首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The plant immune receptor FLAGELLIN SENSING 2 (FLS2) is present at the plasma membrane and is internalized following activation of its ligand flagellin (flg22). We show that ENDOSOMAL SORTING COMPLEX REQUIRED FOR TRANSPORT (ESCRT)-I subunits play roles in FLS2 endocytosis in Arabidopsis. VPS37-1 co-localizes with FLS2 at endosomes and immunoprecipitates with the receptor upon flg22 elicitation. Vps37-1 mutants are reduced in flg22-induced FLS2 endosomes but not in endosomes labeled by Rab5 GTPases suggesting a defect in FLS2 trafficking rather than formation of endosomes. FLS2 localizes to the lumen of multivesicular bodies, but this is altered in vps37-1 mutants indicating compromised endosomal sorting of FLS2 by ESCRT-I loss-of-function. VPS37-1 and VPS28-2 are critical for immunity against bacterial infection through a role in stomatal closure. Our findings identify that VPS37-1, and likewise VPS28-2, regulate late FLS2 endosomal sorting and reveals that ESCRT-I is critical for flg22-activated stomatal defenses involved in plant immunity.  相似文献   

2.
We previously identified the 11 amino acid C1 region of the cytoplasmic domain of P-selectin as essential for an endosomal sorting event that confers rapid turnover on P-selectin. The amino acid sequence of this region has no obvious similarity to other known sorting motifs. We have analyzed the sequence requirements for endosomal sorting by measuring the effects of site-specific mutations on the turnover of P-selectin and of the chimeric protein LLP, containing the lumenal and transmembrane domains of the low density lipoprotein receptor and the cytoplasmic domain of P-selectin. Endosomal sorting activity was remarkably tolerant of alanine substitutions within the C1 region. The activity was eliminated by alanine substitution of only one amino acid residue, leucine 768, where substitution with several other large side chains, hydrophobic and polar, maintained the sorting activity. The results indicate that the endosomal sorting determinant is not structurally related to previously reported sorting determinants. Rather, the results suggest that the structure of the sorting determinant is dependent on the tertiary structure of the cytoplasmic domain.  相似文献   

3.
4.
The chemokine receptor CXCR4, a G protein-coupled receptor, is targeted for lysosomal degradation via a ubiquitin-dependent mechanism that involves the endosomal sorting complex required for transport (ESCRT) machinery. We have reported recently that arrestin-2 also targets CXCR4 for lysosomal degradation; however, the molecular mechanisms by which this occurs remain poorly understood. Here, we show that arrestin-2 interacts with ESCRT-0, a protein complex that recognizes and sorts ubiquitinated cargo into the degradative pathway. Signal-transducing adaptor molecule (STAM)-1, but not related STAM-2, interacts directly with arrestin-2 and colocalizes with CXCR4 on early endosomal antigen 1-positive early endosomes. Depletion of STAM-1 by RNA interference and disruption of the arrestin-2/STAM-1 interaction accelerates agonist promoted degradation of CXCR4, suggesting that STAM-1 via its interaction with arrestin-2 negatively regulates CXCR4 endosomal sorting. Interestingly, disruption of this interaction blocks agonist promoted ubiquitination of hepatocyte growth factor-regulated tyrosine kinase substrate (HRS) but not CXCR4 and STAM-1 ubiquitination. Our data suggest a mechanism whereby arrestin-2 via its interaction with STAM-1 modulates CXCR4 sorting by regulating the ubiquitination status of HRS.  相似文献   

5.
G protein-coupled receptor (GPCR) signaling mediates many cellular functions, including cell survival, proliferation, and cell motility. Many of these processes are mediated by GPCR-promoted activation of Akt signaling by mammalian target of rapamycin complex 2 (mTORC2) and the phosphatidylinositol 3-kinase (PI3K)/phosphoinositide-dependent kinase 1 (PDK1) pathway. However, the molecular mechanisms by which GPCRs govern Akt activation by these kinases remain poorly understood. Here, we show that the endosomal sorting complex required for transport (ESCRT) pathway mediates Akt signaling promoted by the chemokine receptor CXCR4. Pharmacological inhibition of heterotrimeric G protein Gαi or PI3K signaling and siRNA targeting ESCRTs blocks CXCR4-promoted degradation of DEPTOR, an endogenous antagonist of mTORC2 activity. Depletion of ESCRTs by siRNA leads to increased levels of DEPTOR and attenuated CXCR4-promoted Akt activation and signaling, consistent with decreased mTORC2 activity. In addition, ESCRTs likely have a broad role in Akt signaling because ESCRT depletion also attenuates receptor tyrosine kinase-promoted Akt activation and signaling. Our data reveal a novel role for the ESCRT pathway in promoting intracellular signaling, which may begin to identify the signal transduction pathways that are important in the physiological roles of ESCRTs and Akt.  相似文献   

6.
7.
The ESCRT pathway functions at different subcellular membranes to induce their negative curvature, and it has been largely characterized in model eukaryotes belonging to Opisthokonta. But searches of the genomes of many nonopisthokonts belonging to various supergroups indicate that some of them may harbour fewer ESCRT components. Of the genomes explored thus far, one of the most minimal set of ESCRT components was identified in the human pathogen Giardia lamblia, which belongs to Excavata. Here we report that an ESCRT-mediated pathway most likely operates at the peripheral vesicles, which are located at the cell periphery and the bare zone of this protist. Functional comparison of all the identified putative giardial ESCRT components, with the corresponding well-characterized orthologues from Saccharomyces cerevisiae, indicated that only some of the ESCRT components could functionally substitute for the corresponding yeast proteins. While GlVps25, GlVps2, and all three paralogues of GlVps4, tested positive in functional complementation assays, GlVps22, GlVps20, and GlVps24 did not. Binary interactions of either GlVps22 or GlVps25, with other ESCRT-II components from Giardia or yeast indicate that the giardial Vps36 orthologue is either completely missing or highly diverged. Interactions within the giardial ESCRT-III components also differ from those in yeast; while GlVps46a interacts preferentially with Vps24 compared to Vps2, GlVps46b, like the yeast orthologue, interacts with both.  相似文献   

8.
The endosomal sorting complex required for transport (ESCRT) machinery is responsible for membrane remodeling in a number of biological processes including multivesicular body biogenesis, cytokinesis, and enveloped virus budding. In mammalian cells, efficient abscission during cytokinesis requires proper function of the ESCRT-III protein IST1, which binds to the microtubule interacting and trafficking (MIT) domains of VPS4, LIP5, and Spartin via its C-terminal MIT-interacting motif (MIM). Here, we studied the molecular interactions between IST1 and the three MIT domain-containing proteins to understand the structural basis that governs pairwise MIT-MIM interaction. Crystal structures of the three molecular complexes revealed that IST1 binds to the MIT domains of VPS4, LIP5, and Spartin using two different mechanisms (MIM1 mode versus MIM3 mode). Structural comparison revealed that structural features in both MIT and MIM contribute to determine the specific binding mechanism. Within the IST1 MIM sequence, two phenylalanine residues were shown to be important in discriminating MIM1 versus MIM3 binding. These observations enabled us to deduce a preliminary binding code, which we applied to provide CHMP2A, a protein that normally only binds the MIT domain in the MIM1 mode, the additional ability to bind the MIT domain of Spartin in the MIM3 mode.  相似文献   

9.
The scission of membranes necessary for vesicle biogenesis and cytokinesis is mediated by cytoplasmic proteins, which include members of the ESCRT (endosomal sorting complex required for transport) machinery. During the formation of intralumenal vesicles that bud into multivesicular endosomes, the ESCRT-II complex initiates polymerization of ESCRT-III subunits essential for membrane fission. However, mechanisms underlying the spatial and temporal regulation of this process remain unclear. Here, we show that purified ESCRT-II binds to the ESCRT-III subunit Vps20 on chemically defined membranes in a curvature-dependent manner. Using a combination of liposome co-flotation assays, fluorescence-based liposome interaction studies, and high-resolution atomic force microscopy, we found that the interaction between ESCRT-II and Vps20 decreases the affinity of ESCRT-II for flat lipid bilayers. We additionally demonstrate that ESCRT-II and Vps20 nucleate flexible filaments of Vps32 that polymerize specifically along highly curved membranes as a single string of monomers. Strikingly, Vps32 filaments are shown to modulate membrane dynamics in vitro, a prerequisite for membrane scission events in cells. We propose that a curvature-dependent assembly pathway provides the spatial regulation of ESCRT-III to fuse juxtaposed bilayers of elevated curvature.  相似文献   

10.
Adell MA  Teis D 《FEBS letters》2011,585(20):3191-3196
The ESCRT (endosomal sorting complex required for transport) pathway promotes the final membrane scission step at the end of cytokinesis, assists viral budding and generates multivesicular bodies (MVBs). These seemingly unrelated processes require a topologically similar membrane deformation and scission event that buds membranes/vesicles out of the cytoplasm. The topology of this budding reaction is 'opposite' to reactions that bud endocytic and secretory vesicles into the cytoplasm. Here we summarize recent findings that help to understand how the ESCRT machinery, in particular the ESCRT-III complex, assembles on its target membranes, executes membrane scission and is disassembled by the AAA-ATPase Vps4.  相似文献   

11.
Epstein-Barr Virus (EBV) is an enveloped double-stranded DNA virus of the gammaherpesvirinae sub-family that predominantly infects humans through epithelial cells and B cells. Three EBV glycoproteins, gH, gL and gp42, form a complex that targets EBV infection of B cells. Human leukocyte antigen (HLA) class II molecules expressed on B cells serve as the receptor for gp42, triggering membrane fusion and virus entry. The mechanistic role of gHgL in herpesvirus entry has been largely unresolved, but it is thought to regulate the activation of the virally-encoded gB protein, which acts as the primary fusogen. Here we study the assembly and function of the reconstituted B cell entry complex comprised of gHgL, gp42 and HLA class II. The structure from negative-stain electron microscopy provides a detailed snapshot of an intermediate state in EBV entry and highlights the potential for the triggering complex to bring the two membrane bilayers into proximity. Furthermore, gHgL interacts with a previously identified, functionally important hydrophobic pocket on gp42, defining the overall architecture of the complex and playing a critical role in membrane fusion activation. We propose a macroscopic model of the initiating events in EBV B cell fusion centered on the formation of the triggering complex in the context of both viral and host membranes. This model suggests how the triggering complex may bridge the two membrane bilayers, orienting critical regions of the N- and C- terminal ends of gHgL to promote the activation of gB and efficient membrane fusion.  相似文献   

12.
Vps4 is a key enzyme that functions in endosomal protein trafficking, cytokinesis, and retroviral budding. Vps4 activity is regulated by its recruitment from the cytoplasm to ESCRT-III, where the protein oligomerizes into an active ATPase. The recruitment and oligomerization steps are mediated by a complex network of at least 12 distinct interactions between Vps4, ESCRT-III, Ist1, Vta1, and Did2. The order of events leading to active, ESCRT-III–associated Vps4 is poorly understood. In this study we present a systematic in vivo analysis of the Vps4 interaction network. The data demonstrated a high degree of redundancy in the network. Although no single interaction was found to be essential for the localization or activity of Vps4, certain interactions proved more important than others. The most significant among these were the binding of Vps4 to Vta1 and to the ESCRT-III subunits Vps2 and Snf7. In our model we propose the formation of a recruitment complex in the cytoplasm that is composed of Did2-Ist1-Vps4, which upon binding to ESCRT-III recruits Vta1. Vta1 in turn is predicted to cause a rearrangement of the Vps4 interactions that initiates the assembly of the active Vps4 oligomer.  相似文献   

13.
The CLC protein family contains plasma membrane chloride channels and the intracellular chloride-proton exchangers ClC-3–7. The latter proteins mainly reside on the various compartments of the endosomal-lysosomal system where they are involved in the luminal acidification or chloride accumulation. Although their partially overlapping subcellular distribution has been studied extensively, little is known about their targeting mechanism. In a comprehensive study we now performed pulldown experiments to systematically map the differential binding of adaptor proteins of the endosomal sorting machinery (adaptor proteins and GGAs (Golgi-localized, γ-ear containing, Arf binding)) as well as clathrin to the cytosolic regions of the intracellular CLCs. The resulting interaction pattern fitted well to the known subcellular localizations of the CLCs. By mutating potential sorting motifs, we could locate almost all binding sites, including one already known for ClC-3 and several new motifs for ClC-5, -6, and -7. The impact of the identified binding sites on the subcellular localization of CLC transporters was determined by heterologous expression of mutants. Surprisingly, some vesicular CLCs retained their localization after disruption of interaction sites. However, ClC-7 could be partially shifted from lysosomes to the plasma membrane by combined mutation of N-terminal sorting motifs. The localization of its β-subunit, Ostm1, was determined by that of ClC-7. Ostm1 was not capable of redirecting ClC-7 to lysosomes.  相似文献   

14.
Biogenesis of lysosome-related organelles complex-1 (BLOC-1) is a component of the molecular machinery required for the biogenesis of specialized organelles and lysosomal targeting of cargoes via the endosomal to lysosomal trafficking pathway. BLOS1, one subunit of BLOC-1, is implicated in lysosomal trafficking of membrane proteins. We found that the degradation and trafficking of epidermal growth factor receptor (EGFR) were delayed in BLOS1 knockdown cells, which were rescued through BLOS1 overexpression. A key feature to the delayed EGFR degradation is the accumulation of endolysosomes in BLOS1 knockdown cells or BLOS1 knock-out mouse embryonic fibroblasts. BLOS1 interacted with SNX2 (a retromer subunit) and TSG101 (an endosomal sorting complex required for transport subunit-I) to mediate EGFR lysosomal trafficking. These results suggest that coordination of the endolysosomal trafficking proteins is important for proper targeting of EGFR to lysosomes.  相似文献   

15.
Rapid control of protein degradation is usually achieved through the ubiquitin‐proteasome pathway. We recently found that the short‐lived GTPase RhoB is degraded in lysosomes. Moreover, the fusion of the RhoB C‐terminal sequence CINCCKVL, containing the isoprenylation and palmitoylation sites, to other proteins directs their sorting into multivesicular bodies (MVBs) and rapid lysosomal degradation. Here, we show that this process is highly specific for RhoB. Alteration of late endosome lipid dynamics produced the accumulation of RhoB, but not of other endosomal GTPases, including Rab5, Rab7, Rab9 or Rab11, into enlarged MVB. Other isoprenylated and bipalmitoylated GTPases, such as H‐Ras, Rap2A, Rap2B and TC10, were not accumulated into MVB and were stable. Remarkably, although TC10, which is highly homologous to RhoB, was stable, a sequence derived from its C‐terminus (CINCCLIT) elicited MVB sorting and degradation of a green fluorescent protein (GFP)‐chimeric protein. This led us to identify a cluster of basic amino acids (KKH) in the TC10 hypervariable region, constituting a secondary signal potentially involved in electrostatic interactions with membrane lipids. Mutation of this cluster allowed TC10 MVB sorting and degradation, whereas inserting it into RhoB hypervariable region rescued this protein from its lysosomal degradation pathway. These findings define a highly specific structural module for entering the MVB pathway and rapid lysosomal degradation.  相似文献   

16.
We have established an efficient transient expression system with several vacuolar reporters to study the roles of endosomal sorting complex required for transport (ESCRT)-III subunits in regulating the formation of intraluminal vesicles of prevacuolar compartments (PVCs)/multivesicular bodies (MVBs) in plant cells. By measuring the distributions of reporters on/within the membrane of PVC/MVB or tonoplast, we have identified dominant negative mutants of ESCRT-III subunits that affect membrane protein degradation from both secretory and endocytic pathways. In addition, induced expression of these mutants resulted in reduction in luminal vesicles of PVC/MVB, along with increased detection of membrane-attaching vesicles inside the PVC/MVB. Transgenic Arabidopsis (Arabidopsis thaliana) plants with induced expression of ESCRT-III dominant negative mutants also displayed severe cotyledon developmental defects with reduced cell size, loss of the central vacuole, and abnormal chloroplast development in mesophyll cells, pointing out an essential role of the ESCRT-III complex in postembryonic development in plants. Finally, membrane dissociation of ESCRT-III components is important for their biological functions and is regulated by direct interaction among Vacuolar Protein Sorting-Associated Protein20-1 (VPS20.1), Sucrose Nonfermenting7-1, VPS2.1, and the adenosine triphosphatase VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1.Endomembrane trafficking in plant cells is complicated such that secretory, endocytic, and recycling pathways are usually integrated with each other at the post-Golgi compartments, among which, the trans-Golgi network (TGN) and prevacuolar compartment (PVC)/multivesicular body (MVB) are best studied (Tse et al., 2004; Lam et al., 2007a, 2007b; Müller et al., 2007; Foresti and Denecke, 2008; Hwang, 2008; Otegui and Spitzer, 2008; Robinson et al., 2008; Richter et al., 2009; Ding et al., 2012; Gao et al., 2014). Following the endocytic trafficking of a lipophilic dye, FM4-64, the TGN and PVC/MVB are sequentially labeled and thus are defined as the early and late endosome, respectively, in plant cells (Lam et al., 2007a; Chow et al., 2008). While the TGN is a tubular vesicular-like structure that may include several different microdomains and fit its biological function as a sorting station (Chow et al., 2008; Kang et al., 2011), the PVC/MVB is 200 to 500 nm in size with multiple luminal vesicles of approximately 40 nm (Tse et al., 2004). Membrane cargoes destined for degradation are sequestered into these tiny luminal vesicles and delivered to the lumen of the lytic vacuole (LV) via direct fusion between the PVC/MVB and the LV (Spitzer et al., 2009; Viotti et al., 2010; Cai et al., 2012). Therefore, the PVC/MVB functions between the TGN and LV as an intermediate organelle and decides the fate of membrane cargoes in the LV.In yeast (Saccharomyces cerevisiae), carboxypeptidase S (CPS) is synthesized as a type II integral membrane protein and sorted from the Golgi to the lumen of the vacuole (Spormann et al., 1992). Genetic analyses on the trafficking of CPS have led to the identification of approximately 17 class E genes (Piper et al., 1995; Babst et al., 1997, 2002a, 2002b; Odorizzi et al., 1998; Katzmann et al., 2001) that constitute the core endosomal sorting complex required for transport (ESCRT) machinery. The evolutionarily conserved ESCRT complex consists of several functionally different subcomplexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III and the ESCRT-III-associated/Vacuolar Protein Sorting4 (VPS4) complex. Together, they form a complex protein-protein interaction network that coordinates sorting of cargoes and inward budding of the membrane on the MVB (Hurley and Hanson, 2010; Henne et al., 2011). Cargo proteins carrying ubiquitin signals are thought to be passed from one ESCRT subcomplex to the next, starting with their recognition by ESCRT-0 (Bilodeau et al., 2002, 2003; Hislop and von Zastrow, 2011; Le Bras et al., 2011; Shields and Piper, 2011; Urbé, 2011). ESCRT-0 recruits the ESCRT-I complex, a heterotetramer of VPS23, VPS28, VPS37, and MVB12, from the cytosol to the endosomal membrane (Katzmann et al., 2001, 2003). The C terminus of VPS28 interacts with the N terminus of VPS36, a member of the ESCRT-II complex (Kostelansky et al., 2006; Teo et al., 2006). Then, cargoes passed from ESCRT-I and ESCRT-II are concentrated in certain membrane domains of the endosome by ESCRT-III, which includes four coiled-coil proteins and is sufficient to induce the membrane invagination (Babst et al., 2002b; Saksena et al., 2009; Wollert et al., 2009). Finally, the ESCRT components are disassociated from the membrane by the adenosine triphosphatase (ATPase) associated with diverse cellular activities (AAA) VPS4/SUPPRESSOR OF K+ TRANSPORT GROWTH DEFECT1 (SKD1) before releasing the internal vesicles (Babst et al., 1997, 1998).Putative homologs of ESCRT-I–ESCRT-III and ESCRT-III-associated components have been identified in plants, except for ESCRT-0, which is only present in Opisthokonta (Winter and Hauser, 2006; Leung et al., 2008; Schellmann and Pimpl, 2009). To date, only a few plant ESCRT components have been studied in detail. The Arabidopsis (Arabidopsis thaliana) AAA ATPase SKD1 localized to the PVC/MVB and showed ATPase activity that was regulated by Lysosomal Trafficking Regulator-Interacting Protein5, a plant homolog of Vps Twenty Associated1 Protein (Haas et al., 2007). Expression of the dominant negative form of SKD1 caused an increase in the size of the MVB and a reduction in the number of internal vesicles (Haas et al., 2007). This protein also contributes to the maintenance of the central vacuole and might be associated with cell cycle regulation, as leaf trichomes expressing its dominant negative mutant form lost the central vacuole and frequently contained multiple nuclei (Shahriari et al., 2010). Double null mutants of CHARGED MULTIVESICULAR BODY PROTEIN, chmp1achmp1b, displayed severe growth defects and were seedling lethal. This may be due to the mislocalization of plasma membrane (PM) proteins, including those involved in auxin transport such as PINFORMED1, PINFORMED2, and AUXIN-RESISTANT1, from the vacuolar degradation pathway to the tonoplast of the LV (Spitzer et al., 2009).Plant ESCRT components usually contain several homologs, with the possibility of functional redundancy. Single mutants of individual ESCRT components may not result in an obvious phenotype, whereas knockout of all homologs of an ESCRT component by generating double or triple mutants may be lethal to the plant. As a first step to carry out systematic analysis on each ESCRT complex in plant cells, here, we established an efficient analysis system to monitor the localization changes of four vacuolar reporters that accumulate either in the lumen (LRR84A-GFP, EMP12-GFP, and aleurain-GFP) or on the tonoplast (GFP-VIT1) of the LV and identified several ESCRT-III dominant negative mutants. We reported that ESCRT-III subunits were involved in the release of PVC/MVB’s internal vesicles from the limiting membrane and were required for membrane protein degradation from secretory and endocytic pathways. In addition, transgenic Arabidopsis plants with induced expression of ESCRT-III dominant negative mutants showed severe cotyledon developmental defects. We also showed that membrane dissociation of ESCRT-III subunits was regulated by direct interaction with SKD1.  相似文献   

17.
ESCRT-I, -II, and -III protein complexes are sequentially recruited to endosomal membranes, where they orchestrate protein sorting and MVB biogenesis. In addition, they play a critical role in retrovirus budding. Structural understanding of ESCRT interaction networks is largely lacking. The 3.6 A structure of the yeast ESCRT-II core presented here reveals a trilobal complex containing two copies of Vps25, one copy of Vps22, and the C-terminal region of Vps36. Unexpectedly, the entire ESCRT-II core consists of eight repeats of a common building block, a "winged helix" domain. Two PPXY-motifs from Vps25 are involved in contacts with Vps22 and Vps36, and their mutation leads to ESCRT-II disruption. We show that purified ESCRT-II binds directly to the Vps20 component of ESCRT-III. Surprisingly, this binding does not require the protruding N-terminal coiled-coil of Vps22. Vps25 is the chief subunit responsible for Vps20 recruitment. This interaction dramatically increases binding of both components to lipid vesicles in vitro.  相似文献   

18.
The endosomal sorting complex required for transport (ESCRT) system traffics ubiquitinated cargo to lysosomes via an unusual membrane budding reaction that is directed away from the cytosol. Here, we show that human ESCRT-II self-assembles into clusters of 10-100 molecules on supported lipid bilayers. The ESCRT-II clusters are functional in that they bind to ubiquitin and the ESCRT-III subunit VPS20 at nanomolar concentrations on membranes with the same stoichiometries observed in solution and in crystals. The clusters only form when cholesterol is included in the lipid mixture at >10 mol %. The clusters induce the formation of ordered membrane domains that exclude the dye 1,1'-dioctadecyl-3,3,3',3'-tetramethylindodicarbo-cyanine perchlorate. These results show that ESCRT complexes are capable of inducing lateral lipid phase separation under conditions where the lipids themselves do not spontaneously phase-separate. This property could facilitate ESCRT-mediated membrane budding.  相似文献   

19.
Calnuc is an ubiquitous Ca++-binding protein found in the cytoplasm where it binds different Gα subunits, in the Golgi lumen where it constitutes a major Ca++ storage pool, and outside the cell. We identified LDLR-related protein 9 (LRP9) as the first transmembrane protein shown to interact directly with Calnuc. LRP9 is a member of a new subfamily of the LDLR superfamily that cycles between the trans -Golgi network (TGN) and endosomes through a mechanism dependent on clathrin adaptor GGA proteins. The aim of the present study was to characterize the interaction between Calnuc and LRP9. Various biochemical assays showed that the N-terminus of Calnuc interacts with an arginine-rich region in the cytosolic tail of LRP9. Confocal microscopy showed that Calnuc colocalizes with LRP9 at the surface of the TGN and early endosomes. Depletion of Calnuc by small interfering RNA (siRNA) missorted LRP9 in the late endosome/lysosome compartments and enhanced its lysosomal degradation. This phenotype was rescued by the expression of siRNA-resistant wild-type Calnuc as well as cytoplasmic Calnuc, indicating that the cytoplasmic pool of Calnuc is involved in LRP9 endosomal sorting to prevent the delivery of LRP9 to lysosomes. This is the first report showing that Calnuc plays a role in receptor trafficking.  相似文献   

20.
During meiosis, homologous chromosomes pair and recombine via repair of programmed DNA double-strand breaks (DSBs). DSBs are formed in the context of chromatin loops, which are anchored to the proteinaceous axial element (AE). The AE later serves as a framework to assemble the synaptonemal complex (SC) that provides a transient but tight connection between homologous chromosomes. Here, we showed that DESYNAPTIC2 (DSY2), a coiled-coil protein, mediates DSB formation and is directly involved in SC assembly in maize (Zea mays). The dsy2 mutant exhibits homologous pairing defects, leading to sterility. Analyses revealed that DSB formation and the number of RADIATION SENSITIVE51 (RAD51) foci are largely reduced, and synapsis is completely abolished in dsy2 meiocytes. Super-resolution structured illumination microscopy showed that DSY2 is located on the AE and forms a distinct alternating pattern with the HORMA-domain protein ASYNAPTIC1 (ASY1). In the dsy2 mutant, localization of ASY1 is affected, and loading of the central element ZIPPER1 (ZYP1) is disrupted. Yeast two-hybrid and bimolecular fluorescence complementation experiments further demonstrated that ZYP1 interacts with DSY2 but does not interact with ASY1. Therefore, DSY2, an AE protein, not only mediates DSB formation but also bridges the AE and central element of SC during meiosis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号