首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Preitner N  Flanagan JG 《Neuron》2012,73(4):629-631
Localized mRNA translation plays roles in dendrites and axons, but the regulatory mechanisms and downstream pathways are not well understood. An article in Cell by Yoon et al. (2012) shows that lamin B2, well known as a nuclear protein, undergoes regulated synthesis in axons, promoting mitochondrial function and axon survival.  相似文献   

2.
3.
Subcellular localization of mRNAs is regulated by RNA-protein interactions. Here, we show that introduction of a reporter mRNA with the 3'UTR of β-actin mRNA competes with endogenous mRNAs for binding to ZBP1 in adult sensory neurons. ZBP1 is needed for axonal localization of β-actin mRNA, and introducing GFP with the 3'UTR of β-actin mRNA depletes axons of endogenous β-actin and GAP-43 mRNAs and attenuates both in vitro and in vivo regrowth of severed axons. Consistent with limited levels of ZBP1 protein in adult neurons, mice heterozygous for the ZBP1 gene are haploinsufficient for axonal transport of β-actin and GAP-43 mRNAs and for regeneration of peripheral nerve. Exogenous ZBP1 can rescue the RNA transport deficits, but the axonal growth deficit is only rescued if the transported mRNAs are locally translated. These data support a direct role for ZBP1 in transport and translation of mRNA cargos in axonal regeneration in vitro and in vivo.  相似文献   

4.
Axonal transport of mitochondria is critical for neuronal survival and function. Automatically quantifying and analyzing mitochondrial movement in a large quantity remain challenging. Here, we report an efficient method for imaging and quantifying axonal mitochondrial transport using microfluidic-chamber-cultured neurons together with a newly developed analysis package named “MitoQuant”. This tool-kit consists of an automated program for tracking mitochondrial movement inside live neuronal axons and a transient-velocity analysis program for analyzing dynamic movement patterns of mitochondria. Using this method, we examined axonal mitochondrial movement both in cultured mammalian neurons and in motor neuron axons of Drosophila in vivo. In 3 different paradigms (temperature changes, drug treatment and genetic manipulation) that affect mitochondria, we have shown that this new method is highly efficient and sensitive for detecting changes in mitochondrial movement. The method significantly enhanced our ability to quantitatively analyze axonal mitochondrial movement and allowed us to detect dynamic changes in axonal mitochondrial transport that were not detected by traditional kymographic analyses.  相似文献   

5.
6.
Axonal sorting and transport of fully assembled pseudorabies virus (PRV) virions is dependent on the viral protein Us9. Here we identify a Us9-independent mechanism for axonal localization of viral glycoprotein M (gM). We detected gM-mCherry assemblies transporting in the anterograde direction in axons. Furthermore, unlabeled gM, but not glycoprotein B, was detected by Western blotting in isolated axons during Us9-null PRV infection. These results suggest that gM differs from other viral proteins regarding axonal transport properties.  相似文献   

7.
Kang JS  Tian JH  Pan PY  Zald P  Li C  Deng C  Sheng ZH 《Cell》2008,132(1):137-148
Proper distribution of mitochondria within axons and at synapses is critical for neuronal function. While one-third of axonal mitochondria are mobile, a large proportion remains in a stationary phase. However, the mechanisms controlling mitochondrial docking within axons remain elusive. Here, we report a role for axon-targeted syntaphilin (SNPH) in mitochondrial docking through its interaction with microtubules. Axonal mitochondria that contain exogenously or endogenously expressed SNPH lose mobility. Deletion of the mouse snph gene results in a substantially higher proportion of axonal mitochondria in the mobile state and reduces the density of mitochondria in axons. The snph mutant neurons exhibit enhanced short-term facilitation during prolonged stimulation, probably by affecting calcium signaling at presynaptic boutons. This phenotype is fully rescued by reintroducing the snph gene into the mutant neurons. These findings demonstrate a molecular mechanism for controlling mitochondrial docking in axons that has a physiological impact on synaptic function.  相似文献   

8.
Function and regulation of local axonal translation   总被引:1,自引:0,他引:1  
  相似文献   

9.
(1) Axons contain numerous mRNAs and a local protein synthetic system that can be regulated independently of the cell body. (2) In this study, cultured primary sympathetic neurons were employed, to assess the effect of local protein synthesis blockade on axon viability and mitochondrial function. (3) Inhibition of local protein synthesis reduced newly synthesized axonal proteins by 65% and resulted in axon retraction after 6 h. Acute inhibition of local protein synthesis also resulted in a significant decrease in the membrane potential of axonal mitochondria. Likewise, blockade of local protein transport into the mitochondria by transfection of the axons with Hsp90 C-terminal domain decreased the mitochondrial membrane potential by 65%. Moreover, inhibition of the local protein synthetic system also reduced the ability of mitochondria to restore axonal levels of ATP after KCl-induced depolarization. (4) Taken together, these results indicate that the local protein synthetic system plays an important role in mitochondrial function and the maintenance of the axon.  相似文献   

10.
Axonal degeneration is a hallmark of many neuropathies, neurodegenerative diseases, and injuries. Here, using a Drosophila injury model, we have identified a highly conserved E3 ubiquitin ligase, Highwire (Hiw), as an important regulator of axonal and synaptic degeneration. Mutations in hiw strongly inhibit Wallerian degeneration in multiple neuron types and developmental stages. This new phenotype is mediated by a new downstream target of Hiw: the NAD+ biosynthetic enzyme nicotinamide mononucleotide adenyltransferase (Nmnat), which acts in parallel to a previously known target of Hiw, the Wallenda dileucine zipper kinase (Wnd/DLK) MAPKKK. Hiw promotes a rapid disappearance of Nmnat protein in the distal stump after injury. An increased level of Nmnat protein in hiw mutants is both required and sufficient to inhibit degeneration. Ectopically expressed mouse Nmnat2 is also subject to regulation by Hiw in distal axons and synapses. These findings implicate an important role for endogenous Nmnat and its regulation, via a conserved mechanism, in the initiation of axonal degeneration. Through independent regulation of Wnd/DLK, whose function is required for proximal axons to regenerate, Hiw plays a central role in coordinating both regenerative and degenerative responses to axonal injury.  相似文献   

11.
Local Protein Synthesizing Activity in Axonal Fields Regenerating In Vitro   总被引:2,自引:2,他引:0  
Abstract: The goldfish retinal explant system of Landreth and Agranoff was used to study endogenous protein synthesizing activity of retinal ganglion cell axons regenerating in culture. Light and electron microscopic examination of axonal fields showed that axons were free of nonneural cell investment. Decentralized axons were incubated with a mixture of tritiated amino acids, and direct quantitative microanalysis of protein and tritium radioactivity was carried out on individual axonal fields. Our findings showed that radioactive amino acids were incorporated into axonal protein in a manner that was inhibited significantly by cycloheximide, but not by chloramphenicol. Decentralized axons appeared to maintain their viability for at least 3–4 h. Axonal fields maintaining their central connections to the explant incorporated 3H-amino acids at an apparent rate that was similar to decentralized axonal fields. Labeled material transported into axonal fields from ganglion cell bodies appeared in significant amounts after a delay of 2–3 h. Fluorographic patterns of axonal proteins after labeling with either 3H-amino acids or [35S]methionine and separated by microelectrophoresis indicated that primarily tubulin and, to a lesser extent, actin were labeled. Our findings indicate that goldfish retinal ganglion cell axons regenerating in vitro exhibit measurable endogenous protein-synthesizing activity.  相似文献   

12.
13.
14.
Normal axonal mitochondrial transport and function is essential for the maintenance of synaptic function. Abnormal mitochondrial motility and mitochondrial dysfunction within axons are critical for amyloid β (Aβ)-induced synaptic stress and the loss of synapses relevant to the pathogenesis of Alzheimer’s disease (AD). However, the mechanisms controlling axonal mitochondrial function and transport alterations in AD remain elusive. Here, we report an unexplored role of cyclophilin D (CypD)-dependent mitochondrial permeability transition pore (mPTP) in Aβ-impaired axonal mitochondrial trafficking. Depletion of CypD significantly protects axonal mitochondrial motility and dynamics from Aβ toxicity as shown by increased axonal mitochondrial density and distribution and improved bidirectional transport of axonal mitochondria. Notably, blockade of mPTP by genetic deletion of CypD suppresses Aβ-mediated activation of the p38 mitogen-activated protein kinase signaling pathway, reverses axonal mitochondrial abnormalities, improves synaptic function, and attenuates loss of synapse, suggesting a role of CypD-dependent signaling in Aβ-induced alterations in axonal mitochondrial trafficking. The potential mechanisms of the protective effects of lacking CypD on Aβ-induced abnormal mitochondrial transport in axon are increased axonal calcium buffer capability, diminished reactive oxygen species (ROS), and suppressing downstream signal transduction P38 activation. These findings provide new insights into CypD-dependent mitochondrial mPTP and signaling on mitochondrial trafficking in axons and synaptic degeneration in an environment enriched for Aβ.  相似文献   

15.
Axonal degeneration is an early and important component of many neurological disorders. Overexpression of nicotinamide mononucleotide adenylyltransferase (Nmnat), a component of the slow Wallerian degeneration (Wld(s)) protein, protects axons from a variety of insults. We found that transduction of Nmnat protein into severed axons via virus-like particles prevented axonal degeneration. The post-injury efficacy of Nmnat indicates that its protective effects occur locally within the axon and provides an opportunity to develop novel agents to treat axonal damage.  相似文献   

16.
Axonal degeneration after traumatic brain injury and nerve compression is considered a common underlying cause of temporary as well as permanent disability. Because a proper functioning of neural network requires phase coherence of all components, even subtle changes in circuitry may lead to network failure. However, it is still not possible to determine which axons will recover or degenerate after injury. Several groups have studied the pressure threshold for axonal injury within a nerve, but difficulty accessing the injured region; insufficient imaging methods and the extremely small dimensions involved have prevented the evaluation of the response of individual axons to injury. We combined microfluidics with atomic force microscopy and in vivo imaging to estimate the threshold force required to 1), uncouple axonal transport without impairing axonal survival, and 2), compromise axonal survival in both individual and bundled axons. We found that rat hippocampal axons completely recover axonal transport with no detectable axonal loss when compressed with pressures up to 65 ± 30 Pa for 10 min, while dorsal root ganglia axons can resist to pressures up to 540 ± 220 Pa. We investigated the reasons for the differential susceptibility of hippocampal and DRG axons to mechanical injury and estimated the elasticity of live axons. We found that dorsal root ganglia axons have a 20% lower elastic modulus than hippocampal axons. Our results emphasize the importance of the integrity of the axonal cytoskeleton in deciding the axonal fate after damage and open up new avenues to improve injury diagnosis and to identify ways to protect axons.  相似文献   

17.
18.
19.
The nuclear membranes surrounding fish and frog oocyte germinal vesicles (GVs) are supported by the lamina, an internal, mesh-like structure that consists of the protein lamin B3. The mechanisms by which lamin B3 is transported into GVs and is assembled to form the nuclear lamina are not well understood. In this study, we developed a heterogeneous microinjection system in which wild-type or mutated goldfish GV lamin B3 (GFLB3) was expressed in Escherichia coli, biotinylated, and microinjected into Xenopus oocytes. The localization of the biotinylated GFLB3 was visualized by fluorescence confocal microscopy. The results of these experiments indicated that the N-terminal domain plays important roles in both nuclear transport and assembly of lamin B3 to form the nuclear lamina. The N-terminal domain includes a major consensus phosphoacceptor site for the p34(cdc2) kinase at amino acid residue Ser-28. To investigate nuclear lamin phosphorylation, we generated a monoclonal antibody (C7B8D) against Ser-28-phosphorylated GFLB3. Two-dimensional (2-D) electrophoresis of GV protein revealed two major spots of lamin B3 with different isoelectric points (5.9 and 6.1). The C7B8D antibody recognized the pI-5.9 spot but not the pI-6.1 spot. The former spot disappeared when the native lamina was incubated with lambda phage protein phosphatase (lambda-PP), indicating that a portion of the lamin protein was already phosphorylated in the goldfish GV-stage oocytes. GFLB3 that had been microinjected into Xenopus oocytes was also phosphorylated in Xenopus GV lamina, as judged by Western blotting with C7B8D. Thus, lamin phosphorylation appears to occur prior to oocyte maturation in vivo in both these species. Taken together, our results suggest that the balance between phosphorylation by interphase lamin kinases and dephosphorylation by phosphatases regulates the conformational changes in the lamin B3 N-terminal head domain that in turn regulates the continual in vivo rearrangement and remodeling of the oocyte lamina.  相似文献   

20.
Disruption of axonal transport plays a pivotal role in diabetic neuropathy. A sex-dimorphism exists in the incidence and symptomatology of diabetic neuropathy; however, no studies so far have addressed sex differences in axonal motor proteins expression in early diabetes as well as the possible involvement of neuroactive steroids. Interestingly, recent data point to a role for mitochondria in the sexual dimorphism of neurodegenerative diseases. Mitochondria have a fundamental role in axonal transport by producing the motors’ energy source, ATP. Moreover, neuroactive steroids can also regulate mitochondrial function. Here, we investigated the impact of short-term diabetes in the peripheral nervous system of male and female rats on key motor proteins important for axonal transport, mitochondrial function, and neuroactive steroids levels. We show that short-term diabetes alters mRNA levels and axoplasm protein contents of kinesin family member KIF1A, KIF5B, KIF5A and Myosin Va in male but not in female rats. Similarly, the expression of peroxisome proliferator-activated receptor γ co-activator-1α, a subunit of the respiratory chain complex IV, ATP levels and the key regulators of mitochondrial dynamics were affected in males but not in females. Concomitant analysis of neuroactive steroid levels in sciatic nerve showed an alteration of testosterone, dihydrotestosterone, and allopregnanolone in diabetic males, whereas no changes were observed in female rats. These findings suggest that sex-specific decrease in neuroactive steroid levels in male diabetic animals may cause an alteration in their mitochondrial function that in turn might impact in axonal transport, contributing to the sex difference observed in diabetic neuropathy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号