首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Extracellular binding proteins or antagonists are important factors that modulate ligands in the transforming growth factor (TGF‐β) family. While the interplay between antagonists and ligands are essential for developmental and normal cellular processes, their imbalance can lead to the pathology of several disease states. In particular, recent studies have implicated members of the differential screening‐selected gene in neuroblastoma (DAN) family in disease such as renal fibrosis, pulmonary arterial hypertension, and reactivation of metastatic cancer stem cells. DAN family members are known to inhibit the bone morphogenetic proteins (BMP) of the TGF‐β family. However, unlike other TGF‐β antagonist families, DAN family members have roles beyond ligand inhibition and can modulate Wnt and vascular endothelial growth factor (VEGF) signaling pathways. This review describes recent structural and functional advances that have expanded our understanding of DAN family proteins with regards to BMP inhibition and also highlights their emerging roles in the modulation of Wnt and VEGF signaling pathways.  相似文献   

2.
Bone morphogenetic proteins (BMPs) are multifunctional signaling molecules that have gained increasing interest in cancer research. To obtain a systematic view on BMP signaling in pancreatic cancer we first determined the mRNA expression levels of seven BMP ligands (BMP2BMP8) and six BMP specific receptors in pancreatic cancer cell lines and normal pancreatic tissue. BMP receptor expression was seen in all cancer and normal samples. Low expression levels of BMP5 and BMP8 were detected in cancer cells compared to the normal samples, whereas BMP4 expression was elevated in 25% of the cases. The impact of BMP4 and BMP5 signaling on cell phenotype was then evaluated in five pancreatic cancer cell lines. Both ligands suppressed the growth of three cell lines (up to 79% decrease in BMP4-treated PANC-1 cells), mainly due to cell cycle changes. BMP4 and BMP5 concurrently increased cell migration and invasion (maximally a 10.8-fold increase in invaded BMP4-treated PANC-1 cells). The phenotypic changes were typically associated with the activation of the canonical SMAD pathway, although such activation was not observed in the PANC-1 cells. Taken together, BMP4 and BMP5 simultaneously inhibit the growth and promote migration and invasion of the same pancreatic cells and thus exhibit a biphasic role with both detrimental and beneficial functions in pancreatic cancer progression.  相似文献   

3.
Distant metastases occur when non‐small cell lung cancer (NSCLC) is at late stages. Bone metastasis is one of the most frequent metastases of NSCLC and leads to poor prognosis. It has been reported that high expression of BMP2 in NSCLC correlates with poor survival, but whether BMP2 contributes to NSCLC bone metastasis remains largely unknown. The activation of BMP signalling is found in metastatic bone tumours of mice Lewis lung carcinoma and predicts poor survival in human NSCLC. BMP2 signalling activation can enhance bone metastasis of Lewis lung carcinoma. Moreover, BMP2 secreted by stroma fibroblasts can promote the migration and invasion of NSCLC cells. Besides, in combination with pre‐osteoblast and LLCs, BMP2 could enhance the differentiation of macrophages into osteoclasts to play roles in the osteolytic mechanism of NSCLC bone metastasis. Interestingly, NSCLC cells can also enrich BMP2 to pre‐osteoblasts to function in the osteoblastic mechanism. Our results firstly demonstrate the detailed mechanisms about what roles BMP2 signalling play in enhancing NSCLC bone metastases. These findings provide a new potential therapy choice for preventing bone metastases of NSCLC via the inhibition of BMP2 signalling.  相似文献   

4.
Bone morphogenetic proteins (BMPs) are highly conserved morphogens that are essential for normal development. BMP-2 is highly expressed in the majority of non-small cell lung carcinomas (NSCLC) but not in normal lung tissue or benign lung tumors. The effects of the BMP signaling cascade on the growth and survival of cancer cells is poorly understood. We show that BMP signaling is basally active in lung cancer cell lines, which can be effectively inhibited with selective antagonists of the BMP type I receptors. Lung cancer cell lines express alk2, alk3, and alk6 and inhibition of a single BMP receptor was not sufficient to decrease signaling. Inhibition of more than one type I receptor was required to decrease BMP signaling in lung cancer cell lines. BMP receptor antagonists and silencing of BMP type I receptors with siRNA induced cell death, inhibited cell growth, and caused a significant decrease in the expression of inhibitor of differentiation (Id1, Id2, and Id3) family members, which are known to regulate cell growth and survival in many types of cancers. BMP receptor antagonists also decreased clonogenic cell growth. Knockdown of Id3 significantly decreased cell growth and induced cell death of lung cancer cells. H1299 cells stably overexpressing Id3 were resistant to growth suppression and induction of cell death induced by the BMP antagonist DMH2. These studies suggest that BMP signaling promotes cell growth and survival of lung cancer cells, which is mediated through its regulation of Id family members. Selective antagonists of the BMP type I receptors represents a potential means to pharmacologically treat NSCLC and other carcinomas with an activated BMP signaling cascade.  相似文献   

5.
6.
Metastasis requires numerous biological functions that jointly provide tumor cells from a primary site to seed and colonize a distant organ. Some of these activities are selected for in the primary site, whereas others are acquired at the metastatic niche. We provide molecular evidence showing that the BMP inhibitor, NOG, provides metastatic breast cancer cells with the ability to colonize the bone. NOG expression is acquired during the late events of metastasis, once cells have departed from the primary site, because it is not enriched in primary tumors with high risk of bone relapse. On the contrary, breast cancer bone metastatic lesions do select for high levels of NOG expression when compared with metastasis to the lung, liver, and brain. Pivotal to the bone colonization functions is the contribution of NOG to metastatic autonomous and nonautonomous cell functions. Using genetic approaches, we show that when NOG is expressed in human breast cancer cells, it facilitates bone colonization by fostering osteoclast differentiation and bone degradation and also contributes to metastatic lesions reinitiation. These findings reveal how aggressive cancer cell autonomous and nonautonomous functions can be mechanistically coupled to greater bone metastatic potential.  相似文献   

7.
8.
Bone morphogenetic proteins (BMPs) regulate cell fate during development and mediate cancer progression. In this study, we investigated the role of BMP4 in proliferation, anoikis resistance, metastatic migration, and drug resistance of breast cancer cells. We utilized breast cancer cell lines and clinical samples representing different subtypes to understand the functional effect of BMP4 on breast cancer. The BMP pathway was inhibited with the small molecule inhibitor LDN193189 hydrochloride (LDN). BMP4 signaling enhanced the expression of stem cell genes CD44, ALDH1A3, anti-apoptotic gene BCL2 and promoted anoikis resistance in MDA-MB-231 breast cancer cells. BMP4 enhanced self-renewal and chemoresistance in MDA-MB-231 by upregulating Notch signaling while LDN treatment abrogated anoikis resistance and proliferation of anoikis resistant breast cancer cells in the osteogenic microenvironment. Conversely, BMP4 downregulated proliferation, colony-forming ability, and suppressed anoikis resistance in MCF7 and SkBR3 cells, while LDN treatment promoted tumor spheroid formation and growth. These findings indicate that BMP4 has a context-dependent role in breast cancer. Further, our data with MDA-MB-231 cells representing triple-negative breast cancer suggest that BMP inhibition might impair its metastatic spread and colonization.Supplementary InformationThe online version contains supplementary material available at 10.1007/s12079-021-00649-9.  相似文献   

9.
10.
Cav-1 is an essential structural constituent of caveolae implicated in mitogenic signaling, oncogenesis, angiogenesis, neurodegenerative diseases and senescence. Its role as a tumor suppressor gene or as a tumor promoter seems to strictly depend on cell type and tumor stage/grade. The high expression of Cav-1 in some tumors in vivo, amongst which lung adenocarcinoma, is associated with increased tumor aggressiveness, metastatic potential and suppression of apoptosis. In the present study we investigated the role of Cav-1 in metastatic lung cancer proliferation. Cell lines were from metastatic lesions of lung adenocarcinoma (RAL) and of small cell lung carcinoma (SCLC-R1), in which we found Cav-1 expressed at high levels. Results show that siRNA-mediated down-regulation of Cav-1 caused stable arrest of proliferation in both cell lines. A marked reduction of cyclin D1 and of CDK4 expression was evident in the cells transfected with Cav-1 siRNA and consequently of phospho-Rb on ser(795) and ser(780). Furthermore, a significant decrease of the expression of phosphorylated AKT and of its down-stream effectors phosphorylated ERK and STAT3 was evident. Together, these findings indicate that Cav-1 silencing induces an arrest of human metastatic lung proliferation in vitro by a new inhibitory pathway in lung cancer and provide new insights into the molecular mechanisms underlying the pro-survival and tumor-promoting functions of Cav-1.  相似文献   

11.
Li X  Feng J  Sun R 《Journal of virology》2011,85(2):715-724
Kaposi's sarcoma (KS) and primary effusion lymphoma (PEL) cells are predominantly infected with latent Kaposi's sarcoma-associated herpesvirus (KSHV), presenting a barrier to the destruction of tumor cells. Latent KSHV can be reactivated to undergo lytic replication. Here we report that in PEL cells, oxidative stress induced by upregulated reactive oxygen species (ROS) can lead to KSHV reactivation or cell death. ROS are upregulated by NF-κB inhibition and are required for subsequent KSHV reactivation. Disruption of the intracellular redox balance through depletion of the antioxidant glutathione or inhibition of the antioxidant enzyme catalase also induces KSHV reactivation, suggesting that hydrogen peroxide induces reactivation. In addition, p38 signaling is required for KSHV reactivation induced by ROS. Furthermore, treatment of PEL cells with a higher concentration of the NF-κB inhibitor than that used for inducing KSHV reactivation further upregulates ROS and induces massive cell death. ROS, but not p38 signaling, are required for PEL cell death induced by NF-κB inhibition as well as by glutathione depletion. Importantly, anticancer drugs, such as cisplatin and arsenic trioxide, also induce KSHV reactivation and PEL cell death in a ROS-dependent manner. Our study thus establishes a critical role for ROS and oxidative stress in the regulation of KSHV reactivation and PEL cell death. Disrupting the cellular redox balance may be a potential strategy for treating KSHV-associated lymphoma.  相似文献   

12.
13.
14.
Summary Patients suffering from metastatic breast cancer and recurrent fever were investigated for viral reactivation or new viral infection as a possible cause of these febrile episodes. Three groups of patients were included in the study: (a) patients under adjuvant chemotherapy with cyclophosphamide, methotrexate and fluoruracil, (b) patients with stable metastatic disease treated with cyclophosphamide, fluoruracil and Adriamycin or mitoxantrone and (c) patients with progressive metastatic disease who also received the latter treatment. During the time of observation, patients under adjuvant chemotherapy did not present with fever or asymptomatic viral reactivation or bacterial infections at all. Out of 7 patients with stable disease, 2 had bacterial infections that coincided with the leukocyte nadir, and 1 presented with asymptomatic reactivation of cytomegalovirus. In contrast, fever in 9 of 11 patients with progressive disease was associated with a reactivation of herpes simplex virus (HSV) and in 3 of them with a consecutive reactivation of varicella zoster virus (VZV). The increase in complement-fixing anti-HSV or anti-VZV antibodies occurred in close association with a rise of the respective preexisting antibodies of the IgG class. In addition, HSV-infected cells were recovered from the urine of 7 patients with progressive disease further corroborating the serological data. Incidentally, natural killer cell activity, which has been postulated to be connected with the defense against viral infections, was found to be significantly lower in the group of patients with progressive disease, as compared to the group of patients under adjuvant chemotherapy (P <0.05) or to the group of patients with stable disease (P <0.05). We conclude that unexplained fever in patients with progressive metastatic breast cancer may result from viral reactivation.  相似文献   

15.
During development, many cells are specifically eliminated. Therefore, programmed cell death must be understood to fully elucidate embryogenesis. Retinoic acid (RA) and bone morphogenetic protein (BMP) 4 induce rapidly dividing P19 embryonal carcinoma cells to undergo apoptosis. RA alone minimally induces apoptosis, while BMP4 alone induces none. RA and BMP4 exposure also elevates the number of cells in the G1 phase of the cell cycle. Because many cell cycle proteins control both proliferation and apoptosis, we determined the role of these proteins in inducing apoptosis. Although the mRNA levels of cyclins D1 and D2 are reduced in cells undergoing apoptosis, the protein levels are not. In contrast, RA and BMP4 induce the Cdk inhibitor p27. This protein binds Cdk4 in RA- and BMP4-treated cells and inhibits Cdk4-dependent kinase activity. We used p27 antisense oligonucleotides to rescue the P19 cells from RA and BMP4 apoptosis thus proving that p27 is necessary. The Cdk4 substrate, retinoblastoma (Rb) protein, is also induced in apoptotic cells. Consistent with the decreased kinase activity of the apoptotic cells, this Rb protein is hypophosphorylated and presumably active. These data support the hypothesis that RA and BMP4 together induce the p27 protein leading to Rb activation and ultimately apoptosis.  相似文献   

16.
Lung cancer is the most common visceral malignancy in males, with rapidly increasing incidence in females, and a devastatingly poor prognosis. Transforming growth factor (TGF)-beta has been shown to induce senescence in A549 lung cancer cells, and both TGF-beta and bone morphogenetic protein (BMP) 2 can suppress the transformed phenotype of A549 cells in vitro. We examined the effects of BMP4, another member of the TGF-beta superfamily, on specific oncogenic properties of A549 cancer cells. When A549 cancer cells were treated continuously with 100 ng/ml of BMP4, a senescent phenotype was observed after 2 wk of treatment. The BMP-treated cells appeared larger than untreated cells, grew more slowly, had more senescence-associated beta-galactosidase activity, and had less telomerase activity, as measured by the telomeric repeat amplification protocol assay. Invasion through Engelbreth Holm-Swarm matrix was inhibited in the senescent cell population. Senescent BMP4-treated cells had lower ERK activation, VEGF expression, and Bcl2 expression than wild-type cells, consistent with a less proliferative, less angiogenic phenotype with increased susceptibility to death by apoptosis. BMP4 treatment also resulted in sustained elevation of Smad1. In vivo xenograft studies in the flanks of nude mice confirmed that the BMP-treated cells were significantly less tumorigenic than untreated cells. Direct overexpression of Smad1 using adenoviral constructs resulted in cell death within 5 days. These studies suggest that BMP4 pathway signaling can induce senescence and thus negatively regulate the growth of A549 lung cancer cells.  相似文献   

17.
Radiation treatment induces neuroendocrine differentiation (NED) in non-small cell lung cancer (NSCLC) A549 and H157 cells, so higher NE-like features in radioresistant A549 (A549R26-1) and H157 (H157R24-1) cells are observed than in parental cells. We detected higher NED marker expressions in A549R26-1 cell-derived tumors than in A549 cell-derived tumors. In mechanism studies, we found that NED induction in A549R26-1 and H157R24-1 cells was accompanied by increased intracellular cAMP and IL-6 levels. Treatment of radioresistant lung cancer cells with the inhibitor (SQ22536) of adenylate cyclase (AC) which is the enzyme responsible for the cAMP production, or the neutralizing antibody (Ab) of IL-6, resulted in decreased NE-like features in radioresistant lung cancer cells. In addition, we found MEK/Erk is the signaling pathway that triggers the cAMP- and IL-6-mediated NED induction in radioresistant lung cancer cells. Also, we found that MEK/Erk signaling pathway inhibition decreased NED in radioresistant cells. Radioresistant lung cancer cells exhibiting high NE-like features also showed higher radioresistance and higher metastatic potential than parental cells. When we inhibited cAMP-, or IL-6-mediated pathways, or the downstream MEK/Erk signaling pathway, radiosensitivity of radioresistant lung cancer cells was significantly increased and their metastatic potential was significantly reduced. In in vivo mouse studies, reducing NED by treating mice with the MEK/Erk inhibitor increased radiosensitivity. Immunohistochemical staining of tumor tissues lowered expressions of the NED/epithelial-mesenchymal transition (EMT)/metastatic markers when mice were treated with the MEK/Erk inhibitor.  相似文献   

18.
Cancer-associated changes in cell surface carbohydrates, including incomplete synthesis of normal carbohydrate epitopes, strongly affect malignant and metastatic potential. Here, we report that compensating for the cancer-associated loss of a single glycosyltransferase, beta1,4N-acetylgalactosaminyltransferase T2, dramatically decreased cell surface expression of both E-selectin ligands (sialyl Lewis(x) and sialyl Lewis(a)). This modification was associated with elevated expression of the Sd(a) carbohydrate determinant, which is expressed in normal gastrointestinal mucosa and is strikingly downregulated in cancer tissues. Loss of E-selectin ligands resulted in decreased adhesion of cancer cells to activated human endothelial cells in vitro and eventually suppressed metastatic potential in vivo.  相似文献   

19.
During cancer progression, malignant cells undergo epithelial-mesenchymal transitions (EMT) and mesenchymal-epithelial transitions (MET) as part of a broad invasion and metastasis program. We previously observed MET events among lung metastases in a preclinical model of prostate adenocarcinoma that suggested a relationship between epithelial plasticity and metastatic spread. We thus sought to translate these findings into clinical evidence by examining the existence of EMT in circulating tumor cells (CTC) from patients with progressive metastatic solid tumors, with a focus on men with castration-resistant prostate cancer (CRPC) and women with metastatic breast cancer. We showed that the majority (> 80%) of these CTCs in patients with metastatic CRPC coexpress epithelial proteins such as epithelial cell adhesion molecule (EpCAM), cytokeratins (CK), and E-cadherin, with mesenchymal proteins including vimentin, N-cadherin and O-cadherin, and the stem cell marker CD133. Equally, we found that more than 75% of CTCs from women with metastatic breast cancer coexpress CK, vimentin, and N-cadherin. The existence and high frequency of these CTCs coexpressing epithelial, mesenchymal, and stem cell markers in patients with progressive metastases has important implications for the application and interpretation of approved methods to detect CTCs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号