首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Testicular development in the captive male dojo loach Misgurnus anguillicaudatus was examined monthly in relation to the levels of plasma sex steroids [testosterone (T), 11-ketotestostrone (11-KT), and 17,20β-dihydroxy-4-pregnen-3-one (DHP)]. On the basis of testicular histology, the annual gonadal cycle was found to be divisible into 3 periods: the recovery and proliferation period, which mainly consists of early spermatogenic testis from August to November (reproductive phase I); the preparation period for the next spawning period, which mainly consists of late spermatogenic testis from December to April (reproductive phase II); and the mature period, characterized by a high proportion of mature testis from May to July (reproductive phase III). Individual variability in testicular development was high, and continuous spermatogenesis was observed throughout the year. High levels of plasma T, 11-KT, and DHP were observed during reproductive phase III. 11-KT began to increase in February, while T was present at low levels in reproductive phase II. These results suggest that the physiologically active season of testis development for breeding in the dojo loach is from May to July, although spermatogenesis occurs throughout the year.  相似文献   

2.
We examined the efficacy of androgens (1.0 mg/kg body mass), testosterone (T), 11-ketotestosterone (11-KT), 17alpha-methyltestosterone (MT), testosterone propionate (TP) or androgen mixture (T, MT and TP in an equal ratio), for induction of sex change in protogynous orange-spotted grouper, Epinephelus coioides. The spawning performance in sex-changed males was also investigated. MT and androgen mixture at a dose of 1.0 mg/kg BW induced a sex transition and completion of spermatogenesis up to the functional male phase. The androgen mixture was most effective. Significantly, higher plasma T levels were found in MT and androgen mixture groups compared to control and other androgen implantation (T, TP or 11-KT) groups. We found that plasma levels of estradiol-17beta (E2) or 11-KT were not different among treated groups. Sex-changed males could successfully fertilize mature eggs. Fertilization and hatching rates were of 23.5-70.4% and 8.4-44.6%, respectively. The data demonstrated that induction of sex change by exogenous androgens in groups could apply to the aquaculture field for seed production.  相似文献   

3.
Previous studies have shown that estrogen plays an important role in sex change of protogynous honeycomb grouper, and that the treatments with aromatase inhibitor (AI) cause estrogen depletion and complete sex inversion of pre-spawning females into functional males. In the present study, we examined whether AI causes sex inversion of sexually immature females. Female honeycomb groupers were implanted with various doses of Fadrozole (0, 100, 500 and 1000 microg/fish) in the non-breeding season, and resultant changes in the gonadal structures and the plasma levels of sex steroid hormones (estradiol-17 beta, E2; testosterone, T; 11-ketotestosterone, 11-KT) were examined three months after implantation. Vehicle-implanted groups did not change sex, while 100 and 500 microg AI-implanted groups had turned into transitionals with intersex gonad. In contrast, the highest dose receiving group exhibited both transitional and male phases. Transitional phase gonad had atretic oocytes and spermatogenic germ cells at the late stages of spermatogenesis, while male phase testis contained spermatozoa accumulated in the seminiferous tubules. All males released sperm upon slight pressure on the abdomen. In the AI-implanted fish, plasma levels of E2 decreased in a dose-dependent manner, while the levels of 11-KT were high in the highest dose receiving group. Present results suggest that estrogen plays an important role in sex change of protogynous honeycomb grouper, and that treatments with AI potentially inhibits endogenous E2 production in vivo, causing oocyte degeneration and subsequently the sex inversion from female to male. The Fadrozole could be an important tool for manipulating the sex of hermaphrodite fishes.  相似文献   

4.
To evaluate the effects of sex steroids on silvering in the Japanese eel, Anguilla japonica, the development of oocytes, eye size, digestive tract, and swim bladder were studied in relation to observations of the profiles of plasma levels of sex steroids (estradiol 17β, E2; testosterone, T; 11-ketotestosterone; 11-KT) during silvering for each sex and by administrating 11-KT to yellow eels. All steroids examined in the study increased in female eels after silvering had begun, whereas in males, only 11-KT increased significantly, and no statistical differences were found in plasma levels of E2 and T between eels in both developmental stages. 11-KT appeared to induce the early stage of oocyte growth, enlargement of the eyes, degeneration of the digestive tract and the development of the swim bladder. This suggested that 11-KT synchronously accelerates early development of the ovaries and the morphological changes, possibly in adaption to oceanic migration, and that 11-KT is one of the most important factors in early stages of development in the Japanese eel, as it appears to be in other anguillid eels.  相似文献   

5.
Under constant short photoperiod, the spawning time of 2-year-old sea bass Dicentrarchus labrax was advanced as compared to controls, whereas spawnings were delayed under constant long photoperiod. High plasma levels of 17β-oestradiol (E2/) and testosterone (T) in females were coincident with the appearance of vitellogenic oocytes in the ovary, while high levels of 11-ketotestosterone (11-KT) and T in males were coincident with the presence of spermiating males. Although plasma levels of E2 in females and 11-KT in males were low during the remainder of the cycle, levels of T were always >1 ng ml−1 in both sexes, suggesting that T could play an important role during the initial stages of gonadal development. The profiles of E2 and T in females and 11-KT and T in males exposed to constant short days were similar to those in the control group, but fish which were maintained under constant long photoperiods showed a bimodal pattern of these steroids. The results obtained from fish exposed to constant photoperiod regimes provide further evidence that an endogenous process could be operating to control the reproduction of sea bass.  相似文献   

6.
Spermatogenesis in male Atlantic halibut (Hippoglossus hippoglossus L.) was investigated by sampling blood plasma and testicular tissue from 15-39-month-old fish. The experiment covered a period in which all fish reached puberty and completed sexual maturation at least once. The germinal compartment in Atlantic halibut testis appears to be organized in branching lobules of the unrestricted spermatogonial type, because spermatocysts with spermatogonia were found throughout the testis. Spermatogenesis was characterized histologically, and staged according to the most advanced type of germ cell present: spermatogonia (Stage I), spermatogonia and spermatocytes (Stage II), spermatogonia, spermatocytes and spermatids (Stage III), spermatogonia, spermatocytes, spermatids and spermatozoa (Stage IV), and regressing testis (Stage V). Three phases could be distinguished: first, an initial phase with low levels of circulating testosterone (T; quantified by RIA) and 11-ketotestosterone (11-KT; quantified by ELISA), spermatogonial proliferation, and subsequently the initiation of meiosis marked by the formation of spermatocytes (Stage I and II). Secondly, a phase with increasing T and 11-KT levels and with haploid germ cells including spermatozoa present in the testis (Stage III and IV). Thirdly, a phase with low T and 11-KT levels and a regressing testis with Sertoli cells displaying signs of phagocytotic activity (Stage V). Circulating levels of 11-KT were at least four-fold higher than those of T during all stages of spermatogenesis. Increasing plasma levels of T and 11-KT were associated with increasing testicular mass throughout the reproductive cycle. The absolute level of, or the relation between, testis growth and circulating androgens were not significantly different in first time spawners compared to fish that underwent their second spawning season. These results provide reference levels for Atlantic halibut spermatogenesis.  相似文献   

7.
Sex change in the coral-dwelling goby Gobiodon histrio was induced by placing two adult fish of the same sex on a coral colony. The sex change of individual fish was confirmed using histology, and whole-body concentrations of the gonadal steroids testosterone (T), 11-ketotestosterone (11-KT), and 17β-oestradiol (E2) were examined. The results show that T, 11-KT and E2 occurred in both female and male G. histrio . E2 concentration in females was twice that in males, while concentrations of T did not differ between the sexes. Contrary to predictions, concentrations of T and E2 did not differ between fish that changed sex and those that did not. Most samples had 11-KT concentrations below minimum levels of detection (  i.e. <0·15 ng ml−1) and were therefore not analysed statistically. The results suggest that: (i) specific activation or de-activation of the T–E2 (aromatase) pathway is a probable candidate for mediating serial adult sex change in G. histrio , and (ii) low levels of 11-KT may be important in allowing serial adult sex change in G. histrio .  相似文献   

8.
Waigieu seaperch (Psammoperca waigiensis) is a tropical marine finfish species, which may inhabit wide range of salinity during the entire life cycle. Regardless of the wide salinity tolerance, little is known about how salinity may influence the reproductive endocrinology of this important tropical species. In the present study, we investigated the seasonal variations in steroid hormone levels, oocyte maturation (OM) and ovulation in fish reared under different salinity levels. In addition, we investigated the effects a dopamine antagonist (domperidone: DOM) during the peak spawning period. Mature brood fish at 3 years old were cultured in four different salinities of 5, 10, 20 and 30‰ (part per thousand, ppt) from March to December 2007. Blood samples were collected monthly and key steroid hormones (testosterone (T), 11-ketotestosterone (11-KT), 17β-estradiol (E2) and progesterone (P)) levels in female fish plasma were analyzed using enzyme immunoassay method. OM, ovulation and several reproductive performance indexes were evaluated twice per month during the breeding season. Plasma hormone analysis showed significant differences in fish groups cultured in different salinities during the seasonal cycle. The gonadosomatic index (GSI) gradually increased from March, peaking in July at 10 and 30‰, and then decreased thereafter until December. Plasma steroid levels (E2, T, 11-KT and P) were observed in variable concentrations during the spawning period and showed monthly fluctuations that were apparently salinity dependent during on and off-seasons. Interestingly, 11-KT levels were found in small amounts in female fish and peaked in September at salinities of 10 and 20‰. DOM exposure produced significant differences in steroid hormone levels that were apparently dependent on dose, exposure time and the individual hormone. The present study indicated that holding Waigieu seaperch brood fish in different salinities during the breeding season produced significant effects on gonadal development and spawning incidences. The first spawning was observed on 8th of April for all groups after 100% water exchange at night. No significant differences of absolute and relative fecundity were observed between groups. Fish held at 10 ppt salinity during the breeding season spawned naturally, but maturity and spawning rates were reduced and no hatching was observed at the same salinity. Fish holding at 5‰ resulted to 100% mortality in brood fish. This indicated that salinity limits for oocyte maturation or ovulation and subsequent reduction in spawning, but embryonic development requires a higher salinity. The effect of salinity on embryo development and hatching rate suggests that in breeding season the brood fish spawned in areas where the salinity and other parameters are favorable.  相似文献   

9.
1. Sternopygus macrurus were collected in Venezuela during the period of gonadal recrudescence in early or late dry season. Electric organ discharge (EOD) frequencies were recorded, blood samples were taken for analysis of steroid titers, and gonads were taken for determination of reproductive condition. 2. Mean EOD frequencies were significantly lower in males than in females in all samples. EOD frequency was inversely correlated with body length in males in late, but not early, dry season, and these parameters were never correlated in females. 3. Plasma levels of testosterone (T) and 11-ketotestosterone (11-KT), but not estradiol-17 beta (E2), were inversely correlated with EOD frequency in males. No 11-KT was observed in plasma of females, and plasma levels of T and E2 in females were comparable to those of males. Neither T nor E2 were correlated with EOD frequency in females. 4. Testes collected in late dry season were more mature than those from early dry season; androgen levels and EOD frequency were correlated with testicular maturity. Ovaries collected in early dry season were immature, while those from late dry season were more mature. There was no relationship between EOD frequency and stage of ovarian development. 5. These results suggest that plasma androgens modulate EOD frequency in males during the reproductive season and that plasma E2 has little relationship to EOD frequency in either sex.  相似文献   

10.
In order to clarify the seasonal variations of plasma sex steroid hormones and vitellogenin (VTG) concentrations in the wild male Japanese dace, Tribolodon hakonensis, we measured plasma levels of testosterone (T), 11-ketotestosterone (11-KT), estradiol-17 beta (E2) and VTG, as well as spermatogenetic stages and gonadosomatic index (GSI). Wild Japanese dace were collected from different sites of the Jinzu River basin (including the Takahara River and the Itachi River). The fish from Toyama Bay were also measured the spermatogenetic stages, GSI and VTG levels. The seasonal variations of the hormone levels were discussed in the relationship with various environmental factors. In landlocked fish of the Takahara River, the plasma concentrations of T and E2 reached the highest levels in May and June. In the fish collected from the Itachi River, plasma concentrations of T, 11-KT and E2 reached the highest levels during breeding season of April and May. Sexual maturation, evaluating from GSI and the spermatogenetic stages, proceeded earlier in the fish population at Toyama Bay, and afterward it was followed in the fish population at the Takahara River, in associated with a rise of environmental water temperature at fish captured sites. In the male dace, low but detectable levels of plasma E2 were measured and there were significantly positive correlations between E2 level and the levels of GSI, VTG or T. These results suggest that E2 might be a necessary sex steroid hormone related to gonad maturation, and that circulating E2 may induce VTG production in the wild male Japanese dace.  相似文献   

11.
Sexual patterns of teleosts are extremely diverse and include both gonochorism and hermaphroditism. As a protogynous hermaphroditic fish, all orange-spotted groupers (Epinephelus coioides) develop directly into females, and some individuals change sex to become functional males later in life. This study investigated gonadal restructuring, shifts in sex hormone levels and gene profiles of cultured mature female groupers during the first (main) breeding season of 2019 in Huizhou, China (22° 42′ 02.6″ N, 114° 32′ 10.1″ E). Analysis of gonadal restructuring revealed that females with pre-vitellogenic ovaries underwent vitellogenesis, spawning and regression and then returned to the pre-vitellogenic stage in the late breeding season, at which point some changed sex to become males via the intersex gonad stage. A significant decrease in the level of serum 17β-estradiol (E2) was observed during ovary regression but not during sex change, whereas serum 11-ketotestosterone (11-KT) concentrations increased significantly during sex change with the highest concentration in newly developed males. Consistent with serum hormone changes, a significant decrease in cyp19a1a expression was observed during ovary regression but not during sex change, whereas the expression of cyp11c1 and hsd11b2 increased significantly during sex change. Interestingly, hsd11b2 but not cyp11c1 was significantly upregulated from the pre-vitellogenic ovary stage to the early intersex gonad stage. These results suggest that a decrease in serum E2 concentration and downregulation of cyp19a1a expression are not necessary to trigger the female-to-male transformation, whereas increased 11-KT concentration and upregulation of hsd11b2 expression may be key events for the initiation of sex change in the orange-spotted grouper.  相似文献   

12.
The metabolic peptide hormone nesfatin-1 has been linked to the reproductive axis in fishes. The purpose of this study was to determine how energy availability after spawning affects plasma levels of nesfatin-1, the metabolic peptide hormone ghrelin, and sex steroid hormones in rematuring female rainbow trout (Oncorhynchus mykiss). To limit reproductive maturation, a group of female trout was food-restricted after spawning and compared with a control group that was fed a standard broodstock ration. The experiment was conducted twice, once using two-year-old trout (second-time spawners) and once using three-year-old trout (third-time spawners). During monthly sampling, blood was collected from all fish, and a subset of fish from each treatment was sacrificed for pituitaries. Pituitary follicle-stimulating hormone-beta (fsh-β) mRNA expression was analyzed with q-RT-PCR; plasma hormone levels were quantified by radioimmunoassay (17β-estradiol and ghrelin) and enzyme-linked immunosorbent assay (11-keto-testosterone and nesfatin-1). Although plasma nesfatin-1 levels increased significantly in the months immediately after spawning within both feeding treatments, plasma nesfatin-1 did not differ significantly between the two treatments at any point. Similarly, plasma ghrelin levels did not differ significantly between the two treatments at any point. Food restriction arrested ovarian development by 15–20 weeks after spawning, shown by significantly lower plasma E2 levels among restricted-ration fish. Pituitary fsh-β mRNA levels were higher among control-ration fish than restricted-ration fish starting at 20 weeks, but did not differ significantly between treatment groups until 30 weeks after spawning. Within both treatment groups, plasma 11-KT was elevated immediately after spawning and rapidly decreased to and persisted at low levels; starting between 20 and 25 weeks after spawning, plasma 11-KT was higher among control-ration fish than restricted-ration fish. The results from these experiments do not provide support for plasma nesfatin-1 as a signal for the initiation of reproductive development in rematuring female rainbow trout.  相似文献   

13.
The protogynous hermaphrodite fish change sex from female to male at the certain stages of life cycle. The endocrine mechanisms involved in gonadal restructuring throughout protogynous sex change are not clearly understood. In the present study, we implanted maturing female honeycomb groupers with nonsteroidal aromatase inhibitor (AI), Fadrozole (0, 1, and 10 mg/fish) and examined changes in gonadal structures and serum levels of sex steroid hormones 2(1/2) months after implantation. The ovaries of control females had oocytes undergoing active vitellogenesis, whereas AI caused females to develop into functional males. These males had testes, which were indistinguishable in structure from those of normal males, but bigger in size, and completed all stages of spermatogenesis including accumulation of large amount of sperm in the seminiferous tubules. AI significantly reduced the serum levels of estradiol-17beta (E2) and increased levels of testosterone (T), 11-ketotestosterone (11-KT), and 17alpha, 20beta-dihydroxy-4-pregnen-3-one (DHP). Further, AI suppressed in vitro production of E2, and stimulated the production of T and 11-KT in the ovarian fragments of mature female. In the honeycomb grouper, suppression of both in vitro and in vivo production of E2 and degeneration of oocytes by AI suggests that AI induces complete sex change through inhibition of estrogen biosynthesis, and perhaps, subsequent induction of androgen function.  相似文献   

14.
Levels of serum sex steroids (estradiol-17beta, E2; testosterone, T; 11-ketotestosterone, 11-KT) in male, female and natural sex-reversing red-spotted grouper (Epinephelus akaara), and aromatase activity of gonad and brain in both male and female were investigated throughout an annually reproductive cycle. In females, serum E2 and T peaked during vitellogenesis, but in males and natural sex-reversing fish, 11-KT, T and E2 reached peak during spermatogenesis. In addition, in females, serum 11-KT levels (monthly means: 0.32 +/- 0.03 ng/ml) which were very low did not significantly fluctuate during the annual reproductive cycle. In breeding season, females displayed higher E2 levels than males and sex-reversing fish, while males and sex-reversing fish showed higher 11-KT levels and, to a lesser extent, higher T levels than females. Furthermore, the changing pattern of sex steroids in males was similar to that in natural sex-reversing fish, and a second peak of serum androgens 11-KT and T appeared in December both in male and natural sex-reversing fish; significantly higher serum 11-KT levels were observed in natural sex-reversing fish than that in females from December to April. In females, but not in males, aromatase activity of brain and gonad demonstrated significantly seasonal changes (exhibiting a peak in breeding season); moreover, aromatase activity in females was higher than that in males. Furthermore, significantly lower aromatase activity in testis was observed in breeding season, in contrast to that in ovary. Taken together, the present findings indicated that changes of serum sex steroids levels and aromatase activity in red-spotted grouper were closely associated with sex inversion. In addition, the present results also suggested that sex inversion in red-spotted grouper peaked mainly from December to March.  相似文献   

15.
Synopsis The mangrove killifish, Rivulus marmoratus, is the only known self-fertilizing vertebrate. This species is sexually dimorphic; sexually mature individuals are either hermaphrodite or primary and secondary males. Although the mangrove killifish has a unique reproductive strategy, there has been no study on the reproductive endocrinology of this species. Thus we investigated plasma sex steroid hormone levels and steroidogenesis in the gonads of R. marmoratus by enzyme linked immunosorbent assay (ELISA). Plasma 17β-estradiol (E2) and 11-ketotestosterone (11-KT) were detected both in hermaphrodite and in primary male. Ovarian follicles (follicle-enclosed oocytes) from hermaphrodites, which were categorized into early yolk stage and late yolk stage, and testis tissue of primary males were cultured with different concentrations of 17α-hydroxyprogesterone (OHP) or testosterone (T) for 24 h. Production of T, E2, 11-KT and 17α-20 β-dihydroxy-4-pregnen-3-one (17α,20β-P) in the medium from tissue culture were measured by ELISA. Early and late ovarian follicles of hermaphrodites and testis pieces of primary males synchronously secreted E2, 11-KT, and 17α,20β-P following incubation with OHP or T. We conclude that both hermaphrodite and primary male of the mangrove killifish secrete estrogen, androgen, and progestin synchronously.  相似文献   

16.
From May through July when masu salmon, Oncorhynchus masou, commence downstream migration under natural conditions, yearling precocious male masu salmon (resident form) showed higher GSI and plasma levels of testosterone (T) and 11-ketotestosterone (11-KT) in contrast to immature smolts (migratory form). From March through September coinciding with the upstream migration period, 2-year-old male and female adults also showed higher GSI and plasma levels of T, estradiol-17beta (E(2)) 11-KT, 17alpha-hydroxyprogesterone and 17alpha,20beta-dihydroxy-4-pregnene-3-one (DHP). In order to test the effects of steroid hormones on migratory behaviors, silascone tube capsules containing 500 microg of T, E(2), 11-KT, DHP, or a vehicle was implanted into smolts, castrated precocious males, or immature parr, and downstream and upstream behavior were observed in artificial raceways in spring and autumn. Downstream behavior of smolts was inhibited significantly by T, E(2) and 11-KT. Upstream behavior was stimulated by T and 11-KT in castrated precocious males and stimulated by T, E(2) and 11-KT in immature parr. These results indicate that T, E(2) and 11-KT are the factors regulating downstream and upstream migratory behavior. In particular, because of its changing patterns in plasma and significant effects, T, the common precursor hormone of E(2) (female) and 11-KT (male), is considered to play central roles in both types of behavior.  相似文献   

17.
Gametogenesis in female and male Atlantic cod (Gadus morhua L.) was investigated by sampling blood plasma and gonadal tissue from 19 to 33-month-old fish. The reproductive cycles of both female and male Atlantic cod are characterized by distinct annual variations in gonadal size and developmental stage and these are associated with changes in sex steroids and liver size. I(H) did not change during early gonadal development, but both spent females and males had lower I(H) than late maturing females and spermiating males, respectively. In females I(G) was correlated to plasma E2 levels and they were highest in spawning females. The lowest levels during the reproductive cycle were observed in spent females. Plasma T levels were low throughout ovarian development, and were at a minimum in spent females. 11-ketotestosterone in plasma of males increased rapidly during spermiation, while T increased at earlier testicular stages and reached maximum during spermiation. High plasma levels of steroids in male and female cod during spawning serve to promote further development and growth of less advanced stages of germ cells.  相似文献   

18.

The aim of the present study was to investigate the lunar cycle effects of the spawning of Audefduf vaigiensis through in vivo and in vitro analysis. For this purpose, the indices of GSI, serum levels of sex steroids, including testosterone (T), 17α-hydroxyprogesterone (OHP), 17α, 20β-dihydroxyprogesterone (DHP), and 11-keto-testosterone (11-KT) as well as the germinal vesicle breakdown (GVBD) were measured. The sampling pattern was weekly, based on the moon cycles as the new moon (NM), the first quarter (FQ), the full moon (FM), and the last quarter (LQ). In females, the highest in vivo values of the GSI index were obtained in FQ and LQ, and in males, this value was significantly higher in LQ than NM. The highest in vivo level of OHP in females was observed in FQ, whereas in males was obtained in FM. In both sexes, the in vivo serum levels of DHP were obtained in LQ. In males, the level of 11-KT were at the peak in NM. In vitro analysis showed the highest rate of GVBD in LQ. Moreover, the in vitro levels of T, OHP, and DHP were significantly higher in LQ compare to NM in both sexes. However, in males, the in vitro levels of 11-KT was significantly higher in NM than LQ. These cyclical changes obtained from in vivo plasma steroid hormones and in vitro data on GVBD suggested that lunar periodicity is a major external regulator that synchronized ovarian and testicular activity of A. vaigiensis with emphasis on spawning phenomenon.

  相似文献   

19.
Kisspeptin is thought to have a major role in the control of the onset of puberty in vertebrates. However, our current understanding of its function in fish and how it integrates with other hormones is incomplete due to the high diversity of this group of animals and a still limited amount of available data. This study examined the temporal and spatial changes in expression of kisspeptin, gonadotropins and their respective receptors in the Senegalese sole during a full reproductive cycle. Kiss2 and kiss2r expression was determined by qRT-PCR in the forebrain and midbrain while expression of fshβ and lhβ was determined in the pituitary and fshr and lhr in the gonads. Plasma levels of testosterone (T), 11-ketotestosterone (11-KT) and estradiol-17β were measured by ELISA and gonadal maturation was assessed histologically. In males, kiss2 and kiss2r expression in the brain areas examined was highest towards the end of winter, just before the spawning season, which took place the following spring. This coincided with maximum levels of pituitary fshβ and lhβ, plasma T and 11-KT and the highest number of maturing fish. However, these associations were not evident in females, since the highest expression of kiss2, kiss2r and gonadotropins were observed in the fall, winter or spring, depending upon the variable and tissue considered. Taken together, these data show not only temporal and spatial, but also sex-specific differences in the expression of kisspeptin and its receptor. Thus, while expression of kiss2 in Senegalese sole males agrees with what one would expect according to its proposed role as a major regulator of the onset of reproduction, in females the situation was not so clear, since kiss2 and kiss2r expression was highest either before or during the spawning season.  相似文献   

20.
The honeycomb grouper shows protogynous hermaphroditism. The endocrine mechanisms involved in gonadal restructuring throughout protogynous sex change are largely unknown. In the present study, we investigated changes in the gonadal structures and levels of serum sex steroid hormones during female to male sex change in the honeycomb grouper. On the basis of histological changes, entire process of sex change was assigned into four developmental phases: female, early transition (ET), late transition (LT), and male phase. At the female phase, the oocytes of several developmental stages were observed including gonial germ cells in the periphery of ovigerous lamellae. At the beginning of ET phase, perinucleolar and previtellogenic oocytes began degenerating, followed by proliferation of spermatogonia toward the center of lamella. The LT phase was characterized by further degeneration of oocytes and rapid proliferation of spermatogenic germ cells throughout the gonad. At the male phase, no ovarian cells were observed and testis had germ cells undergoing active spermatogenesis. Serum levels of estradiol-17beta (E2) were high in females in the breeding season, but low in the non-breeding female, transitional and male phase, and those of 11-ketotestosterone (11-KT) and testosterone (T) were low in females and gradually increased in the transitional and male phase. The present results suggest that low serum E2 levels and degeneration of oocytes accompanied by concomitant increase in the 11-KT levels and proliferation of spermatogenic germ cells are probably the events mediating protogynous sex change in the honeycomb grouper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号