首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Courtship song is a critical component of male courtship behavior in Drosophila, making the female more receptive to copulation and communicating species-specific information [1-6]. Sex mosaic studies have shown that the sex of certain regions of the central nervous system (CNS) is critical to song production [7]. Our examination of one of these regions, the mesothoracic ganglion (Msg), revealed the coexpression of two sex-determination genes, fruitless (fru) and doublesex (dsx). Because both genes are involved in creating a sexually dimorphic CNS [8, 9] and are necessary for song production [10-13], we investigated the individual contributions of fru and dsx to the specification of a male CNS and song production. We show a novel requirement for dsx in specifying a sexually dimorphic population of fru-expressing neurons in the Msg. Moreover, by using females constitutively expressing the male-specific isoforms of fru (Fru(M)), we show a critical requirement for the male isoform of dsx (Dsx(M)), alongside Fru(M), in the specification of courtship song. Therefore, although Fru(M) expression is sufficient for the performance of many male-specific behaviors [14], we have shown that without Dsx(M), the determination of a male-specific CNS and thus a full complement of male behaviors are not realized.  相似文献   

3.
4.
5.
6.
The brain vasotocinergic system demonstrates clear sexual dimorphism in birds investigated so far. This paper examines the evidence obtained in studies on gallinaceous (domestic fowl, Japanese quail) and passerine (canary, junco, zebra finch) birds. Vasotocin (VT)-immunoreactive parvocellular neurons are present in the nucleus of stria terminalis of males, but they are less abundant or absent in the corresponding structure of females. A similar difference has been observed in the dorsal paraventricular area of domestic fowl. Sex-related differences in VT-gene expression have been confirmed byin situhybridization. Moreover, overall brain content of VT mRNA in cockerels is about twice that of hens, suggesting that VT synthesis may also be sexually dimorphic in other brain areas where morphological sex differences have not yet been revealed. The vasotocinergic system in birds is implicated in body fluid homeostasis, and during ontogeny it starts to respond to osmotic challenges in a sexually dimorphic way. Photoperiod, aging, or castration—all associated with changes in circulating testosterone levels—affect sexually dimorphic VT pathways and cell clusters. Sexually dimorphic vasotocinergic circuits are distributed in regions containing steroid-concentrating cells and are closely intermingled with aromatase-containing neurons that may mediate activational effects of gonadal steroids on this peptidergic system. However, it remains undetermined whether the observed neuroanatomical sex differences are related to sexually dimorphic autonomic and behavioral effects induced by VT. Most likely, VT in birds has a modulatory rather than a specific regulatory function in control of male sexual behavior and vocalization.  相似文献   

7.
Pan Y  Robinett CC  Baker BS 《PloS one》2011,6(6):e21144
The innate sexual behaviors of Drosophila melanogaster males are an attractive system for elucidating how complex behavior patterns are generated. The potential for male sexual behavior in D. melanogaster is specified by the fruitless (fru) and doublesex (dsx) sex regulatory genes. We used the temperature-sensitive activator dTRPA1 to probe the roles of fru(M)- and dsx-expressing neurons in male courtship behaviors. Almost all steps of courtship, from courtship song to ejaculation, can be induced at very high levels through activation of either all fru(M) or all dsx neurons in solitary males. Detailed characterizations reveal different roles for fru(M) and dsx in male courtship. Surprisingly, the system for mate discrimination still works well when all dsx neurons are activated, but is impaired when all fru(M) neurons are activated. Most strikingly, we provide evidence for a fru(M)-independent courtship pathway that is primarily vision dependent.  相似文献   

8.
Prenatal sex ratio (through exposure to hormones from siblings in utero) can influence sexually dimorphic traits of many mammals; but research on viviparous reptiles has contrasting outcomes, which have yet to be resolved. The thermal environment experienced during gestation has a strong effect on the phenotype of reptiles, but whether this thermal effect overrides that of prenatal sex ratio has yet to be explored. We experimentally investigated whether the gestation temperature, or litter sex ratio, influences sexually dimorphic traits (head width and axilla-groin length) in a viviparous skink (Oligosoma maccanni). We found that gestation temperature had a significant influence on sexually dimorphic traits of neonates, and at 3 months of age still influenced head width. We found no evidence that traits in either sex were masculinized or feminized in response to litter sex ratio. The development of external sexual dimorphisms increased gradually (all thermal regimes pooled), with neonates showing no sexual dimorphism, 3-month-old juveniles showing some sexual dimorphism in head width, and adults having stronger, but incompletely separated, sexual dimorphism for both traits. We suggest that the overlap in sexually dimorphic traits of adult O. maccanni (and perhaps other reptiles) may be better explained by natural variation in temperatures experienced during embryonic development, rather than hormonal effects arising from litter sex ratio. The interaction of hormones and temperature during gestation and the effect of these factors on sexual dimorphism within reptiles deserve further exploration.  相似文献   

9.
Kauffman AS 《Peptides》2009,30(1):83-93
The nervous system (both central and peripheral) is anatomically and physiologically differentiated between the sexes, ranging from gender-based differences in the cerebral cortex to motoneuron number in the spinal cord. Although genetic factors may play a role in the development of some sexually differentiated traits, most identified sex differences in the brain and behavior are produced under the influence of perinatal sex steroid signaling. In many species, the ability to display an estrogen-induced luteinizing hormone (LH) surge is sexually differentiated, yet the specific neural population(s) that allows females but not males to display such estrogen-mediated "positive feedback" has remained elusive. Recently, the Kiss1/kisspeptin system has been implicated in generating the sexually dimorphic circuitry underlying the LH surge. Specifically, Kiss1 gene expression and kisspeptin protein levels in the anteroventral periventricular (AVPV) nucleus of the hypothalamus are sexually differentiated, with females displaying higher levels than males, even under identical hormonal conditions as adults. These findings, in conjunction with accumulating evidence implicating kisspeptins as potent secretagogues of gonadotropin-releasing hormone (GnRH), suggest that the sex-specific display of the LH surge (positive feedback) reflects sexual differentiation of AVPV Kiss1 neurons. In addition, developmental kisspeptin signaling via its receptor GPR54 appears to be critical in males for the proper sexual differentiation of a variety of sexually dimorphic traits, ranging from complex social behavior to specific forebrain and spinal cord neuronal populations. This review discusses the recent data, and their implications, regarding the bi-directional relationship between the Kiss1 system and the process of sexual differentiation.  相似文献   

10.
The sensory circuitry for sexual attraction in C. elegans males   总被引:1,自引:0,他引:1  
BACKGROUND: Why do males and females behave differently? Sexually dimorphic behaviors could arise from sex-specific neurons or by the modification of circuits present in both sexes. C. elegans males exhibit different behaviors than hermaphrodites. Although there is a single class of sex-specific sensory neurons in the head of males, most of their neurons are part of a core nervous system also present in hermaphrodites. Are the behavioral differences due to sex-specific or core neurons? RESULTS: We demonstrate that C. elegans males chemotax to a source of hermaphrodite pheromones. This sexual-attraction behavior depends on a TRPV (transient receptor potential vanilloid) channel encoded by the osm-9, ocr-1, and ocr-2 genes. OSM-9 is required in three classes of sensory neurons: the AWA and AWC olfactory neurons and the male-specific CEM neurons. The absence of OSM-9 from any of these neurons impairs attraction, suggesting that their ensemble output elicits sexual attraction. Likewise, the ablation of any of these classes after sexual maturation impairs attraction behavior. If ablations are performed before sexual maturation, attraction is unimpaired, demonstrating that these neurons compensate for one another. Thus, males lacking sex-specific neurons are still attracted to pheromones, suggesting that core neurons are sexualized. Similarly, transgender nematodes-animals that appear morphologically to be hermaphrodites but have a masculinized core nervous system-are attracted to hermaphrodite pheromones. CONCLUSIONS: Both sexually dimorphic and core sensory neurons are normally required in the adult for sexual attraction, but they can replace each other during sexual maturation if necessary to generate robust male-specific sexual attraction behavior.  相似文献   

11.
The preoptic/anterior hypothalamic area (POA/AH) is one of the most sexually dimorphic areas of the vertebrate brain and plays a pivotal role in regulating male sexual behavior. Vinclozolin is a fungicide thought to be an environmental antiandrogen, which disrupts masculine sexual behavior when administered to rabbits during development. In this study, we examined several characteristics of the rabbit POA/AH for sexual dimorphism and endocrine disruption by vinclozolin. Pregnant rabbits were dosed orally with vinclozolin (10 mg/kg body weight) or carrot paste vehicle once daily for 6 wk beginning at midgestation and continuing through nursing until Postpartum Week 4. At 6 wk, offspring were perfused with 4% paraformaldehyde and brains processed for immunocytochemical localization of tyrosine hydroxylase, calbindin, gonadotropin-releasing hormone (GnRH), or Nissl stain. There were significant sex differences in the distribution of calbindin in the POA/AH and the size of cells in the dorsal POA/AH (values greater in females than in males), but not in the number or distribution of tyrosine hydroxylase or GnRH neurons. In both sexes, exposure to vinclozolin significantly increased calbindin expression in the ventral POA/AH and significantly decreased number of GnRH neurons selectively in the region of the organum vasculosum of the lamina terminalis (OVLT) but not more caudally in the POA/AH. This is the first documentation of a sexually dimorphic region in the rabbit brain, and further supports the use of this species as a model for studying the influence of vinclozolin on reproductive development with potential application to human systems.  相似文献   

12.
Only male zebra finches (Poephila guttata) sing, and nuclei implicated in song behavior exhibit marked sex differences in neuron number. In the robust nucleus of the anterior neostriatum (RA), these sex differences develop because more neurons die in young females than in males. However, it is not known whether the sexually dimorphic survival of RA neurons is a primary event in sexual differentiation or a secondary response to sex differences in the number of cells interacting trophically with RA neurons. In particular, since sexual differentiation of the RA parallels the development of dimorphisms in the numbers of neurons providing afferent input from the lateral magnocellular nucleus of the anterior neostriatum (lMAN) and the high vocal center (HVC), it has been hypothesized that sex differences in the size of these afferent populations trigger differential RA neuron survival and growth. To test this hypothesis, we lesioned either the lMAN or both the lMAN and HVC unilaterally in 12-day-old male and female zebra finches. Subsequently, RA cell death and RA neuron number and size were measured. Unilateral lMAN lesions increased cell death and decreased neuron number and size within the ipsilateral RA of both sexes. However, even in the lMAN-lesioned hemisphere, these effects were less pronounced in males than in females, so that by day 25 the volume, number, and size of neurons were sexually dimorphic in both the contralateral and ipsilateral RA. Similarly, the absence of both lMAN and HVC afferents did not prevent the emergence of sex differences in the number and size of RA neurons by 25 day posthatching. We conclude that these sex differences within the RA are not a secondary response to dimorphisms in the numbers of lMAN or HVC neurons providing afferent input. © 1995 John Wiley & Sons, Inc.  相似文献   

13.
Sex differences in the vertebrate brain (brain sex) are thought to develop owing to the tissue specific action of gonadal hormones similar to the development of secondary sex characteristics of the body. Small sex differences in body anatomy could, however, retrogradely control the sexual differentiation of the central nervous system. This possibility has so far been verified only for motorneuron pools, since the connectivity of sex-specific higher brain areas to the sexual dimorphic periphery is frequently not well known. Here, we tested whether somatic sex differences feed back on higher brain areas by bilateral denervation of the syringeal musculature of zebra finches before, during, and after onset of estrogen-sensitive sexual differentiation of forebrain vocal nuclei such as RA (nucleus robustus archistriatalis). In the zebra finch, the sound-producing musculature (the syrinx), the syrinx motornucleus hypoglossus pars tracheosyringealis (nXIIts), and the RA are much larger in males compared to females. Tract tracing studies revealed that the volume and neuron size distribution of the nXIIts was sexually dimorphic in intact but not in animals denervated as juveniles. In contrast, the volume of RA and size of RA neurons of denervated animals were highly sexually dimorphic. Furthermore, estrogen masculinized the RA of denervated females. Thus, sexual differentiation of the RA but not of the nXIIts appears independent of somatic sex differences. The syrinx muscles are, however, important for the soma size of those RA neurons that project to the nXIIts.  相似文献   

14.
The preoptic area of the mammalian forebrain is a critical substrate for the development and maintenance of many sexually dimorphic behaviors relevant to reproduction. Normal development of the male rodent brain requires completion of two processes: (1) masculinization-induction of the male phenotype, and (2) defeminization-removal of the female phenotype. Both processes, although distinct, are largely directed by the same steroid, estradiol. Whether estradiol achieves both ends via the same or separate mechanisms has been unknown. Here, we report that prostaglandin-E(2) (PGE(2)) acting downstream of estradiol, is necessary and sufficient to masculinize sexual behavior but does not affect defeminization of sexual behavior or maternal behavior. Moreover, the volume of the sexually dimorphic nucleus of the preoptic area predicts defeminization of sexual behavior, but not masculinization of sexual behavior. Another sexually dimorphic cellular endpoint regulated by estradiol, spinophilin protein expression in the mediobasal hypothalamus, was not affected by PGE(2). Thus, PGE(2) is a key divergence point in the downstream actions of estradiol to simultaneously masculinize and defeminize sexual behavior.  相似文献   

15.
Sex differences in the vertebrate brain (brain sex) are thought to develop owing to the tissue specific action of gonadal hormones similar to the development of secundary sex characteristics of the body. Small sex differences in body anatomy could, however, retrogradely control the sexual differentiation of the central nervous system. This possibility has so far been verified only for motorneuron pools, since the connectivity of sex‐specific higher brain areas to the sexual dimorphic periphery is frequently not well known. Here, we tested whether somatic sex differences feed back on higher brain areas by bilateral denervation of the syringeal musculature of zebra finches before, during, and after onset of estrogen‐sensitive sexual differentiation of forebrain vocal nuclei such as RA (nucleus robustus archistriatalis). In the zebra finch, the sound‐producing musculature (the syrinx), the syrinx motornucleus hypolossus pars tracheosyringealis (nXIIts), and the RA are much larger in males compared to females. Tract tracing studies revealed that the volume and neuron size distribution of the nXIIts was sexually dimorphic in intact but not in animals denervated as juveniles. In contrast, the volume of RA and size of RA neurons of denervated animals were highly sexually dimorphic. Furthermore, estrogen masculinized the RA of denervated females. Thus, sexual differentiation of the RA but not of the nXIIts appears independent of somatic sex differences. The syrinx muscles are, however, important for the soma size of those RA neurons that project to the nXIIts. © 2000 John Wiley & Sons, Inc. J Neurobiol 42: 220–231, 2000  相似文献   

16.
17.
Sexual selection may facilitate genetic isolation among populations and result in increased rates of diversification. As a mechanism driving diversification, sexual selection has been invoked and upheld in numerous empirical studies across disparate taxa, including birds, plants and spiders. In this study, we investigate the potential impact of sexual selection on the tempo and mode of ponyfish evolution. Ponyfishes (Leiognathidae) are bioluminescent marine fishes that exhibit sexually dimorphic features of their unique light-organ system (LOS). Although sexual selection is widely considered to be the driving force behind ponyfish speciation, this hypothesis has never been formally tested. Given that some leiognathid species have a sexually dimorphic LOS, whereas others do not, this family provides an excellent system within which to study the potential role of sexual selection in diversification and morphological differentiation. In this study, we estimate the phylogenetic relationships and divergence times for Leiognathidae, investigate the tempo and mode of ponyfish diversification, and explore morphological shape disparity among leiognathid clades. We recover strong support for a monophyletic Leiognathidae and estimate that all major ponyfish lineages evolved during the Paleogene. Our studies of ponyfish diversification demonstrate that there is no conclusive evidence that sexually dimorphic clades are significantly more species rich than nonsexually dimorphic lineages and that evidence is lacking to support any significant diversification rate increases within ponyfishes. Further, we detected a lineage-through-time signal indicating that ponyfishes have continuously diversified through time, which is in contrast to many recent diversification studies that identify lineage-through-time patterns that support mechanisms of density-dependent speciation. Additionally, there is no evidence of sexual selection hindering morphological diversity, as sexually dimorphic taxa are shown to be more disparate in overall shape morphology than nonsexually dimorphic taxa. Our results suggest that if sexual selection is occurring in ponyfish evolution, it is likely acting only as a genetic isolating mechanism that has allowed ponyfishes to continuously diversify over time, with no overall impact on increases in diversification rate or morphological disparity.  相似文献   

18.
19.
The neural system controlling song in birds has proven a useful model for investigating how neuronal growth and survival are regulated by sexual differentiation. The present study focused on one song control area, the robust nucleus of the archistriatum (RA), and explored how sex differences in the proliferation of putative glia cells in this region influence sexually dimorphic cell survival. In zebra finches (Poephila guttata), RA neuron death is much greater in young females than in males, resulting in marked sex differences in RA neuron number. An earlier study indicated that just prior to this sexually dimorphic neuron death the proliferation of putative glia cells within the RA is significantly lower in females than in males and remains so throughout the peak of neuron death. This suggests that sex differences in glia (or glia-derived molecules) might regulate neuron survival during sexual differentiation of the RA. To determine whether increased cell proliferation within the RA favors increased cell survival, we infused the potent glia mitogen fibroblast growth factor-2 (FGF-2) into the RA unilaterally in young females. We find that FGF-2 infusions increase RA cell proliferation and concurrently decrease the incidence of degenerating RA cells, results consistent with the hypothesis that glia exert neurotrophic effects on RA neurons during sexual differentiation. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 573–581, 1998  相似文献   

20.
The interstitial nuclei of the human anterior hypothalamus (INAH1-4) have been considered candidates for homology with the sexually dimorphic nucleus of the preoptic area of the rat. Volumetric sexual dimorphism has been described for three of these nuclei (INAH1-3), and INAH3 has been reported to be smaller in homosexual than heterosexual men. The current study measured the INAH in Nissl-stained coronal sections in autopsy material from 34 presumed heterosexual men (24 HIV- and 10 HIV+), 34 presumed heterosexual women (25 HIV- and 9 HIV+), and 14 HIV+ homosexual men. HIV status significantly influenced the volume of INAH1 (8% larger in HIV+ heterosexual men and women relative to HIV- individuals), but no other INAH. INAH3 contained significantly more neurons and occupied a greater volume in presumed heterosexual males than females. No sex difference in volume was detected for any other INAH. No sexual variation in neuronal size or density was observed in any INAH. Although there was a trend for INAH3 to occupy a smaller volume in homosexual men than in heterosexual men, there was no difference in the number of neurons within the nucleus based on sexual orientation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号