首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Meiotic programmed DNA double-strand break (DSB) repair is essential for crossing-over and viable gamete formation and requires removal of Spo11-oligonucleotide complexes from 5′ ends (clipping) and their resection to generate invasive 3′-end single-stranded DNA (resection). Ctp1 (Com1, Sae2, CtIP homolog) acting with the Mre11-Rad50-Nbs1 (MRN) complex is required in both steps. We isolated multiple S. pombe ctp1 mutants deficient in clipping but proficient in resection during meiosis. Remarkably, all of the mutations clustered in or near the conserved CxxC or RHR motif in the C-terminal portion. The mutants tested, like ctp1Δ, were clipping-deficient by both genetic and physical assays­. But, unlike ctp1Δ, these mutants were recombination-proficient for Rec12 (Spo11 homolog)-independent break-repair and resection-proficient by physical assay. We conclude that the intracellular Ctp1 C-terminal portion is essential for clipping, while the N-terminal portion is sufficient for DSB end-resection. This conclusion agrees with purified human CtIP resection and endonuclease activities being independent. Our mutants provide intracellular evidence for separable functions of Ctp1. Some mutations truncate Ctp1 in the same region as one of the CtIP mutations linked to the Seckel and Jawad severe developmental syndromes, suggesting that these syndromes are caused by a lack of clipping at DSB ends that require repair.  相似文献   

2.
During meiosis, homologous chromosomes of a diploid cell are replicated and, without a second replication, are segregated during two nuclear divisions to produce four haploid cells (including discarded polar bodies in females of many species). Proper segregation of chromosomes at the first division requires in most species that homologous chromosomes be physically connected. Tension generated by connected chromosomes moving to opposite sides of the cell signals proper segregation. In the absence of the required connections, called crossovers, chromosomes often segregate randomly and produce aneuploid gametes and, thus, dead or disabled progeny. To be effective, crossovers must be properly distributed along chromosomes. Crossovers within or too near the centromere interfere with proper segregation; crossovers too near each other can ablate the required tension; and crossovers too concentrated in only one or a few regions would not re-assort most genetic characters important for evolution. Here, we discuss current knowledge of how the optimal distribution of crossovers is achieved in the fission yeast Schizosaccharomyces pombe, with reference to other well-studied species for comparison and illustration of the diversity of biology.  相似文献   

3.
Radford SJ  Goley E  Baxter K  McMahan S  Sekelsky J 《Genetics》2005,170(4):1737-1745
Drosophila MEI-9 is the catalytic subunit of a DNA structure-specific endonuclease required for nucleotide excision repair (NER). The enzymatic activity of this endonuclease during NER requires the presence of a second, noncatalytic subunit called ERCC1. In addition to its role in NER, MEI-9 is required for the generation of most meiotic crossovers. To better understand the role of MEI-9 in crossover formation, we report here the characterization of the Drosophila Ercc1 gene. We created an Ercc1 mutant through homologous gene targeting. We find that Ercc1 mutants are identical to mei-9 mutants in sensitivity to DNA-damaging agents, but have a less severe reduction in the number of meiotic crossovers. MEI-9 protein levels are reduced in Ercc1 mutants; however, overexpression of MEI-9 is not sufficient to restore meiotic crossing over in Ercc1 mutants. We conclude that MEI-9 can generate some meiotic crossovers in an ERCC1-independent manner.  相似文献   

4.
5.
Characterization of AtMLH3, the Arabidopsis homologue of the prokaryotic MutL mismatch repair gene, reveals that it is expressed in reproductive tissue where it is required for normal levels of meiotic crossovers (COs). Immunocytological studies in an Atmlh3 mutant indicate that chromosome pairing and synapsis proceed with normal distribution of the early recombination pathway proteins. Localization of the MutS homologue AtMSH4 occurs, suggesting that double Holliday junctions (dHjs) are formed, but the MutL homologue AtMLH1, which forms a heterocomplex with AtMLH3, fails to localize normally. Loss of AtMLH3 results in an approximately 60% reduction in COs and is accompanied by a substantial delay of approximately 25 h in prophase I progression. Analysis of the chiasma distribution in Atmlh3 suggests that dHj resolution can occur, but in contrast to wild type where most or all dHjs are directed to form COs the outcome is biased in favour of a non-CO outcome by a ratio of around 2 to 1. The data are compatible with a model whereby the MutL complex imposes a dHj conformation that ensures CO formation.  相似文献   

6.
A better understanding of genomic features influencing the location of meiotic crossovers (CO s) in plant species is both of fundamental importance and of practical relevance for plant breeding. Using CO positions with sufficiently high resolution from four plant species [Arabidopsis thaliana , Solanum lycopersicum (tomato), Zea mays (maize) and Oryza sativa (rice)] we have trained machine‐learning models to predict the susceptibility to CO formation. Our results show that CO occurrence within various plant genomes can be predicted by DNA sequence and shape features. Several features related to genome content and to genomic accessibility were consistently either positively or negatively related to CO s in all four species. Other features were found as predictive only in specific species. Gene annotation‐related features were especially predictive for maize, whereas in tomato and Arabidopsis propeller twist and helical twist (DNA shape features) and AT /TA dinucleotides were found to be the most important. In rice, high roll (another DNA shape feature) and low CA dinucleotide frequency in particular were found to be associated with CO occurrence. The accuracy of our models was sufficient for Arabidopsis and rice (area under receiver operating characteristic curve, AUROC  > 0.5), and was high for tomato and maize (AUROC  ? 0.5), demonstrating that DNA sequence and shape are predictive for meiotic CO s throughout the plant kingdom.  相似文献   

7.
Genetic recombination is important for generating diversity and to ensure faithful segregation of chromosomes at meiosis. However, few crossovers (COs) are formed per meiosis despite an excess of DNA double-strand break precursors. This reflects the existence of active mechanisms that limit CO formation. We previously showed that AtFANCM is a meiotic anti-CO factor. The same genetic screen now identified AtMHF2 as another player of the same anti-CO pathway. FANCM and MHF2 are both Fanconi Anemia (FA) associated proteins, prompting us to test the other FA genes conserved in Arabidopsis for a role in CO control at meiosis. This revealed that among the FA proteins tested, only FANCM and its two DNA-binding co-factors MHF1 and MHF2 limit CO formation at meiosis.  相似文献   

8.
Crossovers (COs) are essential for the completion of meiosis in most species and lead to new allelic combinations in gametes. Two pathways of meiotic crossover formation have been distinguished. Class I COs, which are the major class of CO in budding yeast, mammals, Caenorhabditis elegans, and Arabidopsis, depend on a group of proteins called ZMM and rely on specific DNA structure intermediates that are processed to form COs. We identified a novel gene, SHOC1, involved in meiosis in Arabidopsis. Shoc1 mutants showed a striking reduction in the number of COs produced, a similar phenotype to the previously described Arabidopsis zmm mutants. The early steps of recombination, revealed by DMC1 foci, and completion of synapsis are not affected in shoc1 mutants. Double mutant analysis showed that SHOC1 acts in the same pathway as AtMSH5, a conserved member of the ZMM group. SHOC1 is thus a novel gene required for class I CO formation in Arabidopsis. Sequence similarity studies detected putative SHOC1 homologs in a large range of eukaryotes including human. SHOC1 appears to be related to the XPF endonuclease protein family, which suggests that it is directly involved in the maturation of DNA intermediates that lead to COs.  相似文献   

9.
Liu  Hanwenheng  Gordon  Spencer G.  Rog  Ofer 《Chromosoma》2021,130(4):237-250
Chromosoma - Alignment of the parental chromosomes during meiotic prophase is key to the formation of genetic exchanges, or crossovers, and consequently to the successful production of gametes. In...  相似文献   

10.
A number of common contiguous gene syndromes have been shown to result from nonallelic homologous recombination (NAHR) within region-specific low-copy repeats (LCRs). The reciprocal duplications are predicted to occur at the same frequency; however, probably because of ascertainment bias and milder phenotypes, reciprocal events have been identified in only a few cases to date. We previously described seven patients with dup(17)(p11.2p11.2), the reciprocal of the Smith-Magenis syndrome (SMS) deletion, del(17)(p11.2p11.2). In >90% of patients with SMS, identical approximately 3.7-Mb deletions in 17p11.2 have been identified. These deletions are flanked by large (approximately 200 kb), highly homologous, directly oriented LCRs (i.e., proximal and distal SMS repeats [SMS-REPs]). The third (middle) SMS-REP is inverted with respect to them and maps inside the commonly deleted genomic region. To investigate the parental origin and to determine whether the common deletion and duplication arise by unequal crossovers mediated through NAHR between the proximal and distal SMS-REPs, we analyzed the haplotypes of 14 families with SMS and six families with dup(17)(p11.2p11.2), using microsatellite markers directly flanking the SMS common deletion breakpoints. Our data indicate that reciprocal deletion and duplication of 17p11.2 result from unequal meiotic crossovers. These rearrangements occur via both interchromosomal and intrachromosomal exchange events between the proximal and distal SMS-REPs, and there appears to be no parental-origin bias associated with common SMS deletions and the reciprocal duplications.  相似文献   

11.
During meiosis programmed DNA double-strand breaks (DSBs) are repaired by homologous recombination using the sister chromatid or the homologous chromosome (homolog) as a template. This repair results in crossover (CO) and non-crossover (NCO) recombinants. Only CO formation between homologs provides the physical linkages guiding correct chromosome segregation, which are essential to produce healthy gametes. The factors that determine the CO/NCO decision are still poorly understood. Using Schizosaccharomyces pombe as a model we show that the Rad51/Dmc1-paralog complexes Rad55-Rad57 and Rdl1-Rlp1-Sws1 together with Swi5-Sfr1 play a major role in antagonizing both the FANCM-family DNA helicase/translocase Fml1 and the RecQ-type DNA helicase Rqh1 to limit hybrid DNA formation and promote Mus81-Eme1-dependent COs. A common attribute of these protein complexes is an ability to stabilize the Rad51/Dmc1 nucleoprotein filament, and we propose that it is this property that imposes constraints on which enzymes gain access to the recombination intermediate, thereby controlling the manner in which it is processed and resolved.  相似文献   

12.
The merging of two independent populations of heterotrophs and autotrophs into a single population of mixotrophs has occurred frequently in evolutionary history. It is an example of a wide class of related phenomena, known as symbiogenesis. The physiological basis is almost always (reciprocal) syntrophy, where each species uses the products of the other species. Symbiogenesis can repeat itself after specialization on particular assimilatory substrates. We discuss quantitative aspects and delineate eight steps from two free-living interacting populations to a single fully integrated endosymbiotic one. The whole process of gradual interlocking of the two populations could be mimicked by incremental changes of particular parameter values. The role of products gradually changes from an ecological to a physiological one. We found conditions where the free-living, epibiotic and endobiotic populations of symbionts can co-exist, as well as conditions where the endobiotic symbionts outcompete other symbionts. Our population dynamical analyses give new insights into the evolution of cellular homeostasis. We show how structural biomass with a constant chemical composition can evolve in a chemically varying environment if the parameters for the formation of products satisfy simple constraints. No additional regulation mechanisms are required for homeostasis within the context of the dynamic energy budget (DEB) theory for the uptake and use of substrates by organisms. The DEB model appears to be dosed under endosymbiosis. This means that when each free-living partner follows DEB rules for substrate uptake and use, and they become engaged in an endosymbiotic relationship, a gradual transition to a single fully integrated system is possible that again follows DEB rules for substrate uptake and use.  相似文献   

13.
Although DNA breaks stimulate mitotic recombination in plants, their effects on meiotic recombination are not known. Recombination across a maize a1 allele containing a nonautonomous Mu transposon was studied in the presence and absence of the MuDR-encoded transposase. Recombinant A1' alleles isolated from a1-mum2/a1::rdt heterozygotes arose via either crossovers (32 CO events) or noncrossovers (8 NCO events). In the presence of MuDR, the rate of COs increased fourfold. This increase is most likely a consequence of the repair of MuDR-induced DNA breaks at the Mu1 insertion in a1-mum2. Hence, this study provides the first in vivo evidence that DNA breaks stimulate meiotic crossovers in plants. The distribution of recombination breakpoints is not affected by the presence of MuDR in that 19 of 24 breakpoints isolated from plants that carried MuDR mapped to a previously defined 377-bp recombination hotspot. This result is consistent with the hypothesis that the DNA breaks that initiate recombination at a1 cluster at its 5' end. Conversion tracts associated with eight NCO events ranged in size from <700 bp to >1600 bp. This study also establishes that MuDR functions during meiosis and that ratios of CO/NCO vary among genes and can be influenced by genetic background.  相似文献   

14.
In eukaryotic cells, DNA mismatch repair is initiated by a conserved family of MutS (Msh) and MutL (Mlh) homolog proteins. Mlh1 is unique among Mlh proteins because it is required in mismatch repair and for wild-type levels of crossing over during meiosis. In this study, 60 new alleles of MLH1 were examined for defects in vegetative and meiotic mismatch repair as well as in meiotic crossing over. Four alleles predicted to disrupt the Mlh1p ATPase activity conferred defects in all functions assayed. Three mutations, mlh1-2, -29, and -31, caused defects in mismatch repair during vegetative growth but allowed nearly wild-type levels of meiotic crossing over and spore viability. Surprisingly, these mutants did not accumulate high levels of postmeiotic segregation at the ARG4 recombination hotspot. In biochemical assays, Pms1p failed to copurify with mlh1-2, and two-hybrid studies indicated that this allele did not interact with Pms1p and Mlh3p but maintained wild-type interactions with Exo1p and Sgs1p. mlh1-29 and mlh1-31 did not alter the ability of Mlh1p-Pms1p to form a ternary complex with a mismatch substrate and Msh2p-Msh6p, suggesting that the region mutated in these alleles could be responsible for signaling events that take place after ternary complex formation. These results indicate that mismatches formed during genetic recombination are processed differently than during replication and that, compared to mismatch repair functions, the meiotic crossing-over role of MLH1 appears to be more resistant to mutagenesis, perhaps indicating a structural role for Mlh1p during crossing over.  相似文献   

15.
Joyce EF  Tanneti SN  McKim KS 《Genetics》2009,181(1):335-340
Three Drosophila proteins, ERCC1, MUS312, and MEI-9, function in a complex proposed to resolve double-Holliday-junction intermediates into crossovers during meiosis. We report here the characterization of hold'em (hdm), whose protein product belongs to a single-strand-DNA-binding superfamily of proteins. Mutations in hdm result in reduced meiotic crossover formation and sensitivity to the DNA-damaging agent methyl methanesulfonate. Furthermore, HDM physically interacts with both MEI-9 and ERCC1 in a yeast two-hybrid assay. We conclude that HDM, MEI-9, MUS312, and ERCC1 form a complex that resolves meiotic recombination intermediates into crossovers.  相似文献   

16.
Nitrate is an important nitrogen source used by plants. Despite of the considerable variation in the amount of soil nitrate, plants keep cytosolic nitrate at a homeostatic controlled level. Here we describe a set of homeostatic controller motifs and their interaction that can maintain robust cytosolic nitrate homeostasis at fluctuating external nitrate concentrations and nitrate assimilation levels. The controller motifs are divided into two functional classes termed as inflow and outflow controllers. In the presence of high amounts of environmental nitrate, the function of outflow controllers is associated to efflux mechanisms removing excess of nitrate from the cytosol that is taken up by low-affinity transporter systems (LATS). Inflow controllers on the other hand maintain homeostasis in the presence of a high demand of nitrate by the cell relative to the amount of available environmental nitrate. This is achieved by either remobilizing nitrate from a vacuolar store, or by taking up nitrate by means of high-affinity transporter systems (HATS). By combining inflow and outflow controllers we demonstrate how nitrate uptake, assimilation, storage and efflux are integrated to a regulatory network that maintains cytosolic nitrate homeostasis at changing environmental conditions.  相似文献   

17.
18.
During embryogenesis, multicellular animals are shaped via cell proliferation, cell rearrangement, and apoptosis. At the end of development, tissue architecture is then maintained through balanced rates of cell proliferation and loss. Here, we take an in silico approach to look for generic systems features of morphogenesis in multicellular animals that arise as a consequence of the evolution of development. Using artificial evolution, we evolved cellular automata-based digital organisms that have distinct embryonic and homeostatic phases of development. Although these evolved organisms use a variety of strategies to maintain their form over time, organisms of different types were all found to rapidly recover from environmental damage in the form of wounds. This regenerative response was most robust in an organism with a stratified tissue-like architecture. An evolutionary analysis revealed that evolution itself contributed to the ability of this organism to maintain its form in the face of genetic and environmental perturbation, confirming the results of previous studies. In addition, the exceptional robustness of this organism to surface injury was found to result from an upward flux of cells, driven in part by cell divisions with a stable niche at the tissue base. Given the general nature of the model, our results lead us to suggest that many of the robust systems properties observed in real organisms, including scar-free wound-healing in well-protected embryos and the layered tissue architecture of regenerating epithelial tissues, may be by-products of the evolution of morphogenesis, rather than the direct result of selection.  相似文献   

19.
20.
Crossover recombination and the formation of chiasmata normally ensure the proper segregation of homologous chromosomes during the first meiotic division. zhp-3, the Caenorhabditis elegans ortholog of the budding yeast ZIP3 gene, is required for crossover recombination. We show that ZHP-3 protein localization is highly dynamic. At a key transition point in meiotic prophase, the protein shifts from along the length of the synaptonemal complex (SC) to an asymmetric localization on the SC and eventually becomes restricted to foci that mark crossover recombination events. A zhp-3::gfp transgene partially complements a null mutation and reveals a separation of function; although the fusion protein can promote nearly wild-type levels of recombination, aneuploidy among the progeny is high, indicating defects in meiotic chromosome segregation. The structure of bivalents is perturbed in this mutant, suggesting that the chromosome segregation defect results from an inability to properly remodel chromosomes in response to crossovers. smo-1 mutants exhibit phenotypes similar to zhp-3::gfp mutants at higher temperatures, and smo-1; zhp-3::gfp double mutants exhibit more severe meiotic defects than either single mutant, consistent with a role for SUMO in the process of SC disassembly and bivalent differentiation. We propose that coordination of crossover recombination with SC disassembly and bivalent formation reflects a conserved role of Zip3/ZHP-3 in coupling recombination with SC morphogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号