首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
The gut microbiome has been shown to play a significant role in human healthy and diseased states. The dynamic signaling that occurs between the host and microbiome is critical for the maintenance of host homeostasis. Analyzing the human microbiome with metaproteomics, metabolomics, and integrative multi‐omics analyses can provide significant information on markers for healthy and diseased states, allowing for the eventual creation of microbiome‐targeted treatments for diseases associated with dysbiosis. Metaproteomics enables functional activity information to be gained from the microbiome samples, while metabolomics provides insight into the overall metabolic states affecting/representing the host–microbiome interactions. Combining these functional ‐omic platforms together with microbiome composition profiling allows for a holistic overview on the functional and metabolic state of the microbiome and its influence on human health. Here the benefits of metaproteomics, metabolomics, and the integrative multi‐omic approaches to investigating the gut microbiome in the context of human health and diseases are reviewed.  相似文献   

4.
The successful identification of drug targets requires an understanding of the high-level functional interactions between the key components of cells, organs and systems, and how these interactions change in disease states. This information does not reside in the genome, or in the individual proteins that genes code for, it is to be found at a higher level. Genomics will succeed in revolutionising pharmaceutical research and development only if these interactions are also understood by determining the logic of healthy and diseased states. The rapid growth in biological databases, models of cells, tissues and organs, and in computing power has made it possible to explore functionality all the way from the level of genes to whole organs and systems. Combined with genomic and proteomic data, in silico simulation technology is set to transform all stages of drug discovery and development. The major obstacle to achieving this will be obtaining the relevant experimental data at levels higher than genomics and proteomics.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
Chromatin conformation,localization,and dynamics are crucial regulators of cellular behaviors. Although fluorescence in situ hybridization-based techniques have been widely utilized for investigating chromatin architectures in healthy and diseased states,the requirement for cell fix-ation precludes the comprehensive dynamic analysis necessary to fully understand chromatin activ-ities. This has spurred the development and application of a variety of imaging methodologies for visualizing single chromosomal loci in the native cellular context. In this review,we describe currently-available approaches for imaging single genomic loci in cells,with special focus on clus-tered regularly interspaced short palindromic repeats (CRISPR)-based imaging approaches. In addition,we discuss some of the challenges that limit the application of CRISPR-based genomic imaging approaches,and potential solutions to address these challenges. We anticipate that,with continued refinement of CRISPR-based imaging techniques,significant understanding can be gained to help decipher chromatin activities and their relevance to cellular physiology and pathogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号