首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Proteins that track growing microtubule (MT) ends are important for many aspects of intracellular MT function, but the mechanism by which these +TIPs accumulate at MT ends has been the subject of a long-standing controversy. In this issue, Bieling et al. (Bieling, P., S. Kandels-Lewis, I.A. Telley, J. van Dijk, C. Janke, and T. Surrey. 2008. J. Cell Biol. 183:1223–1233) reconstitute plus end tracking of EB1 and CLIP-170 in vitro, which demonstrates that CLIP-170 plus end tracking is EB1-dependent and that both +TIPs rapidly exchange between a soluble and a plus end–associated pool. This strongly supports the hypothesis that plus end tracking depends on a biochemical property of growing MT ends, and that the characteristic +TIP comets result from the generation of new +TIP binding sites through MT polymerization in combination with the exponential decay of these binding sites.  相似文献   

2.
3.
CLIP-170 highlights growing microtubule ends in vivo   总被引:18,自引:0,他引:18  
A chimera with the green fluorescent protein (GFP) has been constructed to visualize the dynamic properties of the endosome-microtubule linker protein CLIP170 (GFP-CLIP170). GFP-CLIP170 binds in stretches along a subset of microtubule ends. These fluorescent stretches appear to move with the growing tips of microtubules at 0.15-0.4 microm/s, comparable to microtubule elongation in vivo. Analysis of speckles along dynamic GFP-CLIP170 stretches suggests that CLIP170 treadmills on growing microtubule ends, rather than being continuously transported toward these ends. Drugs affecting microtubule dynamics rapidly inhibit movement of GFP-CLIP170 dashes. We propose that GFP-CLIP170 highlights growing microtubule ends by specifically recognizing the structure of a segment of newly polymerized tubulin.  相似文献   

4.
《The Journal of cell biology》1995,129(5):1311-1328
Observation of microtubule growth at different rates by cryo-electron microscopy reveals that the ends range from blunt to long, gently curved sheets. The mean sheet length increases with the growth rate while the width of the distributions increases with the extent of assembly. The combination of a concentration dependent growth rate of the tubulin sheet with a variable closure rate of the microtubule cylinder, results in a model in which stochastic fluctuations in sheet length and tubulin conformation confine GTP-tubulins to microtubule ends. We propose that the variability of microtubule growth rate observed by video microscopy (Gildersleeve, R. F., A. R. Cross, K. E. Cullen, A. P. Fagen, and R. C. Williams. 1992. J. Biol. Chem. 267: 7995- 8006, and this study) is due to the variation in the rate of cylinder closure. The curvature of the sheets at the end of growing microtubules and the small oligomeric structures observed at the end of disassembling microtubules, indicate that tubulin molecules undergo conformational changes both during assembly and disassembly.  相似文献   

5.
The kinetics of tubulin subunits incorporation into microtubules and the kinetics of inorganic phosphate release have been measured in parallel. Correlation of the two measurements indicates that the tubulin GTPase activity is due to GTP hydrolysis and exchange at the end of the microtubules. In some cases where the free GTP available in the medium is in-sufficient the rate of GTP hydrolysis is limited by the rate of tubulin-GTP association at the end of the microtubules. The affinity constant of GTP for the microtubule end appears to be 100 times lower than the affinity constant of the tubulin-GTP complex.  相似文献   

6.
A stable cell line expressing EB1-green fluorescent protein was used to image growing microtubule plus ends at the G(2)/M transition. By late prophase growing ends no longer extend to the cell periphery and were not uniformly distributed around each centrosome. Growing ends were much more abundant in the area surrounding the nuclear envelope, and microtubules growing around the nucleus were 1.5 fold longer than those growing in the opposite direction. The growth of longer ends toward the nucleus did not result from a localized faster growth rate, because this rate was approximately 11 microm/min in all directions from the centrosome. Rather, microtubule ends growing toward the nucleus seemed stabilized by dynein/dynactin associated with the nuclear envelope. Injection of p50 into late prophase cells removed dynein from the nuclear envelope, reduced the density of growing ends near the nuclear envelope and resulted in a uniform distribution of growing ends from each centrosome. We suggest that the cell cycle-dependent binding of dynein/dynactin to the nuclear envelope locally stabilizes growing microtubules. Both dynein and microtubules would then be in a position to participate in nuclear envelope breakdown, as described in recent studies.  相似文献   

7.
MCAK belongs to the Kin I subfamily of kinesin-related proteins, a unique group of motor proteins that are not motile but instead destabilize microtubules. We show that MCAK is an ATPase that catalytically depolymerizes microtubules by accelerating, 100-fold, the rate of dissociation of tubulin from microtubule ends. MCAK has one high-affinity binding site per protofilament end, which, when occupied, has both the depolymerase and ATPase activities. MCAK targets protofilament ends very rapidly (on-rate 54 micro M(-1).s(-1)), perhaps by diffusion along the microtubule lattice, and, once there, removes approximately 20 tubulin dimers at a rate of 1 s(-1). We propose that up to 14 MCAK dimers assemble at the end of a microtubule to form an ATP-hydrolyzing complex that processively depolymerizes the microtubule.  相似文献   

8.
The length dynamics both of microtubule-associated protein (MAP)-rich and MAP-depleted bovine brain microtubules were examined at polymer mass steady state. In both preparations, the microtubules exhibited length redistributions shortly after polymer mass steady state was attained. With time, however, both populations relaxed to a state in which no further changes in length distributions could be detected. Shearing the microtubules or diluting the microtubule suspensions transiently increased the extent to which microtubule length redistributions occurred, but again the microtubules relaxed to a state in which changes in the polymer length distributions were not detected. Under steady-state conditions of constant polymer mass and stable microtubule length distribution, both MAP-rich and MAP-depleted microtubules exhibited behavior consistent with treadmilling. MAPs strongly suppressed the magnitude of length redistributions and the steady-state treadmilling rates. These data indicate that the inherent tendency of microtubules in vitro is to relax to a steady state in which net changes in the microtubule length distributions are zero. If the basis of the observed length redistributions is the spontaneous loss and regain of GTP-tubulin ("GTP caps") at microtubule ends, then in order to account for stable length distributions the microtubule ends must reside in the capped state far longer than in the uncapped state, and uncapped microtubule ends must be rapidly recapped. The data suggest that microtubules in cells may have an inherent tendency to remain in the polymerized state, and that microtubule disassembly must be induced actively.  相似文献   

9.
Panda D  Miller HP  Wilson L 《Biochemistry》2002,41(5):1609-1617
The size and chemical nature of the stabilizing cap at microtubule (MT) ends has remained enigmatic, in large part because it has been difficult to detect and measure it directly. By pulsing steady-state suspensions of bovine brain microtubules (MTs) with trace quantities of [gamma(32)P]GTP and sedimenting the MTs through 50% sucrose cushions to reduce background contaminating (32)P to negligible levels, we were able to detect a small number of (32)P molecules that remain stably bound to the MTs (a mean of 25.5 molecules of (32)P per MT). Analysis of the chemical form of the stably bound (32)P by thin-layer chromatography revealed that it was all (32)P-orthophosphate ((32)P(i)). The (32)P(i) was determined to be located at the MT ends because colchicine and vinblastine, drugs that suppress tubulin incorporation into the MT by binding specifically at MT ends, reduced the quantity of the stably bound (32)P(i). Taxol, a drug that stabilizes MT dynamics by binding along the MT surface rather than at the ends, did not affect the stoichiometry of the bound (32)P(i). If the bound (32)P is equally distributed between the two ends, each end would contain 12-13 molecules of (32)P(i). Beryllium fluoride (BeF(3-)) and aluminum fluoride (AlF(4-)), inorganic phosphate analogues, suppressed the dynamic instability behavior of individual MTs and, thus, stabilized them. For example, BeF(3-) (70 microM) reduced the MT shortening rate by 2.5-fold and decreased the transition frequency from the growing or the attenuated state to rapid shortening by 2-fold. The data support the hypothesis that the stabilizing cap at MT ends consists of a single layer of tubulin GDP-P(i) subunits. The data also support the hypothesis that the mechanism giving rise to the destabilized GDP-tubulin core involves release of P(i) rather than hydrolysis of the GTP.  相似文献   

10.
Molecular encounters at microtubule ends in the plant cell cortex   总被引:1,自引:0,他引:1  
The cortical arrays that accompany plant cell division and elongation are organized by a subtle interplay between intrinsic properties of microtubules, their self-organization capacity and a variety of cellular proteins that interact with them, modify their behaviour and drive organization of diverse, higher order arrays during the cell cycle, cell growth and differentiation. As a polar polymer, the microtubule has a minus and a plus end, which differ in structure and dynamic characteristics, and to which different sets of partners and activities associate. Recent advances in characterization of minus and plus end directed proteins provide insights into both plant microtubule properties and the way highly organized cortical arrays emerge from the orchestrated activity of individual microtubules.  相似文献   

11.
M A Jordan  L Wilson 《Biochemistry》1990,29(11):2730-2739
We have investigated the effects of vinblastine at micromolar concentrations and below on the dynamics of tubulin exchange at the ends of microtubule-associated-protein-rich bovine brain microtubules. The predominant behavior of these microtubules at polymer-mass steady state under the conditions examined was tubulin flux, i.e., net addition of tubulin at one end of each microtubule, operationally defined as the assembly or A end, and balanced net loss at the opposite (disassembly or D) end. No dynamic instability behavior could be detected by video-enhanced dark-field microscopy. Addition of vinblastine to the microtubules at polymer-mass steady state resulted in an initial concentration-dependent depolymerization predominantly at the A ends, until a new steady-state plateau at an elevated critical concentration was established. Microtubules ultimately attained the same stable polymer-mass plateau when vinblastine was added prior to initiation of polymerization as when the drug was added to already polymerized microtubules. Vinblastine inhibited tubulin exchange at the ends of the microtubules at polymer-mass steady state, as determined by using microtubules differentially radiolabeled at their opposite ends. Inhibition of tubulin exchange occurred at concentrations of vinblastine that had very little effect on polymer mass. Both the initial burst of incorporation that occurs in control microtubule suspensions following a pulse of labeled GTP and the relatively slower linear incorporation of label that follows the initial burst were inhibited in a concentration-dependent manner by vinblastine. Both processes were inhibited to the same extent at all vinblastine concentrations examined. If the initial burst of label incorporation represents a low degree of dynamic instability (very short excursions of growth and shortening of the microtubules at one or both ends), then vinblastine inhibits both dynamic instability and flux to similar extents. The ability of vinblastine to inhibit tubulin exchange at microtubule ends in the micromolar concentration range appeared to be mediated by the reversible binding of vinblastine to tubulin binding sites exposed at the polymer ends. Determination by dilution analysis of the effects of vinblastine on the apparent dissociation rate constants for tubulin loss at opposite microtubule ends indicated that a principal effect of vinblastine is to decrease the dissociation rate constant at A ends (i.e., it produces a kinetic cap at A ends), whereas it has no effect on the D-end dissociation rate constant.  相似文献   

12.
Mao Y 《Trends in cell biology》2011,21(11):625-629
The mammalian diaphanous-related (mDia) formin proteins are well known for their actin-nucleation and filament-elongation activities in mediating actin dynamics. They also directly bind to microtubules and regulate microtubule stabilization at the leading edge of the cell during cell migration. Recently, the formin mDia3 was shown to associate with the kinetochore and to contribute to metaphase chromosome alignment, a process in which kinetochores form stable attachments with growing and shrinking microtubules. We suggest that the formin mDia3 could contribute to the regulation of kinetochore-bound microtubule dynamics, in coordination with attachment via its own microtubule-binding activity, as well as via its interaction with the tip-tracker EB1 (end-binding protein 1).  相似文献   

13.
We studied the mechanism by which tubulin-colchicine complex (TC) inhibits microtubule polymerization in vitro by using the axoneme-directed polymerization system (Bergen, L. G., and Borisy, G. G. (1980) J. Cell Biol. 84, 141-150). With this system, the growth properties of each microtubule end can be determined from the direct visual analysis of changes in lengths of seeded microtubules. The rate of growth at both ends was inhibited equally by TC and the magnitude of the inhibition increased progressively with the molar ratio of TC to tubulin dimer (TC:T). At a TC:T ratio of approximately 0.12, all microtubule polymerization was inhibited at both ends. Therefore, substoichiometric poisoning of microtubule elongation is both a nonpolar and graded phenomenon. We determined the four association and dissociation rate constants in the presence and absence of TC and found that TC inhibits the overall growth of microtubules by reducing the association rate constants at both ends under conditions that do not alter the dissociation rate constants. Therefore, by an independent analytical method, we have confirmed Sternlicht and Ringel's hypothesis of TC action (Sternlicht, H., and Ringel, I. (1979) J. Biol. Chem. 254, 10540-10550), and have extended this hypothesis 1) by demonstrating that net growth of both ends are equally inhibited by TC, and 2) by determining which changes in the separate rate constants were responsible for the net inhibition.  相似文献   

14.
Structural plugs at microtubule ends may regulate polymer dynamics in vitro   总被引:1,自引:0,他引:1  
Microtubules contain in their lumens distinct structures (plugs) that influence their dynamic behavior in vitro. As observed by electron microscopy, plugs are stain-occluding structures 10-30 nm in length that occur along the lengths and at the ends of microtubules. Plugs occur at a frequency of 20-40% at the ends of microtubules assembled from cycled microtubule protein containing MAPs. While the composition of plugs is not known, preliminary evidence suggests that they are accretions of tubulin, that they are labile, and that they are more common in preparations containing MAPs. When polymers are induced to depolymerize by endwise subunit dissociation, the frequency of plugged microtubule ends increases transiently, suggesting that plugs temporarily stabilize microtubules. The functional significance of plugs may be that they prevent the sudden complete loss of microtubules through catastrophic disassembly. It is possible that plugs, by slowing the rate of disassembly, enable a polymer to add GTP-tubulin subunits, thereby forming a stabilizing GTP-cap. These observations suggest that plugs may stabilize polymers and account for the frequent transitions from shortening to growing phases that characterize dynamic instability.  相似文献   

15.
The microtubule cytoskeleton is crucial for the internal organization of eukaryotic cells. Several microtubule-associated proteins link microtubules to subcellular structures. A subclass of these proteins, the plus end–binding proteins (+TIPs), selectively binds to the growing plus ends of microtubules. Here, we reconstitute a vertebrate plus end tracking system composed of the most prominent +TIPs, end-binding protein 1 (EB1) and CLIP-170, in vitro and dissect their end-tracking mechanism. We find that EB1 autonomously recognizes specific binding sites present at growing microtubule ends. In contrast, CLIP-170 does not end-track by itself but requires EB1. CLIP-170 recognizes and turns over rapidly on composite binding sites constituted by end-accumulated EB1 and tyrosinated α-tubulin. In contrast to its fission yeast orthologue Tip1, dynamic end tracking of CLIP-170 does not require the activity of a molecular motor. Our results demonstrate evolutionary diversity of the plus end recognition mechanism of CLIP-170 family members, whereas the autonomous end-tracking mechanism of EB family members is conserved.  相似文献   

16.
The microtubule (MT) cytoskeleton orchestrates the cellular plasticity and dynamics that underlie morphogenesis and cell division. Growing MT plus ends have emerged as dynamic regulatory machineries in which specialized proteins—called plus-end tracking proteins (+TIPs)—bind to and control the plus-end dynamics that are essential for cell division and migration. However, the molecular mechanisms underlying the plus-end regulation by +TIPs at spindle and astral MTs have remained elusive. Here, we show that TIP150 is a new +TIP that binds to end-binding protein 1 (EB1) in vitro and co-localizes with EB1 at the MT plus ends in vivo. Suppression of EB1 eliminates the plus-end localization of TIP150. Interestingly, TIP150 also binds to mitotic centromere-associated kinesin (MCAK), an MT depolymerase that localizes to the plus end of MTs. Suppression of TIP150 diminishes the plus-end localization of MCAK. Importantly, aurora B-mediated phosphorylation disrupts the TIP150–MCAK association in vitro. We reason that TIP150 facilitates the EB1-dependent loading of MCAK onto MT plus ends and orchestrates the dynamics at the plus end of MTs.  相似文献   

17.
BACKGROUND: CLIP-170 is a microtubule binding protein specifically located at microtubule plus ends, where it modulates their dynamic properties and their interactions with intracellular organelles. The mechanism by which CLIP-170 is targeted to microtubule ends remains unclear today, as well as its precise effect on microtubule dynamics. RESULTS: We used the N-terminal part of CLIP-170 (named H2), which contains the microtubule binding domains, to investigate how it modulates in vitro microtubule dynamics and structure. We found that H2 primarily promoted rescues (transitions from shrinkage to growth) of microtubules nucleated from pure tubulin and isolated centrosomes, and stimulated microtubule nucleation. Electron cryomicroscopy revealed that H2 induced the formation of tubulin rings in solution and curved oligomers at the extremities of microtubules in assembly conditions. CONCLUSIONS: These results suggest that CLIP-170 targets specifically at microtubule plus ends by copolymerizing with tubulin and modulates microtubule nucleation, polymerization, and rescues by the same basic mechanism with tubulin oligomers as intermediates.  相似文献   

18.
Tubulin-tyrosine ligase (TTL), the enzyme that catalyzes the addition of a C-terminal tyrosine residue to alpha-tubulin in the tubulin tyrosination cycle, is involved in tumor progression and has a vital role in neuronal organization. We show that in mammalian fibroblasts, cytoplasmic linker protein (CLIP) 170 and other microtubule plus-end tracking proteins comprising a cytoskeleton-associated protein glycine-rich (CAP-Gly) microtubule binding domain such as CLIP-115 and p150 Glued, localize to the ends of tyrosinated microtubules but not to the ends of detyrosinated microtubules. In vitro, the head domains of CLIP-170 and of p150 Glued bind more efficiently to tyrosinated microtubules than to detyrosinated polymers. In TTL-null fibroblasts, tubulin detyrosination and CAP-Gly protein mislocalization correlate with defects in both spindle positioning during mitosis and cell morphology during interphase. These results indicate that tubulin tyrosination regulates microtubule interactions with CAP-Gly microtubule plus-end tracking proteins and provide explanations for the involvement of TTL in tumor progression and in neuronal organization.  相似文献   

19.
K W Farrell  L Wilson 《Biochemistry》1984,23(16):3741-3748
The kinetics of radiolabeled guanosine 5'-triphosphate-tubulin dimer addition to preformed microtubule copolymers, containing large numbers of tubulin-colchicine complexes (TCs), were examined at apparent equilibrium. The results indicated that radiolabeled dimer addition to copolymers occurs predominantly by a "treadmilling" reaction, analogous to that described for unpoisoned microtubules, and that some labeled dimer uptake also occurs by equilibrium exchange. The data further showed that TCs decrease the steady-state treadmilling reaction in a concentration-dependent manner. Since microtubule copolymers exhibited a treadmilling reaction, it was possible to differentially radiolabel opposite copolymer ends with [3H]- and [14C]guanine nucleotides and thus to measure the effects of TCs on dimer loss from opposite copolymer ends upon copolymer dilution. Dimer loss from both copolymer ends was inhibited in a concentration-dependent manner, but dimer loss from copolymer net assembly (A) ends (defined under steady-state conditions) was inhibited to a far greater extent than that from the opposite, net disassembly (D) copolymer ends. TCs therefore exhibited a graded, polar poisoning action, with copolymer A-end association and dissociation rate constants being far more susceptible to TC inhibition than those at the opposite copolymer D ends. The potential significance of this TC effect for regulating microtubule spatial orientation in vivo is discussed.  相似文献   

20.
Microtubule plus ends are dynamically regulated by a wide variety of proteins for performing diverse cellular functions. Here, we show that the fission yeast Schizosaccharomyces pombe uncharacterized protein mcp1p is a microtubule plus-end tracking protein which depends on the kinesin-8 klp6p for transporting along microtubules towards microtubule plus ends. In the absence of mcp1p, microtubule catastrophe and rescue frequencies decrease, leading to an increased dwell time of microtubule plus ends at cell tips. Thus, these findings suggest that mcp1p may synergize with klp6p at microtubule plus-ends to destabilize microtubules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号