首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, we characterize the function of the tumor suppressor gene PTEN in Jurkat T cells. We established stable clones of Jurkat T cells that inducibly express either wild-type or phosphatase-inactive PTEN. We show here that PTEN potently inhibited the growth and reduced the size of Jurkat cells. The growth-suppressive effect of PTEN was associated with its ability to induce apoptotic cell death with little or no effect on cell cycle. PTEN also rendered Jurkat cells more susceptible to apoptosis induced by various stimuli. Furthermore, PTEN expression led to a reduction in the level of 3'-phosphorylated phospholipids and thus altered the activity and localization of Akt. Finally, coexpression of constitutively active Akt reversed the effects caused by PTEN. In summary, our results suggest that PTEN suppresses cell growth, promotes apoptosis, and decreases cell size by negatively regulating the phosphoinositide 3-kinase/Akt pathway in Jurkat T cells.  相似文献   

2.
《FEBS letters》2014,588(9):1773-1779
Cancer cell metabolism is often characterized by a shift from an oxidative to a glycolytic bioenergetics pathway, a phenomenon known as the warburg effect. Whether the deregulation of miRNAs contributes to the warburg effect remains largely unknown. Here we show that miR-181a expression is increased and thus induces a metabolic shift in colon cancer cells. miR-181a performs this function by inhibiting the expression of PTEN, leading to an increase of phosphorylated AKT which triggers metabolic shift. The increase of lactate production induced by miR-181a results in the rapid growth of cancer cells. These results identify miR-181a as a molecular switch involved in the orchestration of the warburg effect in colon cancer cells via the PTEN/AKT pathway.  相似文献   

3.
The control of cell and organ growth is fundamental to the development of multicellular organisms. Here, we show that dPTEN, a Drosophila homolog of the mammalian PTEN tumor suppressor gene, plays an essential role in the control of cell size, cell number, and organ size. In mosaic animals, dPTEN(-) cells proliferate faster than their heterozygous siblings, show an autonomous increase in cell size, and form organs of increased size, whereas overexpression of dPTEN results in opposite phenotypes. The loss-of-function phenotypes of dPTEN are suppressed by mutations in the PI3K target Dakt1 and the translational initiation factor eif4A, suggesting that dPTEN acts through the PI3K signaling pathway to regulate translation. Although activation of PI3K and Akt has been reported to increase rates of cellular growth but not proliferation, loss of dPTEN stimulates both of these processes, suggesting that PTEN regulates overall growth through PI3K/Akt-dependent and -independent pathways. Furthermore, we show that dPTEN does not play a major role in cell survival during Drosophila development. Our results provide a potential explanation for the high frequency of PTEN mutation in human cancer.  相似文献   

4.
Human Thioredoxin-1 (hTrx-1) is a small redox protein with a molecular weight of 12 kDa that contains two cysteine residues found in its catalytic site. HTrx-1 plays an important role in cell growth, apoptosis, and cancer patient prognosis. Recently, we have demonstrated that hTrx-1 binds to the C2 domain of the human tumor suppressor, PTEN, in a redox dependent manner. This binding leads to the inhibition of PTEN lipid phosphatase activity in mammalian tissue culture systems. In this study, we show that over-expression of hTrx-1 in Drosophila melanogaster promotes cell growth and proliferation during eye development as measured by eye size and ommatidia size. Furthermore, hTrx-1 rescues the small eye phenotype induced by the over-expression of PTEN. We demonstrate that this rescue of the PTEN-induced eye size phenotype requires cysteine-218 in the C2 domain of PTEN. We also show that hTrx-1 over-expression results in increased Akt phosphorylation in fly head extracts supporting our observations that the hTrx-1-induced eye size increase results from the inhibition of PTEN activity. Our study confirms the redox regulation of PTEN through disulfide bond formation with the hTrx-1 in Drosophila and suggests conserved mechanisms for thioredoxins and their interactions with the phosphatidylinositol-3-kinase signaling pathway in humans and fruit flies.  相似文献   

5.
6.
Inactivation of the tumor suppressor phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is heavily implicated in the tumorigenesis of prostate cancer. Conversely, the upregulation of the chemokine (CXC) receptor 4 (CXCR4) is associated with prostate cancer progression and metastasis. Studies have shown that loss of PTEN permits CXCR4-mediated functions in prostate cancer cells. Loss of PTEN function is typically due to genetic and epigenetic modulations, as well as active site oxidation by reactive oxygen species (ROS); likewise ROS upregulates CXCR4 expression. Herein, we show that ROS accumulation permitted CXCR4-mediated functions through PTEN catalytic inactivation. ROS increased p-AKT and CXCR4 expression, which were abrogated by a ROS scavenger in prostate cancer cells. ROS mediated PTEN inactivation but did not affect expression, yet enhanced cell migration and invasion in a CXCR4-dependent manner. Collectively, our studies add to the body of knowledge on the regulatory role of PTEN in CXCR4-mediated cancer progression, and hopefully, will contribute to the development of therapies that target the tumor microenvironment, which have great potential for the better management of a metastatic disease.  相似文献   

7.

Background

The PTEN phosphatase acts on phosphatidylinositol 3,4,5-triphosphates resulting from phosphatidylinositol 3-kinase (PI3K) activation. PTEN expression has been shown to be decreased in colorectal cancer. Little is known however as to the specific cellular role of PTEN in human intestinal epithelial cells. The aim of this study was to investigate the role of PTEN in human colorectal cancer cells.

Methodology/Principal Findings

Caco-2/15, HCT116 and CT26 cells were infected with recombinant lentiviruses expressing a shRNA specifically designed to knock-down PTEN. The impact of PTEN downregulation was analyzed on cell polarization and differentiation, intercellular junction integrity (expression of cell-cell adhesion proteins, barrier function), migration (wound assay), invasion (matrigel-coated transwells) and on tumor and metastasis formation in mice. Electron microscopy analysis showed that lentiviral infection of PTEN shRNA significantly inhibited Caco-2/15 cell polarization, functional differentiation and brush border development. A strong reduction in claudin 1, 3, 4 and 8 was also observed as well as a decrease in transepithelial resistance. Loss of PTEN expression increased the spreading, migration and invasion capacities of colorectal cancer cells in vitro. PTEN downregulation also increased tumor size following subcutaneous injection of colorectal cancer cells in nude mice. Finally, loss of PTEN expression in HCT116 and CT26, but not in Caco-2/15, led to an increase in their metastatic potential following tail-vein injections in mice.

Conclusions/Significance

Altogether, these results indicate that PTEN controls cellular polarity, establishment of cell-cell junctions, paracellular permeability, migration and tumorigenic/metastatic potential of human colorectal cancer cells.  相似文献   

8.
乳腺癌组织抑癌基因PTEN的表达及其意义   总被引:1,自引:0,他引:1  
目的探讨PTEN基因在人乳腺癌组织的表达及其与临床病理参数的关系.方法采用免疫组织化学法和原位杂交法,对70例乳腺癌组织PTEN基因mRNA和蛋白表达进行分析.结果 15例乳腺良性肿瘤均见PTENmRNA和蛋白表达,其阳性率为(100.0% 15/15);70例乳腺癌组织中PTENmRNA和蛋白表达明显降低,阳性率分别为51.4%(36/70)和47.1%(33/70),与对照组比较差异有显著性(P<0.01);PTEN基因表达下调与乳腺癌的组织学分级,TNM分期和腋淋巴结转移有关,而与肿瘤的大小和ER、PR状况无关.乳腺癌PTEN mRNA表达检测结果与PTEN蛋白相似.结论乳腺癌中存在PTEN基因表达异常,PTEN表达下调与乳腺癌的进展、转移关系密切.  相似文献   

9.
Thioredoxin-1 (Trx-1) is a 12 kDa redox protein that is overexpressed in a large number of human tumors. Elevated Trx-1 is associated with increased tumor cell proliferation, inhibited apoptosis, aggressive tumor growth, and decreased patient survival. The molecular mechanisms for the promotion of tumorigenesis by Trx-1 are not known. PTEN is a major tumor suppressor of human cancer that acts by hydrolyzing membrane phosphatidylinositol (PtdIns)-3-phosphates, thus, preventing the activation of the survival signaling kinase Akt by PtdIns-3-kinase. We show that Trx-1 binds in a redox dependent manner to PTEN to inhibit its PtdIns-3-phosphatase activity which results in increased Akt activation in cells. Molecular docking and site-specific mutation studies show that the binding of Trx-1 to PTEN occurs through a disulfide bond between the active site Cys(32) of Trx-1 and Cys(212) of the C2 domain of PTEN leading to steric interference by bound Trx-1 of the catalytic site of PTEN and of the C2 lipid membrane-binding domain. The results of the study suggest that the increased levels of Trx-1 in human tumors could lead to functional inhibition of PTEN tumor suppressor activity providing an additional mechanism for tumorigenesis with loss of PTEN activity.  相似文献   

10.
11.
The PTEN tumor suppressor gene modulates several cellular functions, including cell migration, survival, and proliferation [1] by antagonizing phosphatidylinositol 3-kinase (PI 3-kinase)-mediated signaling cascades. Mechanisms by which the expression of PTEN is regulated are, however, unclear. The ligand-activated nuclear receptor peroxisome proliferator-activated receptor gamma (PPARgamma) [2] has been shown to regulate differentiation and/or cell growth in a number of cell types [3, 4, 5], which has led to the suggestion that PPARgamma, like PTEN [1, 6], could act as a tumor suppressor. PPARgamma has also been implicated in anti-inflammatory responses [7, 8], although downstream mediators of these effects are not well defined. Here, we show that the activation of PPARgamma by its selective ligand, rosiglitazone, upregulates PTEN expression in human macrophages, Caco2 colorectal cancer cells, and MCF7 breast cancer cells. This upregulation correlated with decreased PI 3-kinase activity as measured by reduced phosphorylation of protein kinase B. One consequence of this was that rosiglitazone treatment reduced the proliferation rate of Caco2 and MCF7 cells. Antisense-mediated disruption of PPARgamma expression prevented the upregulation of PTEN that normally accompanies monocyte differentiation and reduced the proportion of macrophages undergoing apoptosis, while electrophoretic mobility shift assays showed that PPARgamma is able to bind two response elements in the genomic sequence upstream of PTEN. Our results demonstrate a role for PPARgamma in regulating PI 3-kinase signaling by modulating PTEN expression in inflammatory and tumor-derived cells.  相似文献   

12.
13.
FTY720, a new immunosuppressant, derived from ISP‐1, has been studied for its putative anti‐cancer properties in the recent years. In this study, we have reported that FTY720 greatly inhibited gastric cancer cell proliferation for the first time, and found this effect was associated with G1 phase cell cycle arrest and apoptosis. Results from our Western blotting and Real‐time PCR showed that FTY720 induced obvious PTEN expression in a p53‐independent way, consistent with a substantial decrease in p‐Akt and MDM2. FTY720 dramatically increased the expression of Cip1/p21, p27, and BH3‐only proteins through the accumulation of p53 by PTEN‐mediated inhibition of the PI3K/Akt/MDM2 signaling. Suppression of PTEN expression with siRNA significantly reduced the p53 and p21 levels and activated Akt, resulting in decreased apoptosis and increased cell survival. Furthermore, we have observed an additive effect of FTY720 in killing gastric cancer cells when in combination with Cisplatin, partly through PTEN‐mediated Akt/MDM2 inhibition. In vivo study has also shown that tumor growth was significantly suppressed after FTY720 treatment. In conclusion, our results suggest that FTY720 induces a significant increase of PTEN, which inhibits p‐Akt and MDM2, and then increases the level of p53, thereby inducing G1 phase arrest and apoptosis. We have characterized a novel immunosuppressant, for the first time, which shows potential anti‐tumor effects on gastric cancer by PTEN activation through p53‐independent mechanism, especially in combination with Cisplatin. This PTEN target‐based therapy is worth further investigation and warrants clinical evaluation. J. Cell. Biochem. 111: 218–228, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
Alterations in the cell division:cell death ratio induce multiple autoimmune and transformation processes. Phosphoinositide 3-kinase (PI3K) controls cell division and cell death in vitro, but its effect on the function of the cellular immune system and on tumor formation in mammals is poorly characterized. Here we show that transgenic mice expressing in T lymphocytes an active form of PI3K derived from a thymic lymphoma, p65(PI3K), developed an infiltrating lymphoproliferative disorder and autoimmune renal disease with an increased number of T lymphocytes exhibiting a memory phenotype and reduced apoptosis. This pathology was strikingly similar to that described in mice exhibiting heterozygous loss of the tumor suppressor PTEN, a lipid and protein phosphatase. We show that overexpression of PTEN selectively blocks p65(PI3K)-induced 3T3 fibroblast transformation. Moreover, the early development of T cell lymphomas in p65(PI3K) Tg p53(-/-) mice indicated that PI3K contributes to tumor development. These observations demonstrate that constitutive activation of PI3K extends T cell survival in vivo, affects T cell homeostasis, and contributes to tumor generation, supporting a model in which selective increases in one type of PTEN substrate, the PI3K-derived lipid products, induce tumorigenesis. PI3K thus emerges as a potential target in autoimmune disease and cancer therapy.  相似文献   

15.
PTEN, a tumor suppressor commonly targeted in human cancer, possesses phosphatase activities toward both protein and lipid substrates. While PTEN suppresses gliomas through cell cycle inhibition which requires its lipid phosphatase activity, PTEN's effects on other tumor types and the role of its protein phosphatase activity are controversial or unknown. Here we show that exogenous wild-type PTEN arrests some, but not all human breast cancer cell lines in G1, in a manner independent of endogenous PTEN. Unexpectedly, the G129E mutant of PTEN selectively deficient in the lipid phosphatase activity still blocked the cell cycle of MCF-7 cells, while the G129R and H123Y mutants lacking both phosphatase activities were ineffective. These results suggest that PTEN's protein phosphatase activity likely contributes to its tumor suppressor function in subsets of tumors and that elucidation of downstream targets which dictate cellular responses to PTEN may have important implications for future cancer treatment strategies.  相似文献   

16.
《Cellular signalling》2014,26(5):1011-1020
The tumor suppressor gene phosphatase and tensin homolog (PTEN) is essential in inhibiting tumor growth and metastasis. However, the mechanism by which PTEN restricts gastric cancer progression and metastasis remains largely elusive. Here we demonstrated that PTEN overexpression or knockdown in gastric cancer cells led to the downregulation or upregulation of focal adhesion kinase (FAK), and decreased or increased cell invasion, respectively. Moreover, FAK overexpression could rescue the inhibition of cell invasion by PTEN. These results were further confirmed in orthotropic gastric cancer nude mice model. In addition, in human gastric cancer tissues, PTEN protein level was conversely correlated with FAK protein level. Mechanistically, we found that PTEN inhibited PI3K/NF-κB pathway and inhibited the DNA binding of NF-κB on FAK promoter. Taken together, our data reveal a novel mechanism that PTEN inhibits the growth and invasion of gastric cancer via the downregulation of FAK expression and suggest that exploiting PTEN/PI3K/NF-κB/FAK axis is a promising approach to treat gastric cancer metastasis.  相似文献   

17.
Loss of the tumor suppressor PTEN is observed in many human cancers that display increased chromosome instability and aneuploidy. The subcellular fractions of PTEN are associated with different functions that regulate cell growth, invasion and chromosome stability. In this study, we show a novel role for PTEN in regulating mitotic centrosomes. PTEN localization at mitotic centrosomes peaks between prophase and metaphase, paralleling the centrosomal localization of PLK-1 and γ-tubulin and coinciding with the time frame of centrosome maturation. In primary keratinocytes, knockdown of PTEN increased whole-cell levels of γ-tubulin and PLK-1 in an Akt-dependent manner and had little effect on recruitment of either protein to mitotic centrosomes. Conversely, knockdown of PTEN reduced centrosomal levels of pericentrin in an Akt-independent manner. Inhibition of Akt activation with MK2206 reduced the whole-cell and centrosome levels of PLK-1 and γ-tubulin and also prevented the recruitment of PTEN to mitotic centrosomes. This reduction in centrosome-associated proteins upon inhibition of Akt activity may contribute to the increase in defects in centrosome number and separation observed in metaphase cells. Concomitant PTEN knockdown and Akt inhibition reduced the frequency of metaphase cells with centrosome defects when compared with MK2206 treatment alone, indicating that both PTEN and pAkt are required to properly regulate centrosome composition during mitosis. The findings presented in this study demonstrate a novel role for PTEN and Akt in controlling centrosome composition and integrity during mitosis and provide insight into how PTEN functions as a multifaceted tumor suppressor.  相似文献   

18.
Following DNA damage, human cells undergo arrests in the G(1) and G(2) phases of the cell cycle and a simultaneous arrest in cell size. We previously demonstrated that the cell size arrest can be uncoupled from the cell cycle arrest by mutational inactivation of the PTEN tumor suppressor gene. Here we show that the cell size checkpoint is inducible by DNA-damaging chemotherapeutic agents as well as by ionizing radiation and is effectively regulated by PTEN but not by its oncogenic counterpart, PIK3CA. Mutational analysis of PTEN and pharmacological inhibition of Akt revealed that modulation of Akt phosphorylation is unnecessary for cell size checkpoint control. To discover putative PTEN regulators and/or effectors involved in size checkpoint control, we employed a novel endogenous epitope tagging (EET) approach, which revealed that endogenous PTEN interacts at the membrane with an actin-remodeling complex that includes actin, gelsolin, and EPLIN. Pharmacological inhibition of actin remodeling in PTEN(+/+) cells recapitulated the lack of size checkpoint control seen in PTEN(-/-) cells. Taken together, these results provide further support for the existence of a DNA damage-inducible size checkpoint that is regulated by a major tumor suppressor, and they provide a novel Akt-independent mechanism by which PTEN controls cell size.  相似文献   

19.
20.
One outcome of activation of the phosphatidylinositol 3-kinase (PI3K) pathway is increased aerobic glycolysis, but the upstream signaling events that regulate the PI3K pathway, and thus the Warburg effect, are elusive. Increasing evidence suggests that Plk1, a cell cycle regulator, is also involved in cellular events in addition to mitosis. To test whether Plk1 contributes to activation of the PI3K pathway, and thus aerobic glycolysis, we examined potential targets of Plk1 and identified PTEN as a Plk1 substrate. We hypothesize that Plk1 phosphorylation of PTEN leads to its inactivation, activation of the PI3K pathway, and the Warburg effect. Our data show that overexpression of Plk1 leads to activation of the PI3K pathway and enhanced aerobic glycolysis. In contrast, inhibition of Plk1 causes markedly reduced glucose metabolism in mice. Mechanistically, we show that Plk1 phosphorylation of PTEN and Nedd4-1, an E3 ubiquitin ligase of PTEN, results in PTEN inactivation. Finally, we show that Plk1 phosphorylation of PTEN promotes tumorigenesis in both its phosphatase-dependent and -independent pathways, revealing potentially new drug targets to arrest tumor cell growth.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号