminus can be suppressed by Top3 overexpression. We conclude that Sgs1 and Top3 form a tight complex in vivo and that the first 158 amino acids of Sgs1 are necessary and sufficient for this interaction. Thus, a primary role of the Sgs1 amino terminus is to mediate the Top3 interaction.  相似文献   

8.
The BLM helicase has been shown to maintain genome stability by preventing accumulation of aberrant recombination intermediates. We show here that the Saccharomyces cerevisiae BLM ortholog, Sgs1, plays an integral role in normal meiotic recombination, beyond its documented activity limiting aberrant recombination intermediates. In wild-type meiosis, temporally and mechanistically distinct pathways produce crossover and noncrossover recombinants. Crossovers form late in meiosis I prophase, by polo kinase-triggered resolution of Holliday junction (HJ) intermediates. Noncrossovers form earlier, via processes that do not involve stable HJ intermediates. In contrast, sgs1 mutants abolish early noncrossover formation. Instead, both noncrossovers and crossovers form by late HJ intermediate resolution, using an alternate pathway requiring the overlapping activities of Mus81-Mms4, Yen1, and Slx1-Slx4, nucleases with minor roles in wild-type meiosis. We conclude that Sgs1 is a primary regulator of recombination pathway choice during meiosis and suggest a similar function in the mitotic cell cycle.  相似文献   

9.
In vegetative cells, most recombination intermediates are metabolized without an association with a crossover (CO). The avoidance of COs allows for repair and prevents genomic rearrangements, potentially deleterious if the sequences involved are at ectopic locations. We have designed a system that permits to screen spontaneous intragenic recombination events in Saccharomyces cerevisiae and to investigate the CO outcome in different genetic contexts. We have analyzed the CO outcome in the absence of the Srs2 and Sgs1 helicases, DNA damage checkpoint proteins as well as in a mutant proliferating cell nuclear antigen (PCNA) and found that they all contribute to genome stability. Remarkably high effects on COs are mediated by srs2Delta, mrc1Delta and a pol30-RR mutation in PCNA. Our results support the view that Mrc1 plays a specific role in DNA replication, promoting the Srs2 recruitment to PCNA independently of checkpoint signaling. Srs2 would prevent formation of double Holliday junctions (dHJs) and thus CO formation. Sgs1 also negatively regulates CO formation but through a different process that resolves dHJs to yield non-CO products.  相似文献   

10.
The highly conserved RecQ family of DNA helicases has multiple roles in the maintenance of genome stability. Sgs1, the single RecQ homologue in Saccharomyces cerevisiae, acts both early and late during homologous recombination. Here we present the expression, purification, and biochemical analysis of full-length Sgs1. Unlike the truncated form of Sgs1 characterized previously, full-length Sgs1 binds diverse single-stranded and double-stranded DNA substrates, including DNA duplexes with 5′- and 3′-single-stranded DNA overhangs. Similarly, Sgs1 unwinds a variety of DNA substrates, including blunt-ended duplex DNA. Significantly, a substrate containing a Holliday junction is unwound most efficiently. DNA unwinding is catalytic, requires ATP, and is stimulated by replication protein A. Unlike RecQ homologues from multicellular organisms, Sgs1 is remarkably active at picomolar concentrations and can efficiently unwind duplex DNA molecules as long as 23,000 base pairs. Our analysis shows that Sgs1 resembles Escherichia coli RecQ protein more than any of the human RecQ homologues with regard to its helicase activity. The full-length recombinant protein will be invaluable for further investigation of Sgs1 biochemistry.  相似文献   

11.
Kim KS 《Cell Stem Cell》2011,9(3):179-181
Recent publications in Cell Stem Cell (Son et?al., 2011; Ambasudhan et?al., 2011), PNAS (Pfisterer et?al., 2011), and Nature (Caiazzo et?al., 2011; Pang et?al., 2011; Yoo et?al., 2011) report that functional neurons can be directly generated from human fibroblast cells without going through the pluripotent state.  相似文献   

12.
The RecQ helicase Sgs1p forms a complex with the type 1 DNA topoisomerase Top3p that resolves double Holliday junctions resulting from Rad51-mediated exchange. We find, however, that Sgs1p functions independently of both Top3p and Rad51p to stimulate the checkpoint kinase Rad53p when replication forks stall due to dNTP depletion on hydroxyurea. Checkpoint activation does not require Sgs1p function as a helicase, and correlates with its ability to bind the Rad53p kinase FHA1 motif directly. On the other hand, Sgs1p's helicase activity is required together with Top3p and the strand-exchange factor Rad51p, to help stabilise DNA polymerase epsilon at stalled replication forks. In this function, the Sgs1p/Top3p complex acts in parallel to the Claspin-related adaptor, Mrc1p, although the sgs1 and mrc1 mutations are epistatic for Rad53p activation. We thus identify two distinct pathways through which Sgs1p contributes to genomic integrity: checkpoint kinase activation requires Sgs1p as a noncatalytic Rad53p-binding site, while the combined Top3p/Sgs1p resolvase activity contributes to replisome stability and recovery from arrested replication forks.  相似文献   

13.
In this issue, Macal et?al. (2012); Walsh et?al. (2012), and Wang et?al. (2012) examine how adaptive immune responses to acute and chronic lymphocyte choriomeningitis virus infection are regulated by type 1 interferon produced early during infection by different cell types upon activation by intracellular nucleic acid sensors.  相似文献   

14.
Interaction between yeast sgs1 helicase and DNA topoisomerase III   总被引:1,自引:0,他引:1  
The Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ family of DNA helicases that includes the human Bloom's syndrome and Werner's syndrome proteins. In this work, we report studies on the interaction between Sgs1 and DNA topoisomerase III in vitro and in vivo. Affinity chromatography experiments with various fragments of Sgs1, a 1447-amino acid polypeptide, suggested that its N-terminal one-fifth was sufficient for interaction with DNA topoisomerase III. Gel electrophoretic mobility shift assays also indicated that a fragment Sgs1(1-283), containing residues 1-283, inhibited the binding of DNA topoisomerase III to single-stranded DNA. A shorter protein fragment containing residues 1-107 also showed partial inhibition in these assays. Studies of a sgs1 top1 double mutant lacking both Sgs1 and DNA topoisomerase I showed that the slow growth phenotype of this double mutant is suppressed by expressing full-length Sgs1, but not Sgs1 without the N-terminal 107 amino acid residues. In sgs1 top3 cells devoid of DNA topoisomerase III, however, expression of full-length Sgs1 or Sgs1 lacking the N-terminal 107 amino acid residues has the same effect of reducing the growth rate of the double mutant. These in vitro and in vivo data indicate that Sgs1 and DNA topoisomerase III physically interact and that this interaction is physiologically significant.  相似文献   

15.
Several recent reports (Mayshar et?al., 2010; Laurent et?al., 2011; Lister et?al., 2011; Gore et?al., 2011; Hussein et?al., 2011) uncover genetic and epigenetic alterations in induced pluripotent stem cells, stimulating debate about their future. However, will these important findings really impact what we hope to gain?  相似文献   

16.
The Saccharomyces cerevisiae Sgs1p helicase localizes to the nucleolus and is required to maintain the integrity of the rDNA repeats. Sgs1p is a member of the RecQ DNA helicase family, which also includes Schizo-saccharomyces pombe Rqh1, and the human BLM and WRN genes. These genes encode proteins which are essential to maintenance of genomic integrity and which share a highly conserved helicase domain. Here we show that recombinant Sgs1p helicase efficiently unwinds guanine-guanine (G-G) paired DNA. Unwinding of G-G paired DNA is ATP- and Mg2+-dependent and requires a short 3' single-stranded tail. Strikingly, Sgs1p unwinds G-G paired substrates more efficiently than duplex DNAs, as measured either in direct assays or by competition experiments. Sgs1p efficiently unwinds G-G paired telomeric sequences, suggesting that one function of Sgs1p may be to prevent telomere-telomere interactions which can lead to chromosome non-disjunction. The rDNA is G-rich and has considerable potential for G-G pairing. Diminished ability to unwind G-G paired regions may also explain the deleterious effect of mutation of Sgs1 on rDNA stability, and the accelerated aging characteristic of yeast strains that lack Sgs1 as well as humans deficient in the related WRN helicase.  相似文献   

17.
SGS1 encodes a protein having DNA helicase activity, and a mutant allele of SGS1 was identified as a suppressor of the slow growth phenotype of top3 mutants. In this study, we examined whether Sgs1 prevents formation of DNA double strand breaks (DSBs) or is involved in DSB repair following exposure to methyl methanesulfonate (MMS). An analysis by pulsed-field gel electrophoresis and epistasis analyses indicated that Sgs1 is required for DSB repair that involves Rad52. In addition, analyses on the relationship between Sgs1 and proteins involved in DSB repair suggested that Sgs1 and Mre11 function via independent pathways both of which require Rad52. In sgs1 mutants, interchromosomal heteroallelic recombination and sister chromatid recombination (SCR) were not induced upon exposure to MMS, though both were induced in wild type cells, indicating the involvement of Sgs1 in heteroallelic recombination and SCR. Surprisingly, the ability of Sgs1 to bind to DNA topoisomerase III (Top3) was absolutely required for the induction of heteroallelic recombination and SCR and suppression of MMS sensitivity but its helicase activity was not, suggesting that Top3 plays a more important role in both recombinations than the DNA helicase activity of Sgs1.  相似文献   

18.
Saccharomyces cerevisiae Sgs1 protein is a member of the RecQ DNA helicase family which also includes the products of the human Bloom's syndrome and Werner's syndrome genes. We have studied the substrate specificity of a recombinant Sgs1 helicase (amino acid residues 400-1268 of the Sgs1 protein). Sgs1 shows a strong preference for binding branched DNA substrates, including duplex structures with a 3' single-stranded overhang and DNA junctions with multiple branches. Duplex DNA with a 5' rather than a 3' single-stranded tail is not recognized or unwound by Sgs1. DNase I and hydroxyl radical footprinting of the Sgs1-DNA complex shows that the protein binds specifically to the junction of a double-stranded DNA and its 3' overhang. Binding and unwinding of duplex DNA with a 3' overhang are much reduced if the backbone polarity of the 3' overhang is reversed in the junction region, but are unaffected if polarity reversal occurs four nucleotides away from the junction. These results indicate that the 3' to 5' polarity of unwinding by the recombinant Sgs1 protein is a direct consequence of the binding of the helicase to the single-stranded/double-stranded DNA junction and its recognition of the polarity of the single-stranded DNA at the junction. The recombinant Sgs1 also unwinds four-way junctions (synthetic Holliday junctions), a result that may be significant in terms of its role in suppressing DNA recombination in vivo.  相似文献   

19.
TORC1 activity in all eukaryotes is dependent on amino acid availability. However, the mechanism through which TORC1 senses amino acids is still a mystery. In the current issues of Molecular Cell and Cell, Bonfils et?al. (2012) and Han et?al. (2012) implicate leucyl-tRNA synthetase in this evolving story.  相似文献   

20.
Cullin ring ligases (CRLs) constitute the largest group of RING finger ubiquitin ligases. Two recent studies in?Molecular Cell describe glomulin as a CRL1 inhibitor that blocks interactions with its ubiquitin-conjugating enzyme (E2) (Duda et?al., 2012; Tron et?al., 2012). These findings and their significance are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号