首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C.C. Dias  M.L. Day 《Theriogenology》2009,72(3):378-385
Two experiments were performed to test the hypothesis that elevated progesterone concentrations impair pregnancy rate to timed artificial insemination (TAI) in postpuberal Nelore heifers. In Experiment 1, postpuberal Nelore heifers (n = 398) received 2 mg estradiol benzoate (EB) and either a new progesterone-releasing intravaginal device containing 1.9 g of progesterone (CIDR) (first use) or a CIDR previously used for 9 d (second use) or for 18 d (third use) on Day 0, 12.5 mg prostaglandin F (PGF) on Day 7, 0.5 mg estradiol cypionate (ECP) and CIDR withdrawal on Day 9, and TAI on Day 11. Largest ovarian follicle diameter was determined on Day 11. The third-use CIDR treatment increased largest ovarian follicle diameter and pregnancy rate. Conception to TAI was reduced in heifers with smaller follicles in the first- and second-use CIDR treatments, but not in the third-use CIDR treatment. In Experiment 2, postpuberal Nelore heifers received the synchronization treatment described in Experiment 1 or received 12.5 mg PGF on Day 9 rather than Day 7. In addition, 50% of heifers received 300 IU equine chorionic gonadotropin (eCG) on Day 9. Heifers were either TAI (Experiment 2a; n = 199) or AI after detection of estrus (Experiment 2b; n = 125 of 202). In Experiment 2a, treatment with eCG increased pregnancy rate to TAI in heifers that received PGF on Day 9 but not on Day 7 and in heifers that received a first-use CIDR but not in heifers that received a third-use CIDR. Treatments did not influence reproductive performance in Experiment 2b. In summary, pregnancy rate to TAI in postpuberal Nelore heifers was optimized when lower concentrations of exogenous progesterone were administered, and eCG treatment was beneficial in heifers expected to have greater progesterone concentrations.  相似文献   

2.
The aim of the present study was to evaluate the effects of a single treatment with FSH on diameter of the largest follicle and on conception rates of suckled Bos indicus beef cows submitted to timed artificial insemination (TAI). Four hundred fifty-six suckled anestrous Nelore beef cows at 30-60 days postpartum were assigned to treatments. At the first day of the estrous synchronization protocol (Day 0), all cows received a progesterone-releasing intravaginal device plus 2mg of estradiol benzoate. On Day 8, cows were assigned to blocks according to the diameter of the largest follicle and then allocated to one of three treatment groups (Control, FSH, or eCG) within each block. Simultaneously to progesterone device withdrawal on Day 8, cows in the eCG treatment group (n=150) received 300 IU of eCG and cows in FSH treatment group (n=153) received 10mg of FSH, and Control cows (n=153) did not receive any additional treatment. Additional treatments with 150 μg of cloprostenol and 1mg of estradiol cypionate (EC) were also administered concurrently to progesterone device removal in all cows on Day 8. Two days later (D10), TAI and ovarian ultrasonic examinations to evaluate follicle size were performed in all cows. On Day 12, a subset of cows (n=389) were submitted a second ultrasonic exam to confirm ovulation. Final follicular growth (mm/day) was less (P=0.006) in both Control (0.95±0.11) and in FSH-treated cows (0.90±0.10) than in eCG-treated cows (1.40±0.13). Interestingly, there was a treatment-by-BCS interaction in ovulation results (P=0.03), in which, eCG treatment increased percentage of cows having ovulations with a lesser BCS. Similarly, there was a treatment-by-BCS interaction for conception (P=0.04), where the eCG treatment increased fertility in cows with a lesser BCS. In conclusion, FSH failed to stimulate final follicular growth, ovulation, and conception rate in sucked-anestrous beef cows submitted to TAI as effectively as eCG. However, physiological effects of eCG seem to be more evident in cows with a lesser BCS.  相似文献   

3.
Yearling Bos indicus × Bos taurus heifers (n = 410) from three locations, were synchronized with either the Select Synch/CIDR+timed-AI (SSC+TAI) or 7-11+timed-AI (7-11+TAI) treatments. On Day 0 of the experiment, within each location, heifers were equally distributed to treatments by reproductive tract score (RTS; Scale 1-5: 1 = immature, 5 = estrous cycling) and body condition score. The 7-11+TAI treatment consisted of melengestrol acetate (0.5 mg/head/d) from Days 0 to 7, with PGF (25 mg im) on Day 7, GnRH (100 μg im) on Day 11, and PGF (25 mg im) on Day 18. The SSC+TAI heifers received the same carrier supplement (without MGA) from Days 0 to 7, and on Day 11 they were given 100 μg GnRH and an intravaginal CIDR (containing 1.38 g progesterone). The CIDR were removed on Day 18, concurrent with 25 mg PGF im For both treatments, estrus was visually detected for 1 h twice daily (0700 and 1600 h) for 72 h after PGF, with AI done 6 to 12 h after a detected estrus. Non-responders were timed-AI and received GnRH (100 μg im) 72 to 76 h post PGF. The 7-11+TAI heifers had a greater (P < 0.05) estrous response (55.2 vs 41.9%), conception rate (47.0 vs 31.3%), and synchronized pregnancy rate (33.5 vs 24.8%) compared to SSC+TAI heifers, respectively. Heifers exhibiting estrus at 60 h (61.7%) had a greater (P < 0.05) conception rate compared to heifers that exhibited estrus at ≤ 36 (35.3%), 48 (31.6%), and 72 h (36.2%), which were similar (P > 0.05) to each other. As RTS increased from ≤ 2 to ≥ 3, estrous response, conception rate, synchronized pregnancy rate, and 30 d pregnancy rate all increased (P < 0.05), irrespective of synchronization treatment. In conclusion, the 7-11+TAI treatment yielded greater synchronized pregnancy rates compared to SSC+TAI treatment in yearling Bos indicus × Bos taurus heifers.  相似文献   

4.
The objective was to determine the efficacy of a previously used CIDR or melengestrol acetate (MGA; 0.5mg/head/day) for resynchronization of estrus in beef heifers not pregnant to timed-AI (TAI). In three experiments and a field trial, heifers were reinseminated 6-12 h after first detection of estrus. Pregnancy diagnosis was done from approximately 25-43 days after either TAI or reinsemination. In Experiment 1, 79 heifers received a once-used CIDR from 13 to 20 days after TAI and 80 heifers were untreated controls. For these two groups, there were 34 and 35 heifers, respectively, not pregnant to TAI; median +/- S.E. intervals from TAI to onset of estrus were 22 +/- 0.2 days versus 20 +/- 0.6 days (P < 0.001); estrus rates were 70.6% versus 85.7% (P = 0.1); conception rates were 62.5% versus 76.7% (P < 0.3); and pregnancy rates were 44.1% versus 65.7% (P = 0.07), for CIDR and untreated (control) groups, respectively. In Experiment 2, heifers (n = 651) were TAI (Day 0) and 13 days later randomly assigned to one of seven groups (n = 93 per group) to receive a once-used CIDR (three groups; Days 13-20), MGA (three groups; Days 13-19), or no treatment (control group). Groups given a CIDR or MGA also received: no further treatment (CIDR or MGA alone); 1.5mg estradiol-17beta (E-17beta) and 50 mg progesterone (P4) in 2 mL canola oil on Day 13; or E-17beta and P4 on Day 13 and 0.5 mg E-17beta on Day 21 (24 h after CIDR removal or 48 h after the last feeding of MGA). Pregnancy rate to TAI was lowest (P < 0.05) for the group given a CIDR plus E-17beta and P4 on Day 13 and E-17beta on Day 21. Variability in return to estrus was greater (P < 0.001) in the control and MGA groups than in CIDR groups. Conception and pregnancy rates in heifers given a CIDR (65.1 and 61.4%) were higher (P<0.01) than those fed MGA (49.6 and 40.4%), but not different from controls (62.2 and 54.9%, respectively). In Experiment 3, 616 heifers received a once- or twice-used CIDR for 7 days, beginning 13+/-1 days after TAI, with or without a concurrent injection of 150 mg of P4 (2 x 2 factorial design). Pregnancy rate to TAI was 47.2%. In heifers that returned to estrus, there was no significant difference between a once- or twice-used CIDR for rates of estrus (68.8%, P < 0.3), conception (65.9%, P < 0.6) and pregnancy (45.3%, P < 0.8). Injecting progesterone at CIDR insertion increased the median interval from CIDR removal to onset of estrus (P < 0.05) and reduced rates of estrus (63.8% versus 73.8%, P<0.05), conception (60.5% versus 70.6%, P = 0.1) and pregnancy (38.6% versus 52.2%, P < 0.02). In a field trial, 983 heifers received a once-used CIDR for 7 days, beginning 13 +/- 1 days after TAI. Pregnancy rate to TAI was 55.2%. The median (and mode) of the interval from CIDR removal to estrus was 2.5 days. Estrus, conception and pregnancy rates were 78.2, 70.3 and 55.0% (overall pregnancy rate to TAI and rebreeding, 78.7%). In summary, a once- or twice-used CIDR for 7 days, starting 13 +/- 1 days after TAI resulted in the majority of nonpregnant heifers detected in estrus over a 4-day interval, with acceptable conception rates; however, injecting progesterone at CIDR insertion significantly reduced both estrus and pregnancy rates, and estradiol treatment after CIDR removal was associated with a decreased pregnancy rate to TAI. Fertility was higher in heifers resynchronized with a once-used CIDR than with MGA.  相似文献   

5.
Two experiments were designed to evaluate the use of resynchronization (RESYNCH) protocols using a progestin-based timed artificial insemination (TAI) protocol in beef cattle. In experiment 1, 475 cyclic Nelore heifers were resynchronized 22 days after the first TAI using two different inducers of new follicular wave emergence (estradiol benzoate [EB; n = 241] or GnRH [n = 234]) with the insertion of a norgestomet ear implant. At ear implant removal (7 days later), a pregnancy test was performed, and nonpregnant heifers received a dose of prostaglandin plus 0.5 mg of estradiol cypionate, with a timed insemination 48 hours later. The pregnancy rate after the first TAI was similar (P = 0.97) between treatments (EB [41.9%] vs. GnRH [41.5%]). However, EB-treated heifers (49.3%) had a greater (P = 0.04) pregnancy per AI (P/AI) after the resynchronization than the GnRH-treated heifers (37.2%). In experiment 2, the pregnancy loss in 664 zebu females (344 nonlactating cows and 320 cyclic heifers) between 30 and 60 days after resynchronization was evaluated. Females were randomly assigned to one of two groups (RESYNCH 22 days after the first TAI [n = 317] or submitted only to natural mating [NM; n = 347]). Females from the NM group were maintained with bulls from 15 to 30 days after the first TAI. The RESYNC-treated females were resynchronized 22 days after the first TAI using 1 mg of EB on the first day of the resynchronization, similar to experiment 1. No difference was found in P/AI (NM [57.1%] vs. RESYNC [61.5%]; P = 0.32) or pregnancy loss (NM [2.0%] vs. RESYNC [4.1%]; P = 0.21) after the first TAI. Moreover, the overall P/AI after the RESYNCH protocol was 47.5%. Thus, the administration of 1 mg of EB on day 22 after the first TAI, when the pregnancy status was undetermined, promotes a higher P/AI in the resynchronized TAI than the use of GnRH. Also, the administration of 1 mg of EB 22 days after the TAI did not affect the preestablished pregnancy.  相似文献   

6.
Five experiments were conducted on commercial farms in Brazil aiming to develop a fixed-time artificial insemination (TAI) protocol that achieved pregnancy rates between 40% and 55% in Bos indicus cows. These studies resulted in the development of the following protocol: insertion of an intravaginal device containing 1.9 g of progesterone (CIDR) plus 2.0 mg im estradiol benzoate on Day 0; 12.5 mg im dinoprost tromethamine on Day 7 in cycling cows or on Day 9 in anestrous cows; CIDR withdrawal plus 0.5 mg im estradiol cypionate plus temporary calf removal on Day 9; TAI (48 h after CIDR withdrawal) plus reuniting of calves with their dams on Day 11. Reduced dose of prostaglandin F (PGF; 12.5 mg im dinoprost tromethamine) effectively caused luteolysis. In cycling cows, fertility was greater when the treatment with PGF was administered on Day 7 than on Day 9, but in anestrous cows, no effects of time of the PGF treatment were found. Estradiol cypionate effectively replaced estradiol benzoate or gonadotropin-releasing hormone as the ovulatory stimulus, reducing labor and cost. In this protocol, CIDR inserts were successfully used four times (9 d each use) with no detrimental effects on fertility.  相似文献   

7.
The objective of this study was to evaluate the effect of a PGF2α-analogue (PGF) on ovulation and pregnancy rates after timed artificial insemination (TAI) in cattle. In experiment 1, crossbred dual-purpose heifers, in a crossover design (3 × 3), were given an intravaginal progesterone-releasing insert (controlled internal drug release [CIDR]) plus 1 mg estradiol benzoate (EB) intramuscularly (im) and 250 μg of a PGF-analogue im on Day 0. The CIDR inserts were removed 5 days after follicular wave emergence, and the heifers were randomly divided into three treatment groups to receive the following treatments: (1) 1 mg of EB im (EB group, n = 13); (2) 500 μg of PGF im (PG group, n = 13); or (3) saline (control group, n = 13), 24 hours after CIDR removal. Ovulation occurred earlier in EB (69.81 ± 3.23 hours) and PG groups (73.09 ± 3.23 hours) compared with control (83.07 ± 4.6 hours; P = 0.01) after CIDR removal. In experiment 2, pubertal beef heifers (n = 444), 12 to 14 months of age were used. On Day 0, the heifers were given a CIDR insert plus 2 mg EB im. On Day 9, the CIDR was removed and the heifers were given 500 μg of PGF im. Heifers were randomly assigned into one of three treatment groups: (1) 1 mg of EB (EB group; n = 145); (2) 500 μg of PGF (PG group; n = 149), both 24 hours after CIDR removal; or (3) 600 μg of estradiol cypionate (ECP group; n = 150) at CIDR removal. Timed artificial insemination occurred 48 hours after CIDR removal in the ECP group and 54 hours in the PG and EB groups. The percentage of heifers ovulating was higher in the PG group compared with the other groups (P = 0.08). However, the pregnancy rates did not differ among groups (47.6%, 45%, and 46.6%, for EB, PG, and ECP, respectively; P = 0.9). In experiment 3, 224 lactating beef cows, 40 to 50 days postpartum with 2.5 to 3.5 of body condition score were treated similarly as described in experiment 2, except for the ECP group, which was excluded. The treatments were as follows: 1 mg EB (EB group; n = 117) or 500 μg PGF (PG group; n = 107), 24 hours after CIDR removal. The calves were temporarily separated from their dams from Days 9 to 11. No difference was detected on the pregnancy rate between the EB and PG groups (58.1% vs. 47.6%, respectively; P = 0.11). Taken together, the combined results suggested that PGF2α could be successfully used to induce and synchronize ovulation in cattle undergoing TAI, with similar pregnancy rates when compared with other ovulatory stimuli (ECP and EB).  相似文献   

8.
The objective was to determine whether timed artificial insemination (TAI) 56 h after removal of a Controlled Internal Drug Release (CIDR, 1.38 g of progesterone) insert would improve AI pregnancy rate in beef heifers compared to TAI 72 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol. Angus cross beef heifers (n = 1098) at nine locations [WA (5 locations; n = 634), ID (2 locations; n = 211), VA (one location; n = 193) and WY (one location; n = 60)] were included in this study. All heifers were given a body condition score (BCS; 1-emaciated; 9-obese), and received a CIDR insert and 100 μg of gonadorelin hydrochloride (GnRH) on Day 0. The CIDR insert was removed and two doses of 25 mg of dinoprost (PGF) were given, first dose at CIDR insert removal and second dose 6 h later, on Day 5. A subset of heifers (n = 629) received an estrus detector aid at CIDR removal. After CIDR removal, heifers were observed thrice daily for estrus and estrus detector aid status until they were inseminated. Within farm, heifers were randomly allocated to two groups and were inseminated either at 56 h (n = 554) or at 72 h (n = 544) after CIDR removal. All heifers were given 100 μg of GnRH at AI. Insemination 56 h after CIDR insert removal improved AI pregnancy rate compared to insemination 72 h (66.2 vs. 55.9%; P < 0.001; 1 - β = 0.94). Locations, BCS categories (≤ 6 vs. > 6) and location by treatment and BCS by treatment interactions did not influence AI pregnancy rate (P > 0.1). The AI pregnancy rates for heifers with BCS ≤ 6 and > 6 were 61.8 and 60.1%, respectively (P > 0.1). The AI pregnancy rates among locations varied from 54.9 to 69.2% (P > 0.1). The AI pregnancy rate for heifers observed in estrus at or before AI was not different compared to heifers not observed in estrus [(65.4% (302/462) vs. 52.7% (88/167); P > 0.05)]. In conclusion, heifers inseminated 56 h after CIDR insert removal in a 5-days CO-Synch + CIDR protocol had, on average, 10.3% higher AI pregnancy rate compared to heifers inseminated 72 h after CIDR insert removal.  相似文献   

9.
《Theriogenology》2016,86(9):1555-1561
A pilot experiment was designed to test the hypothesis that administration of PGF before progestin treatment would allow for a reduced duration of progestin treatment in a long-term progestin-based estrus synchronization protocol. A modified presynchronization treatment was compared with a standard long-term controlled internal drug release (CIDR) treatment, and treatments were compared on the basis of ovarian follicular dynamics, estrous response rate, synchrony of estrus expression, and pregnancy rates resulting from timed artificial insemination (TAI) in postpartum beef cows. Estrous was synchronized for 85 cows, with cows assigned to one of two treatments based on age, days postpartum, and body condition score. Cows assigned to the 14-day CIDR-PG protocol received a CIDR insert (1.38 g progesterone) on Day 0, CIDR removal on Day 14, and administration of PGF (25 mg im) on Day 30. Cows assigned to the 9-day CIDR-PG protocol received PGF concurrent with CIDR insertion on Day 5, PGF concurrent with CIDR removal on Day 14, and administration of PGF on Day 30. In both treatments, split-time AI was performed based on estrous response. At 72 hours after PGF (Day 33), cows having expressed estrus received TAI; cows that failed to express estrus by 72 hours received TAI 24 hours later (96 hours after PGF on Day 34), with GnRH (100 μg im) administered to nonestrous cows. Estrus-detection transmitters were used from CIDR removal until AI to determine onset time of estrus expression both after CIDR removal and after PGF. Ovarian ultrasonography was performed at CIDR removal on Day 14, PGF on Day 30, and AI on Days 33 or 34. At CIDR removal on Day 14, diameter of the largest follicle present on the ovary was similar between treatments. The proportion of cows expressing estrus after CIDR removal tended to be higher (P = 0.09) among cows assigned to the 9-day CIDR-PG treatment (93%; 40 of 43) than among cows assigned to the 14-day CIDR-PG treatment (81%; 34 of 42). After PGF, a significantly higher proportion (P = 0.02) of cows expressed estrus after synchronization with the 9-day CIDR-PG treatment (91%; 39 of 43) than the 14-day CIDR-PG treatment (69%; 29 of 42). Consequently, pregnancy rate to TAI tended to be increased (P = 0.09) among the 9-day CIDR-PG treatment (76.7%; 33 of 43) compared with the 14-day CIDR-PG treatment (59.5%; 25 of 42). In summary, a long-term CIDR-based estrous synchronization protocol for postpartum beef cows was enhanced through administration of PGF at CIDR insertion and CIDR removal.  相似文献   

10.
The objective was to compare pregnancy rates following fixed-time AI (FTAI) in beef cattle given a new or previously used CIDR insert and injections of estradiol, with or without progesterone, to synchronize follicular wave emergence. In Experiment 1, heifers (n=616) received a new or once-used CIDR insert for 9 days and were given 1mg estradiol cypionate (ECP), with or without 100 mg of a commercial progesterone preparation (CP4), at CIDR insertion. Heifers were treated with PGF at CIDR removal and 0.5 mg ECP i.m. 24h later, with FTAI 55 to 60 h after CIDR removal. Pregnancy rate was not affected by either the number of CIDR uses (P=0.59; 48.3% versus 46.2% for new versus once-used CIDRs, respectively) or the addition of progesterone (P=0.42; 45.6% versus 48.8% for ECP+CP4 and ECP, respectively). In Experiment 2 (replicated at two locations), heifers (n=56) and lactating beef cows (n=307) received a once- or twice-used CIDR and an i.m. injection of 1mg estradiol benzoate (EB), with or without 100 mg progesterone, at CIDR insertion. Cattle received PGF in the ischiorectal fossa at CIDR removal (Day 7) and 1mg EB i.m. 24h later, with FTAI 52 to 56 h after CIDR removal. Pregnancy rate was affected by location (P<0.002; 46.0% versus 61.1% for Locations A and B, respectively), parity (P<0.04; 67.9% versus 53.1% in heifers and cows, respectively), and numbers of times the CIDR had been used (P<0.03; 62.4% versus 48.4% for once- and twice-used CIDRs, respectively). However, the addition of progesterone to the injection of EB at CIDR insertion did not affect pregnancy rate (P=0.6). In Experiment 3, heifers (n=187) received one new, one once-used, one twice-used or two twice-used CIDRs for 7 days and 2 mg EB plus 50 mg of CP4 at the time of CIDR insertion. Heifers were treated with PGF at CIDR removal and 1mg EB i.m. 24 h later, with FTAI 52-56 h after CIDR removal. Pregnancy rate was not affected by treatments (P=0.28, 57.5, 63.8, 47.9, 47.9% for one new, one once-used, one twice-used, or two twice-used CIDRs, respectively). In summary, pregnancy rate to FTAI did not differ between cattle synchronized with a new or once-used CIDR, but pregnancy rate was lower in cattle synchronized with a twice-used CIDR; however, the insertion of two twice-used CIDRs did not affect pregnancy rates. The addition of an injection of progesterone to the estradiol treatment at CIDR insertion did not enhance pregnancy rate to FTAI.  相似文献   

11.
Estradiol cypionate (ECP) was used in beef heifers receiving a controlled internal drug release (CIDR; insertion = Day 0) device for fixed-time AI (FTAI) in four experiments. In Experiment 1, heifers (n = 24) received 1mg ECP or 1mg ECP plus 50mg commercial progesterone (CP) preparation i.m. on Day 0. Eight or 9 days later, CIDR were removed, PGF was administered and heifers were allocated to receive 0.5mg ECP i.m. concurrently (ECP0) or 24h later (ECP24). There was no effect of treatment (P = 0.6) on mean (+/-S.E.M.) day of follicular wave emergence (3.9+/-0.4 days). Interval from CIDR removal to ovulation was affected (P<0.05) only by duration of CIDR treatment (88.3+/-3.8h versus 76.4+/-4.1h; 8 days versus 9 days, respectively). In Experiment 2, 58 heifers received 100mg progesterone and either 5mg estradiol-17beta or 1mg ECP i.m. (E-17beta and ECP groups, respectively) on Day 0. Seven (E-17beta group) or 9 days (ECP group) later, CIDR were removed, PGF was administered and heifers received ECP (as in Experiment 1) or 1mg EB 24h after CIDR removal, with FTAI 58-60h after CIDR removal. Follicular wave emergence was later (P<0.02) and more variable (P<0.002) in heifers given ECP than in those given E-17beta (4.1+/-0.4 days versus 3.3+/-0.1 days), but pregnancy rate was unaffected (overall, 69%; P = 0.2). In Experiment 3, 30 heifers received a CIDR device and 5mg E-17beta, with or without 100mg progesterone (P) i.m. on Day 0. On Day 7, CIDR were removed and heifers received ECP as described in Experiment 1 or no estradiol (Control). Intervals from CIDR removal to ovulation were shorter (P<0.05) in ECP0 (81.6+/-5.0h) and ECP24 (86.4+/-3.5h) groups than in the Control group (98.4+/-5.6h). In Experiment 4, heifers (n = 300) received a CIDR device, E-17beta, P, and PGF (as in Experiment 3) and after CIDR removal were allocated to three groups (as in Experiment 2), with FTAI 54-56h (ECP0) or 56-58h (ECP24 and EB24) after CIDR removal. Pregnancy rate did not differ among groups (overall, 63.6%, P = 0.96). In summary, although 1mg ECP (with or without progesterone) was less efficacious than 5mg E-17beta plus 100mg progesterone for synchronizing follicular wave emergence, 0.5mg ECP (at CIDR removal or 24h later) induced a synchronous ovulation with an acceptable pregnancy rate to fixed-time AI.  相似文献   

12.
The objective was to evaluate the effect of estrus occurrence (based on removal of tail-head marks) on ovarian responses and pregnancy per AI (P/AI; 30 d after AI) in suckled Bos indicus beef cows submitted to timed AI (TAI) protocols. Cows received an intravaginal device containing 1.0 g progesterone, and 2.0 mg estradiol benzoate im; 8 d later, the intravaginal device was removed, and they were given PGF (0.25 mg of cloprostenol sodium) and 300 IU of eCG, with TAI 48 to 52 h later. In Experiment 1, cows were assigned to receive one of three treatments: 1 mg of estradiol cypionate (ECP) im at progesterone (P4) device removal (N = 178); 10 μg of GnRH im at TAI (N = 190); or both treatments (N = 172). In cows given estradiol (ECP or ECP + GnRH), more displayed estrus (P = 0.002) and became pregnant (P < 0.0001) compared with those receiving only GnRH. In Experiment 2, the effect of the occurrence of estrus on ovarian responses was evaluated in cows (N = 53) synchronized using ECP at device removal. Cows that displayed estrus had a greater diameter of the largest follicle (LF) at device removal (P < 0.0001), a greater diameter at TAI (P < 0.0001), a greater ovulation rate (P = 0.02), a larger CL (P = 0.02), and a greater P4 concentration (P < 0.0001) than cows that did not display estrus. In Experiment 3, the effect of GnRH treatment on P/AI at TAI was evaluated in cows that received ECP at device removal, and either displayed, or did not display, estrus (N = 726). There was no estrus by GnRH interaction (P = 0.22); the P/AI was greater (P < 0.0001) in cows that displayed estrus (61.9%) than cows that did not display estrus (41.4%). However, GnRH did not improve (P = 0.81) P/AI (GnRH = 53.7% vs. no GnRH = 52.6%). In conclusion, exogenous estradiol at device removal increased both the proportion of suckled Bos indicus cows that displayed estrus and P/AI. Cows that displayed estrus had better ovarian responses (i.e., larger follicles at TAI, a greater ovulation rate, larger CL, and greater P4 concentrations) following an estradiol/P4-based synchronization protocol. Although occurrence of estrus improved pregnancy outcomes, GnRH at TAI did not improve P/AI in suckled Bos indicus cows treated with ECP, regardless of estrus occurrence.  相似文献   

13.
The objective was to analyze and report field data focusing on the effect of type of progesterone-releasing vaginal insert and dose of pLH on embryo production, following a superstimulatory protocol involving fixed-time artificial insemination (FTAI) in Nelore cattle (Bos taurus indicus). Donor heifers and cows (n = 68; 136 superstimulations over 2 years) received an intravaginal, progesterone-releasing insert (CIDR or DIB, with 1.9 or 1.0 g progesterone, respectively) and 3-4 mg of estradiol benzoate (EB) i.m. at random stages of the estrous cycle. Five days later (designated Day 0), cattle were superstimulated with a total of 120-200 mg of pFSH (Folltropin-V), given twice daily in decreasing doses from Days 0 to 3. All cattle received two luteolytic doses of PGF2alpha at 08:00 and 20:00 h on Day 2 and progesterone inserts were removed at 20:00 h on Day 3 (36 h after the first PGF2alpha injection). Ovulation was induced with pLH (Lutropin-V, 12.5 or 25 mg, i.m.) at 08:00 h on Day 4 with FTAI 12, 24 and in several cases, 36 h later. Embryos were recovered on Days 11 or 12, graded and transferred to synchronous recipients. Overall, the mean (+/-S.E.M.) number of total ova/embryos (13.3 +/- 0.8) and viable embryos (9.4 +/- 0.6) and pregnancy rate (43.5%; 528/1213) did not differ among groups, but embryo viability rate (overall, 70.8%) was higher in donors with a DIB (72.3%) than a CIDR (68.3%, P = 0.007). In conclusion, the administration of pLH 12 h after progesterone removal in a progestin-based superstimulatory protocol facilitated fixed-time AI in Nelore donors, with embryo production, embryo viability and pregnancy rates after embryo transfer, comparable to published results where estrus detection and AI was done. Results suggested a possible alternative, which would eliminate the need for estrus detection in donors.  相似文献   

14.
Two experiments were designed to evaluate strategies to increase fertility of Bos indicus postpubertal heifers and nonlactating cows submitted to a fixed-time artificial insemination (TAI) protocol consisting of an intravaginal device containing 1.9 g of progesterone (CIDR) insertion + estradiol benzoate on Day 0, CIDR withdrawal + estradiol cypionate on Day 9, and TAI on Day 11. In Experiment 1, heifers (n = 1153) received a new or an 18-d previously used CIDR and, on Day 9, prostaglandin F (PGF) + 0, 200, or 300 IU equine chorionic gonadotropin (eCG). Heifers treated with a new CIDR had greater (least squares means ± SEM) serum concentration of progesterone on Day 9 (3.06 ± 0.09 ng/mL vs. 2.53 ± 0.09 ng/mL; P < 0.05) and a smaller follicle at TAI (11.61 ± 0.11 mm vs. 12.05 ± 0.12 mm; P < 0.05). Heifers with smaller follicles at TAI had lesser serum progesterone concentrations on Day 18 and reduced rates of ovulation, conception, and pregnancy (P < 0.05). Treatment with eCG improved (P < 0.05) follicle diameter at TAI (11.50 ± 0.10 mm, 11.90 ± 0.11 mm, and 12.00 ± 0.10 mm for 0, 100, and 200 IU, respectively), serum progesterone concentration on Day 18 (2.77 ± 0.11 ng/mL, 3.81 ± 0.11 ng/mL, and 4.87 ± 0.11 ng/mL), and rates of ovulation (83.8%, 88.5%, and 94.3%) and pregnancy (41.3%, 47.0%, and 46.7%). In Experiment 2, nonlactating Nelore cows (n = 702) received PGF treatment on Days 7 or 9 and, on Day 9, 0 or 300 IU eCG. Cows receiving PGF on Day 7 had lesser serum progesterone concentrations on Day 9 (3.05 ± 0.21 ng/mL vs. 4.58 ± 0.21 ng/mL; P < 0.05), a larger follicle at TAI (11.54 ± 0.21 mm vs. 10.84 ± 0.21 mm; P < 0.05), and improved (P < 0.05) rates of ovulation (85.4% vs. 77.0%), conception (60.9% vs. 47.2%), and pregnancy (52.0% vs. 36.4%). Treatment with eCG improved (P < 0.05) serum progesterone concentration on Day 18 (3.24 ± 0.14 ng/mL vs. 4.55 ± 0.14 ng/mL) and the rates of ovulation (72.4% vs. 90.0%) and pregnancy (37.5% vs. 50.8%). In conclusion, giving PGF earlier in the protocol in nonlactating cows and eCG treatment in postpubertal heifers and nonlactating cows improved fertility in response to a TAI (progesterone + estradiol) protocol.  相似文献   

15.
The objective was to compare pharmacological strategies aiming to inhibit prostaglandin F2 alpha (PGF) synthesis (flunixin meglumine; FM), stimulate growth of the conceptus (recombinant bovine somatotropin; bST) and progesterone (P4) synthesis (human chorionic gonadotropin; hCG), as well as their combinations, regarding their ability to improve pregnancy rates in beef cattle. Lactating Nelore cows (N = 975), 35 to 70 days postpartum, were synchronized and inseminated by timed artificial insemination (TAI) on Day 0. On Day 7, cattle were allocated into eight groups and received one of the following treatments: saline (S) on Days 7 and 16 (Group Control); S on Day 7 and FM on Day 16 (Group FM); bST on Day 7 and S on Day 16 (Group bST); bST on Day 7 and FM on Day 16 (Group bST + FM); hCG on Day 7 and S on Day 16 (Group hCG); hCG on Day 7 and FM on Day 16 (Group hCG + FM); bST and hCG on Day 7 and S on Day 16 (Group bST + hCG), or bST and hCG on Day 7 and FM on Day 16 (Group bST + hCG + FM). The aforementioned treatments were administered at the following doses: 2.2 mg/kg FM (Banamine®; Intervet Schering-Plough, Cotia, SP, Brazil), 500 mg bST (Boostin®; Intervet Schering-Plough), and 2500 IU hCG (Chorulon®; Intervet Schering-Plough). Pregnancy diagnosis was performed 40 days after TAI by transrectal ultrasonography. Pregnancy rates were not significantly different among treatments. However, there was a main effect of hCG treatment to increase pregnancy rates (63.0 vs. 55.4%; P = 0.001). Concentrations of P4 did not differ significantly among groups on Day 7 or on Day 16. However, consistent with the higher pregnancy rates, hCG increased P4 concentrations on Day 16 (10.6 vs. 9.6 ng/mL, respectively; P = 0.05). We concluded that hCG treatment 7 days after TAI improved pregnancy rates of lactating Nelore cows, possibly via a mechanism leading to induction of higher P4 concentrations, or by reducing the luteolytic stimulus during maternal recognition of pregnancy.  相似文献   

16.
The objectives were to determine pregnancy rates following fixed-time AI (FTAI) in heifers: (1). given GnRH or estradiol cypionate (ECP) to synchronize follicular wave emergence and ovulation in a CIDR-based protocol; and (2). fed diets supplemented with flax or sunflower seeds. At two locations, Angus and crossbred Angus heifers (n=983) were examined ultrasonically to confirm reproductive maturity and randomly allocated to six synchronization groups in a 2 x 3 factorial design. On Day 0 (start of synchronization treatments), heifers received a CIDR and either 100 microg GnRH i.m. (n=492) or 1mg ECP plus 50 mg progesterone i.m. (n=491); in these groups, CIDR removal and PGF treatment were done concurrently on Days 7 and 8.5, respectively. Heifers were re-randomized to receive 0.5 mg ECP i.m. at CIDR removal or 24 h later (with FTAI 58-60 h after CIDR removal in both groups), or 100 microg GnRH i.m. concurrent with FTAI (52-54 h after CIDR removal). The heifers were fed a barley silage-based diet for 50 days (from Day -25 to 25) supplemented with 1kg/heifer per day of flax seed (n=321), sunflower seed (n=324), or no oilseed (n=338). Pregnancy rate to FTAI (overall, 56.2%) was not affected by treatment at CIDR insertion (P = 0.96) but was higher (P < 0.05) in heifers given ECP 24h after CIDR removal (216/330, 65.4%) than in those given either ECP at CIDR removal (168/322, 52.1%) or GnRH at AI (169/331, 51.1%). Overall, there was no effect of diet on pregnancy rates (P = 0.46). In summary, pregnancy rate to FTAI was not significantly affected by treatment at CIDR insertion to synchronize follicular wave emergence, but 0.5mg ECP 24h after CIDR removal (to synchronize ovulation) resulted in the highest pregnancy rate.  相似文献   

17.
Three experiments were conducted to: (1) compare the effect of three oestradiol formulations on gonadotrophin release in ovariectomised cows; (2) compare the effects of either oestradiol-17beta (E-17beta) or oestradiol benzoate (EB), given at two doses, on the synchrony of ovarian follicular wave emergence in CIDR-treated beef cattle; and (3) determine the timing of ovulation of the dominant follicle of a synchronised follicular wave following administration of E-17beta or EB 24h after progesterone withdrawal. In Experiment 1, ovariectomised cows (n = 16) received a once-used CIDR on Day 0 (beginning of the experiment) and were allocated randomly to receive 5mg of E-17beta, EB or oestradiol valerate (EV) plus 100mg progesterone i.m. The CIDR inserts were removed on Day 7. There were effects of time, and a treatment-by-time interaction (P < 0.0001) for plasma concentrations of both oestradiol and FSH. Plasma oestradiol concentrations peaked 12h after treatment, with highest (P < 0.01) peak concentrations in cows given E-17beta; estradiol concentrations subsequently returned to baseline by 36 h in E-17beta-treated cows and by 96 h in EB- and EV-treated cows. Plasma FSH concentrations decreased by 12h after oestradiol treatment in all groups (P < 0.0001), reached a nadir at 24h, and increased by 60 h in all groups; plasma FSH reached higher (P < 0.02) concentrations in E-17beta-treated than in EB- or EV-treated cows. In Experiment 2, non-lactating Hereford cows (n = 29) received a new CIDR on Day 0 (beginning of the experiment), and were assigned randomly to receive 1 or 5mg of E-17beta or EB i.m. on Day 1. On Day 8, CIDR were removed and PGF was given. Transrectal ultrasonography was done once daily from 2 days before CIDR insertion to 2 days after CIDR removal, and then twice-daily to ovulation. Although there was no difference among groups in the interval from oestradiol treatment to follicular wave emergence (4.2 +/- 0.3 days; P = 0.5), 5mg of E-17beta resulted in the least variable interval to wave emergence (P < 0.005), compared with the other treatment groups which were not different (P = 0.1). For the interval from CIDR removal to ovulation, there were no differences among groups for either means (P = 0.5) or variances (P = 0.1). In Experiment 3, beef heifers (n = 32) received a once-used CIDR on Day 0 (beginning of the experiment) plus 100mg progesterone i.m. and were assigned randomly to receive 5mg E-17beta or 1mg EB i.m. On Day 7, CIDR were removed and all heifers received PGF. On Day 8 (24h after CIDR removal), each group was subdivided randomly to receive 1mg of either E-17beta or EB i.m. There was no effect of oestradiol formulation on interval from treatment to follicular wave emergence (4.1 +/- 0.2 days; P = 0.7) or on the median interval (76.6h; P = 0.7) or range (72-120 h; P = 0.08) from CIDR removal to ovulation. In summary, oestradiol treatments suppressed FSH in ovariectomised cows, with the duration of suppression dependent on the oestradiol formulation. Both E-17beta and EB effectively synchronised ovarian follicular wave emergence and ovulation in CIDR-treated cattle, and the interval from CIDR removal to ovulation did not differ in heifers given either E-17beta or EB 24h after CIDR removal.  相似文献   

18.
The objective was to compare two protocols for synchronizing ovulation in lactating Holstein cows submitted to timed AI (TAI) or timed ET (TET). Within each farm (n = 8), cows (n = 883; mean ± SEM 166.24 ± 3.27 d postpartum, yielding 36.8 ± 0.34 kg of milk/d) were randomly assigned to receive either: 1) an intravaginal progesterone insert (CIDR®) with 1.9 g of progesterone + GnRH on Day -10, CIDR® withdrawal + PGF2α on Day -3, and 1 mg estradiol cypionate on Day -2 (treatment GP-P-E; nTAI = 180; nTET = 260); or 2) a CIDR® insert + 2 mg estradiol benzoate on Day -10, PGF2α on Day -3, CIDR® withdrawal + 1 mg estradiol cypionate on Day -2 (treatment EP-P-E; nTAI = 174; nTET = 269). Cows were subsequently randomly assigned to receive either TAI on Day 0 or TET on Day 7. Serum progesterone concentration on Day -3 was greater in GP-P-E than in EP-P-E (2.89 ± 0.15 vs 2.29 ± 0.15 ng/mL; P < 0.01), with no significant effect of group on serum progesterone on Day 7. Compared to cows submitted to TAI, those submitted to TET had greater pregnancy rates on Day 28 (44.0% [233/529] vs 29.7% [105/354]; P < 0.001) and on Day 60 (37.6% [199/529] vs 26.5 [94/354]; P < 0.001). However, there were no effects of treatments (GP-P-E vs EP-P-E; P > 0.10) on synchronization (87.0% [383/440] vs 85.3% [378/443]), conception (TAI: 35.3% [55/156] vs 33.8% [50/148]; TET: 50.7% [115/227] vs 51.3% [118/230]) and pregnancy rates on Days 28 (TAI: 30.5% [55/180] vs 28.7% [50/174]; TET: 44.2% [115/260] vs 43.9% [118/269]) and 60 (TAI: 27.2% [49/80] vs 25.9% [45/174]; TET: 38.8% [101/260] vs 36.4% [98/269]). In conclusion, GP-P-E increased serum progesterone concentrations on Day -3, but rates of synchronization, conception, and pregnancy were not significantly different between cows submitted to GP-P-E and EP-P-E protocols, regardless of whether they were inseminated or received an embryo.  相似文献   

19.
Two experiments were designed to evaluate the effects of treatments with low versus high serum progesterone (P4) concentrations on factors associated with pregnancy success in postpubertal Nellore heifers submitted to either conventional or fixed timed artificial insemination (FTAI). Heifers were synchronized with a new controlled internal drug release device (CIDR; 1.9 g of P4 [CIDR1]) or a CIDR previously used for 18 days (CIDR3) plus 2 mg of estradiol (E2) benzoate on Day 0 and 12.5 mg of prostaglandin F2α on Day 7. In experiment 1 (n = 723), CIDR were removed on Day 7 or 9 and heifers were inseminated after estrus detection. In experiment 2 (n = 1083), CIDR were all removed on Day 9 and FTAI was performed either 48 hours later in heifers that received E2 cypionate (ECP) on Day 9 (0.5 mg; E48) or 54 or 72 hours later in conjunction with administration of GnRH (100 μg; G54 or G72). Synchronization with CIDR1 resulted in greater serum P4 concentrations and smaller follicle diameters on Days 7 and 9 in both experiments. In experiment 1, treatment with CIDR for 9 days decreased the interval from CIDR removal to estrus (Day 7, 3.76 ± 0.08 days vs. Day 9, 2.90 ± 0.07; P < 0.01) and improved conception (Day 7, 57.1% vs. Day 9, 65.8%; P = 0.05) and pregnancy rates (Day 7, 37.6% vs. Day 9, 45.3%; P = 0.04). In experiment 2, treatment with ECP improved (P < 0.01) the proportion of heifers in estrus (E48, 40.9%a; G54, 17.1%c; and G72, 32.0%b), but the pregnancy rate was not affected (P = 0.64) by treatments (E48, 38.8%; G54, 35.5%; G72, 37.5%). Synchronization with CIDR3 increased follicle diameter at FTAI (CIDR1, 11.07 ± 0.10 vs. CIDR3, 11.61 ± 0.10 mm; P < 0.01), ovulation rate (CIDR1, 82.8% vs. CIDR3, 88.0%; P < 0.01) and did not affect conception (CIDR1, 42.2 vs. CIDR3, 45.1%; P = 0.38) or pregnancy rates (CIDR1, 34.7 vs. CIDR3, 39.4%; P = 0.11). In conclusion, length of treatment with P4 affected the fertility of heifers bred based on estrus detection. When the heifers were submitted to FTAI protocol, follicle diameter at FTAI (≤10.7 mm, 23.6%; 10.8–15.7 mm, 51.5%; ≥15.8 mm, 30.0%; P < 0.01) was the main factor that affected conception and pregnancy rates.  相似文献   

20.
Considering that there is limited information about the preovulatory LH surge in Zebu cattle (Bos indicus), the purpose of the present work was to assess the LH surge in Nelore cows during the estrous cycle and after ovarian superestimulation of ovarian follicular development with FSH. This information is particularly important to improve superovulatory protocols associated with fixed-time artificial insemination. Nelore cows (n=12) had their estrus synchronized with an intravaginal device containing progesterone (CIDR-B) associated with estradiol benzoate administration (EB, 2.5 mg, i.m., Day 0). Eight days later all animals were treated with PGF2alpha (Day 8) in the morning (8:00 h) and at night, when CIDR devices were removed (20:00 h). Starting 38h after the first PGF2alpha injection, blood sampling and ovarian ultrasonography took place every 4h, during 37 consecutive hours. Frequent handling may have resulted in a stress-induced suppression of LH secretion resulting in only 3 of 12 cows having ovulations at 46.7+/-4.9 and 72.3+/-3.8 h, respectively, after removal of CIDR-B. Thirty days later, the same animals received the described hormonal treatment associated with FSH (Folltropin), total dose=200 mg) administered twice a day, during 4 consecutive days, starting on Day 5. Thirty-six hours after the first injection of PGF2alpha, to minimize stress, only seven blood samples were collected at 4h interval each, and ultrasonography was performed every 12 h until ovulation. In 11 of 12 cows (92%) the LH surge and ovulation were observed 34.6+/-1.6 and 59.5+/-1.9 h, respectively, after removal of progesterone source. The maximum values for LH in those animals were 19.0+/-2.6 ng/ml (mean+/-S.E.M.). It is concluded that, in Nelore cows submitted to a ovarian superstimulation protocol, the LH surge occurs approximately 35 h after removal of intravaginal device containing progesterone, and approximately 12h before the LH surge observed after an induced estrus without ovarian superstimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号