首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
Nuclear membrane fusion is the last step in the mating pathway of the yeast Saccharomyces cerevisiae. We adapted a bioinformatics approach to identify putative pheromone-induced membrane proteins potentially required for nuclear membrane fusion. One protein, Prm3p, was found to be required for nuclear membrane fusion; disruption of PRM3 caused a strong bilateral defect, in which nuclear congression was completed but fusion did not occur. Prm3p was localized to the nuclear envelope in pheromone-responding cells, with significant colocalization with the spindle pole body in zygotes. A previous report, using a truncated protein, claimed that Prm3p is localized to the inner nuclear envelope. Based on biochemistry, immunoelectron microscopy and live cell microscopy, we find that functional Prm3p is a peripheral membrane protein exposed on the cytoplasmic face of the outer nuclear envelope. In support of this, mutations in a putative nuclear localization sequence had no effect on full-length protein function or localization. In contrast, point mutations and deletions in the highly conserved hydrophobic carboxy-terminal domain disrupted both protein function and localization. Genetic analysis, colocalization, and biochemical experiments indicate that Prm3p interacts directly with Kar5p, suggesting that nuclear membrane fusion is mediated by a protein complex.  相似文献   

5.
6.
The present study demonstrates a major remodeling of the nuclear envelope and its underlying lamina during bovine preimplantation development. Up to the onset of major embryonic genome activation (MGA) at the 8-cell stage nuclei showed a non-uniform distribution of nuclear pore complexes (NPCs). NPCs were exclusively present at sites where DNA contacted the nuclear lamina. Extended regions of the lamina, which were not contacted by DNA, lacked NPCs. In post-MGA nuclei the whole lamina was contacted rather uniformly by DNA. Accordingly, NPCs became uniformly distributed throughout the entire nuclear envelope. These findings shed new light on the conditions which control the integration of NPCs into the nuclear envelope. The switch from maternal to embryonic production of mRNAs was accompanied by multiple invaginations covered with NPCs, which may serve the increased demands of mRNA export and protein import. Other invaginations, as well as interior nuclear segments and vesicles without contact to the nuclear envelope, were exclusively positive for lamin B. Since the abundance of these invaginations and vesicles increased in concert with a massive nuclear volume reduction, we suggest that they reflect a mechanism for fitting the nuclear envelope and its lamina to a shrinking nuclear size during bovine preimplantation development. In addition, a deposit of extranuclear clusters of NUP153 (a marker for NPCs) without associated lamin B was frequently observed from the zygote stage up to MGA. Corresponding RNA-Seq data revealed deposits of spliced, maternally provided NUP153 mRNA and little unspliced, newly synthesized RNA prior to MGA, which increased strongly at the initiation of embryonic expression of NUP153 at MGA.  相似文献   

7.
8.
The functions and morphology of cellular membranes are intimately related and depend not only on their protein content but also on the repertoire of lipids that comprise them. In the absence of in vivo data on lipid asymmetry in endomembranes, it has been argued that motors, scaffolding proteins or integral membrane proteins rather than non-lamellar bilayer lipids such as diacylglycerol (DAG), are responsible for shaping of organelles, local membrane curvature and fusion. The effects of direct alteration of levels of such lipids remain predominantly uninvestigated. Diacylglycerol (DAG) is a well documented second messenger. Here we demonstrate two additional conserved functions of DAG: a structural role in organelle morphology, and a role in localised extreme membrane curvature required for fusion for which proteins alone are insufficient. Acute and inducible DAG depletion results in failure of the nuclear envelope (NE) to reform at mitosis and reorganisation of the ER into multi-lamellar sheets as revealed by correlative light and electron microscopy and 3D reconstructions. Remarkably, depleted cells divide without a complete NE, and unless rescued by 1,2 or 1,3 DAG soon die. Attenuation of DAG levels by enzyme microinjection into echinoderm eggs and embryos also results in alterations of ER morphology and nuclear membrane fusion. Our findings demonstrate that DAG is an in vivo modulator of organelle morphology in mammalian and echinoderm cells, indicating a fundamental role conserved across the deuterostome superphylum.  相似文献   

9.
In the past decade, a wide range of fascinating monogenic diseases have been linked to mutations in the LMNA gene, which encodes the A-type nuclear lamins, intermediate filament proteins of the nuclear envelope. These diseases include dilated cardiomyopathy with variable muscular dystrophy, Dunnigan-type familial partial lipodystrophy, a Charcot-Marie-Tooth type 2 disease, mandibuloacral dysplasia, and Hutchinson-Gilford progeria syndrome. Several diseases are also caused by mutations in genes encoding B-type lamins and proteins that associate with the nuclear lamina. Studies of these so-called laminopathies or nuclear envelopathies, some of which phenocopy common human disorders, are providing clues about functions of the nuclear envelope and insights into disease pathogenesis and human aging.Mutations in LMNA encoding the A-type lamins cause a group of human disorders often collectively called laminopathies. The major A-type lamins, lamin A and lamin C, arise by alternative splicing of the LMNA pre-mRNA and are expressed in virtually all differentiated somatic cells. Although the A-type lamins are widely expressed, LMNA mutations are responsible for at least a dozen different clinically defined disorders with tissue-selective abnormalities. Mutations in genes encoding B-type lamins and lamin-associated proteins, most of which are similarly expressed in almost all somatic cells, also cause tissue-selective diseases.Research on the laminopathies has provided novel clues about nuclear envelope function. Recent studies have begun to shed light on how alterations in the nuclear envelope could explain disease pathogenesis. Along with basic research on nuclear structure, the nuclear lamins, and lamina-associated proteins, clinical research on the laminopathies will contribute to a complete understanding of the functions of the nuclear envelope in normal physiology and in human pathology.  相似文献   

10.
细胞核是真核细胞中最大的细胞器.高等动物细胞核主要由双层核膜、核孔复合体、核纤层、染色质和核仁等组成.在细胞有丝分裂期,细胞核呈现去装配和再装配等动态变化.在细胞分裂间期,核膜、核孔复合体和核纤层构成细胞核的外周结构,为遗传物质在染色质和核仁中的代谢提供了一个相对稳定的环境,同时调控细胞核内外的物质转运,在细胞增殖、分化、个体发育和细胞衰老等许多方面发挥着重要作用.本文主要对高等动物细胞核膜和核纤层结构、功能及动态变化调控机制等方面的研究进展进行简要综述.  相似文献   

11.
12.
Roles of the nuclear envelope are considered in the regulation of nuclear protein import, ribonucleoprotein export, and coupling of DNA replication to the cell cycle. First, evidence is discussed that indicates that neutral and acidic amino acids can be important in nuclear localization signals as well as the widely acknowledged basic amino acids. Second, the recognition of nuclear localization signals by their receptor “importin” is discussed, focusing on the different roles of the two subunits of importin. Third, a role for the α subunit of importin in RNP export is considered together with the question of how the direction of traffic through nuclear pores is determined. The final part of this article considers evidence that the nuclear membrane prevents reinitiation of DNA replication in Xenopus eggs, by excluding a “licensing factor” that is essential for DNA replication. Replication licensing in Xenopus appears to involve several proteins including the MCM (minichromosome maintenance) complex and ORC, the origin recognition complex, which must bind before the MCM complex can bind to chromatin.  相似文献   

13.
14.
The nuclear lamina is a major obstacle encountered by herpesvirus nucleocapsids in their passage from the nucleus to the cytoplasm (nuclear egress). We found that the human cytomegalovirus (HCMV)-encoded protein kinase UL97, which is required for efficient nuclear egress, phosphorylates the nuclear lamina component lamin A/C in vitro on sites targeted by Cdc2/cyclin-dependent kinase 1, the enzyme that is responsible for breaking down the nuclear lamina during mitosis. Quantitative mass spectrometry analyses, comparing lamin A/C isolated from cells infected with viruses either expressing or lacking UL97 activity, revealed UL97-dependent phosphorylation of lamin A/C on the serine at residue 22 (Ser22). Transient treatment of HCMV-infected cells with maribavir, an inhibitor of UL97 kinase activity, reduced lamin A/C phosphorylation by approximately 50%, consistent with UL97 directly phosphorylating lamin A/C during HCMV replication. Phosphorylation of lamin A/C during viral replication was accompanied by changes in the shape of the nucleus, as well as thinning, invaginations, and discrete breaks in the nuclear lamina, all of which required UL97 activity. As Ser22 is a phosphorylation site of particularly strong relevance for lamin A/C disassembly, our data support a model wherein viral mimicry of a mitotic host cell kinase activity promotes nuclear egress while accommodating viral arrest of the cell cycle.  相似文献   

15.
During yeast mating, cell fusion is followed by the congression and fusion of the two nuclei. Proteins required for nuclear fusion are found at the surface (Prm3p) and within the lumen (Kar2p, Kar5p, and Kar8p) of the nuclear envelope (NE). Electron tomography (ET) of zygotes revealed that mutations in these proteins block nuclear fusion with different morphologies, suggesting that they act in different steps of fusion. Specifically, prm3 zygotes were blocked before formation of membrane bridges, whereas kar2, kar5, and kar8 zygotes frequently contained them. Membrane bridges were significantly larger and occurred more frequently in kar2 and kar8, than in kar5 mutant zygotes. The kinetics of NE fusion in prm3, kar5, and kar8 mutants, measured by live-cell fluorescence microscopy, were well correlated with the size and frequency of bridges observed by ET. However the kar2 mutant was defective for transfer of NE lumenal GFP, but not diffusion within the lumen, suggesting that transfer was blocked at the NE fusion junction. These observations suggest that Prm3p acts before initiation of outer NE fusion, Kar5p may help dilation of the initial fusion pore, and Kar2p and Kar8p act after outer NE fusion, during inner NE fusion.  相似文献   

16.
Common iatrogenic procedures can result in translocation of the human pathogenic fungus Candida albicans from mucosal surfaces to the bloodstream. Subsequent disseminated candidiasis and infection of deep-seated organs may occur if the fungus is not eliminated by blood cells. In these cases, fungal cells adhere to the endothelial cells of blood vessels, penetrate through endothelial layers, and invade deeper tissue. In this scenario, endothelial adhesion events must occur during circulation under conditions of physiological blood pressure. To investigate the fungal and host factors which contribute to this essential step of disseminated candidiasis, we have developed an in vitro circulatory C. albicans-endothelium interaction model. We demonstrate that both C. albicans yeast and hyphae can adhere under flow at a pressure similar to capillary blood pressure. Serum factors significantly enhanced the adhesion potential of viable but not killed C. albicans cells to endothelial cells. During circulation, C. albicans cells produced hyphae and the adhesion potential first increased, then decreased with time. We provide evidence that a specific temporal event in the yeast-to-hyphal transition, regulated by the G1 cyclin Hgc1, is critical for C. albicans-endothelium adhesion during circulation.Candida albicans is one of only a few fungal species which belong to the normal microbial flora of human beings and, under normal circumstances, exists as a commensal of the skin, gastrointestinal tract, oral cavity, or vagina. Alterations in the host environment, however, can result in the transition from a commensal to a pathogenic relationship. Even relatively mild immune suppression or antibiotic treatment can result in mucosal infections, and these superficial infections are extremely common (24). Candida species are also the most frequent cause of invasive fungal infections in humans, and C. albicans accounts for around 50% of disseminated candidiasis (23). These infections are extremely serious, with attributable mortality rates of 40 to 50%, even with first-line antifungal therapy. Although severe immune suppression—in particular defects in innate immunity, such as neutropenia—is associated with disseminated candidiasis, the major risk factors are common iatrogenic procedures and/or nosocomial conditions such as placement of a central venous catheter and disruption of normal skin barriers or gut mucosa.In these situations, C. albicans can gain access to the bloodstream and, from there, disseminate throughout the body and colonize organs, which may ultimately result in sepsis and multiorgan failure. In order to exit the bloodstream and infect internal organs, however, the fungus must first adhere to and traverse the endothelial lining of blood vessels. Although this critical step in disseminated candidiasis has been the subject of several studies (reviewed in reference 13), the detailed mechanisms underlying it remain poorly understood, and it is likely that C. albicans-endothelium adhesion is mediated by numerous different host and fungal activities. While mostly uncharacterized at the molecular level, C. albicans has been shown to possess integrin-like molecules which mediate the adhesion of yeast cells to the endothelium (15). In addition, the hydrophobicity of the yeast cell surface was also demonstrated to influence adhesion under conditions which mimic the physical pressure of the circulatory system (11) and the glycosylation state of cell wall proteins is likely to play a major role, as a pmt6Δ mutant with defective O-glycosylation of secreted proteins displays attenuated endothelial adhesion (26).The genome of C. albicans contains numerous genes encoding both putative and characterized adhesins (6, 21, 25). Of these, only a small number have been tested for involvement in endothelial interactions and only certain members of the ALS gene family have been demonstrated to play a role in endothelial attachment events. Als2 and Als3 represent multifunctional adhesins with roles in adherence to both endothelial and epithelial cells, while Als1, Als4, and Als9 appear to specifically mediate adhesion to endothelial cells (30, 31).The aims of this study were to develop a circulatory blood vessel model and to characterize factors necessary for C. albicans-endothelium adhesion under physical pressure. A similar model has recently been described by Grubb et al. (14). These authors utilized a novel flow system to determine the relative adhesiveness of different C. albicans morphologies to endothelial cells. The authors found that yeast cells were more adherent under conditions of shear stress, which mimic the physical environment of postcapillary venules.The experimental design of the current study, however, features several differences. Most importantly, we have developed a circulation system, as opposed to linear perfusion, which permitted fungal adaptation within the system and allowed us to monitor morphological and adhesion kinetics during circulation. Furthermore, we have used a pressure which is similar to that found in capillary networks, have quantified the orientation of fungal hyphae relative to flow, and have analyzed the importance of fungal viability, the role of serum factors, and the importance of hypha-associated genes by using mutants lacking regulators of morphogenesis. Similar to Grubb et al. (14), we found that C. albicans yeast and hyphae can rapidly adhere under flow. However, we also found that an adaptation event associated with the yeast-to-hypha transition can greatly enhance C. albicans-endothelium adhesion during circulation. In fact, C. albicans adhered most efficiently at a distinct stage during dimorphism. Furthermore, we found that C. albicans can adhere under relatively high pressure, above 3 dynes/cm2, and that serum factors are important for this process. Finally, we provide molecular evidence that adhesion to endothelial cells under these conditions requires hyphal formation and is specifically mediated by the G1 cyclin encoded by HGC1.  相似文献   

17.
During mitosis, the vertebrate cell nucleus undergoes profound changes in architecture. At the onset of mitosis, the nuclear envelope breaks down, the nuclear lamina is depolymerized, and interphase chromatin is condensed to chromosomes. Concomitantly, cytoplasmic microtubules are reorganized into a mitotic spindle apparatus, a highly dynamic structure required for the segregation of sister chromatids. Many of the above events are controlled by reversible phosphorylation. Hence, our laboratory is interested in characterizing the kinases involved in promoting progression through mitosis and in identifying their relevant substrates. Prominent among the kinases responsible for regulating entry into mitosis is the Cdc2 kinase, the first member of the cyclin dependent kinase (Cdk) family. Recently, we found that Cdc2 phosphorylates HsEg5, a human kinesin-related motor protein associated with centrosomes and the spindle apparatus. Our results indicate that phosphorylation regulates the association of HsEg5 with the mitotic spindle and that the function of this plus-end directed motor is essential for centrosome separation and bipolar spindle formation. Another kinase implicated in regulating progression through mitosis is Plk1 (polo-like kinase 1), the human homologue of theDrosophilagene product “polo.” By antibody microinjection we have found that Plk1 is required for the functional maturation of centrosomes and hence for entry into mitosis. Furthermore, we found that microinjected anti-Plk1 antibodies caused a more severe block to cell cycle progression in diploid fibroblasts than in immortalized tumor cells. This observation hints at the existence of a checkpoint linking Cdc2 activation to the presence of functional centrosomes.  相似文献   

18.
Consumption of L-arginine contributes to reduced bioavailability of nitric oxide (NO) that is critical for the development of ischemia-reperfusion injury. The aim of the study was to determine myocardial arginase expression and activity in ischemic-reperfusion myocardium and whether local inhibition of arginase within the ischemic myocardium results in increased NO production and protection against myocardial ischemia-reperfusion. Anesthetized pigs were subjected to coronary artery occlusion for 40 min followed by 4 h reperfusion. The pigs were randomized to intracoronary infusion of vehicle (n = 7), the arginase inhibitor N-hydroxy-nor-L-arginine (nor-NOHA, 2 mg/min, n = 7), the combination of nor-NOHA and the NO synthase inhibitor NG-monomethyl-L-arginine (L-NMMA, 0.35 mg/min, n = 6) into the jeopardized myocardial area or systemic intravenous infusion of nor-NOHA (2 mg/min, n = 5) at the end of ischemia and start of reperfusion. The infarct size of the vehicle group was 80±4% of the area at risk. Intracoronary nor-NOHA reduced infarct size to 46±5% (P<0.01). Co-administration of L-NMMA abrogated the cardioprotective effect mediated by nor-NOHA (infarct size 72±6%). Intravenous nor-NOHA did not reduce infarct size. Arginase I and II were expressed in cardiomyocytes, endothelial, smooth muscle and poylmorphonuclear cells. There was no difference in cytosolic arginase I or mitochondrial arginase II expression between ischemic-reperfused and non-ischemic myocardium. Arginase activity increased 2-fold in the ischemic-reperfused myocardium in comparison with non-ischemic myocardium. In conclusion, ischemia-reperfusion increases arginase activity without affecting cytosolic arginase I or mitochondrial arginase II expression. Local arginase inhibition during early reperfusion reduces infarct size via a mechanism that is dependent on increased bioavailability of NO.  相似文献   

19.
We have analyzed the fate of several integral membrane proteins of the nuclear envelope during mitosis in cultured mammalian cells to determine whether nuclear membrane proteins are present in a vesicle population distinct from bulk ER membranes after mitotic nuclear envelope disassembly or are dispersed throughout the ER. Using immunofluorescence staining and confocal microscopy, we compared the localization of two inner nuclear membrane proteins (laminaassociated polypeptides 1 and 2 [LAP1 and LAP2]) and a nuclear pore membrane protein (gp210) to the distribution of bulk ER membranes, which was determined with lipid dyes (DiOC6 and R6) and polyclonal antibodies. We found that at the resolution of this technique, the three nuclear envelope markers become completely dispersed throughout ER membranes during mitosis. In agreement with these results, we detected LAP1 in most membranes containing ER markers by immunogold electron microscopy of metaphase cells. Together, these findings indicate that nuclear membranes lose their identity as a subcompartment of the ER during mitosis. We found that nuclear lamins begin to reassemble around chromosomes at the end of mitosis at the same time as LAP1 and LAP2 and propose that reassembly of the nuclear envelope at the end of mitosis involves sorting of integral membrane proteins to chromosome surfaces by binding interactions with lamins and chromatin.  相似文献   

20.
Delivery of DNA to the cell nucleus is an essential step in many types of viral infection, transfection, gene transfer by the plant pathogen Agrobacterium tumefaciens and in strategies for gene therapy. Thus, the mechanism by which DNA crosses the nuclear pore complex (NPC) is of great interest. Using nuclei reconstituted in vitro in Xenopus egg extracts, we previously studied DNA passage through the nuclear pores using a single-molecule approach based on optical tweezers. Fluorescently labeled DNA molecules were also seen to accumulate within nuclei. Here we find that this import of DNA relies on a soluble protein receptor of the importin family. To identify this receptor, we used different pathway-specific cargoes in competition studies as well as pathway-specific dominant negative inhibitors derived from the nucleoporin Nup153. We found that inhibition of the receptor transportin suppresses DNA import. In contrast, inhibition of importin β has little effect on the nuclear accumulation of DNA. The dependence on transportin was fully confirmed in assays using permeabilized HeLa cells and a mammalian cell extract. We conclude that the nuclear import of DNA observed in these different vertebrate systems is largely mediated by the receptor transportin. We further report that histones, a known cargo of transportin, can act as an adaptor for the binding of transportin to DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号