共查询到20条相似文献,搜索用时 0 毫秒
1.
With the depletion of oil resources in more accessible areas, those of remote regions are being considered or indeed are now being exploited. In many of these regions, especially the polar ones, little is known of the effects such exploitation will have on the environment. But it is known that the ecosystems are often subject to great stress by natural climatic conditions and additional burdens imposed by man may have catastrophic environmental effects. South Georgia, a sub-Antarctic island, has a history of industrial activity mainly concerned with whaling operations that peaked around 1925–1935 but has since declined to virtually nothing. Studies of the ecology of the area provided a unique opportunity to assess the long-term effects that such activities had on the ecosystem. Off the whaling stations a considerable amount of waste material, including fuel oil, was released into the bays and inevitably some of this material was deposited in the sediments. Chemical evidence in the form of both paraffinic and aromatic hydrocarbons still persists in the sediments. The implications of this persistence in relation to the possible influence of the low temperature conditions are discussed. The superficial sediments, marine biota and terrestrial plants, which since 1965 have returned virtually to a pristine state, contain hydrocarbons essentially similar to unpolluted areas around the coast of Britain. Relatively high levels of carcinogenic/mutagenic polynuclear aromatic hydrocarbons in surface sediments suggests a world-wide background of abiogenic hydrocarbons probably disseminated by airborne transport. This appears to indicate that contamination reaches even remote parts of the world in relatively undiminished quantities. 相似文献
2.
A tetrahydrofuran-degrading bacterial strain, which had previously been tentatively assigned as Rhodococcus sp. strain 219, has now been identified as Rhodococcus ruber using physiological and chemotaxonomical tests. A comparison with the type strain DSM 43338 has revealed that the new strain
differs in its ability to degrade or convert tetrahydrofuran and compounds of similar structure such as 2,5-dimethyltetrahydrofuran
or tetrahydropyran. Tetrahydrofuran acts as an inducer for its degradation. When tetrahydrofuran-induced cells were incubated
with 2,5-dimethyltetrahydrofuran two primary metabolites could be detected by gas chromatography, and 2-hydroxyhexane-5-one
and hexane-2,5-dione were isolated and characterized by 1H-NMR spectroscopy or as dinitrophenylhydrazones. The formation of these intermediates is consistent with an initial 2hydroxylation
of the cyclic ether, which has not yet been described in microorganisms.
Received: 19 July 1995/Received last revision: 31 October 1995/Accepted: 6 November 1995 相似文献
3.
Oil extracts of Ukpeliede spill samples from Niger Delta (Nigeria) were analyzed by gas chromatography. The amount of polycyclic aromatic hydrocarbons (PAHs), especially the lower-molecular-weight naphthene, fluorine, phenathrene, pyrene, and benzo[a]anthracene, decreased within the sampling intervals of 2 months and 5 months. There was a predominance of three-to-six-ring PAHs over the two-ring PAHs. There was marked disappearance of n-C8 to n-C11 hydrocarbon fractions and the acyclic isoprenoids (pristane and phytane). The depletion of these molecules within the two sampling intervals suggests the possible attenuation of hydrocarbons as a result of the environmental modification within the set interval. 相似文献
4.
Siegert M Cichocka D Herrmann S Gründger F Feisthauer S Richnow HH Springael D Krüger M 《FEMS microbiology letters》2011,315(1):6-16
The impact of four electron acceptors on hydrocarbon-induced methanogenesis was studied. Methanogenesis from residual hydrocarbons may enhance the exploitation of oil reservoirs and may improve bioremediation. The conditions to drive the rate-limiting first hydrocarbon-oxidizing steps for the conversion of hydrocarbons into methanogenic substrates are crucial. Thus, the electron acceptors ferrihydrite, manganese dioxide, nitrate or sulfate were added to sediment microcosms acquired from two brackish water locations. Hexadecane, ethylbenzene or 1-(13)C-naphthalene were used as model hydrocarbons. Methane was released most rapidly from incubations amended with ferrihydrite and hexadecane. Ferrihydrite enhanced only hexadecane-dependent methanogenesis. The rates of methanogenesis were negatively affected by sulfate and nitrate at concentrations of more than 5 and 1 mM, respectively. Metal-reducing Geobacteraceae and potential sulfate reducers as well as Methanosarcina were present in situ and in vitro. Ferrihydrite addition triggered the growth of Methanosarcina-related methanogens. Additionally, methane was removed concomitantly by anaerobic methanotrophy. ANME-1 and -2 methyl coenzyme M reductase genes were detected, indicating anaerobic methanotrophy as an accompanying process [Correction added 16 December after online publication: 'methyl coenzyme A' changed to 'methyl coenzyme M' in this sentence]. The experiments presented here demonstrate the feasibility of enhancing methanogenic alkane degradation by ferrihydrite or sulfate addition in different geological settings. 相似文献
5.
The thermodynamics of transfer of aromatic (benzene, toluene) and aliphatic (ethane, propane, butane) hydrocarbons from the gas phase into water in the temperature range 5–125°C have been analyzed in order to determine the net hydration effect of these compounds. In the case of the aromatic hydrocarbons the enthalpic contribution predominates over the entropic contribution to the Gibbs energy of hydration. This results in a negative value of the hydration Gibbs energy of aromatic hydrocarbons, in contrast to the positive Gibbs energy of hydration of aliphatic hydrocarbons. The different sign of the hydration Gibbs energies indicates that the mechanism causing hydrophobicity of aromatic hydrocarbons has different nature than that causing the hydrophobicity of aliphatic hydrocarbons. The comparison of hydration of aliphatic and aromatic hydrocarbons leads to the following thermodynamic parameters for these additional interactions between the benzene ring and water at 25°C: enthalpy −5.4 kJ/mol, entropy 26.8 J/K mol and Gibbs energy −13.4 kJ/mol. The large enthalpic contribution to the Gibbs energy of hydration of aromatic hydrocarbons probably comes from the ability of the aromatic ring to accept hydrogens from water, forming hydrogen bonds. 相似文献
6.
AIMS: Our goal was to characterize a newly isolated strain of Mycobacterium austroafricanum, obtained from manufactured gas plant (MGP) site soil and designated GTI-23, with respect to its ability to degrade polycyclic aromatic hydrocarbons (PAHs). METHODS AND RESULTS: GTI-23 is capable of growth on phenanthrene, fluoranthene, or pyrene as a sole source of carbon and energy; it also extensively mineralizes the latter two in liquid culture and is capable of extensive degradation of fluorene and benzo[a]pyrene, although this does not lead in either of these cases to mineralization. Supplementation of benzo[a]pyrene-containing cultures with phenanthrene had no significant effect on benzo[a]pyrene degradation; however, this process was substantially inhibited by the addition of pyrene. Extensive and rapid mineralization of pyrene by GTI-23 was also observed in pyrene-amended soil. CONCLUSIONS: Strain GTI-23 shows considerable ability to mineralize a range of polycyclic aromatic hydrocarbons, both in liquid and soil environments. In this regard, GTI-23 differs markedly from the type strain of Myco. austroafricanum (ATCC 33464); the latter isolate displayed no (or very limited) mineralization of any tested PAH (phenanthrene, fluoranthene or pyrene). When grown in liquid culture, GTI-23 was also found to be capable of growing on and mineralizing two aliphatic hydrocarbons (dodecane and hexadecane). SIGNIFICANCE AND IMPACT OF THE STUDY: These findings indicate that this isolate of Myco. austroafricanum may be useful for bioremediation of soils contaminated with complex mixtures of aromatic and aliphatic hydrocarbons. 相似文献
7.
Yanzheng Gao Wei Xiong Wanting Ling Hua Wang Lili Ren Zhenya Yang 《Plant and Soil》2008,311(1-2):201-209
Partition of phenanthrene between water and roots was determined for 13 plant species using a batch equilibration technique. Partition coefficients (K rt) from 734 to 2,564 L/kg were measured. A simple model to estimate the partition of organic contaminants between roots and water was developed based on the composition of plant roots and the 1-octanol/water partitioning coefficient. The estimates were close to the observed results, with differences of < 14%. The partition coefficients of phenanthrene by root cell walls were 13–84% greater than sorption by the corresponding roots. The cell wall fraction—the dominant fraction of root organic components—was identified as the primary domain for partition of phenanthrene. The measured hydroponic uptake of phenanthrene into roots was always less than phenanthrene partition by plant roots. A modified sorption model containing a quasi-equilibrium factor (αpt) could reasonably predict hydroponic uptake by plant roots. The results obtained from this study provide insights into partition of highly lipophilic organic chemicals in roots, and provide convenient methods to estimate this partition as well as uptake of such chemicals in root–water systems. 相似文献
8.
9.
Wolfdieter A. Schenk Birgit Vedder Christian Eichhorn 《Inorganica chimica acta》2004,357(6):1886-1896
Reaction of PPN[W(CO)3(R2PC2H4PR2)(SH)] (PPN=Ph3PNPPh3; R=Me, 1; R=Ph, 2) with aromatic aldehydes in the presence of trifluoroacetic acid gave tungsten complexes of thiobenzaldehydes mer-[W(CO)3(R2PC2H4PR2)(η2-SCHR′)] (R=Me, 3a-3f; R=Ph, 4a-4e) in high yields. Analogous complexes of aliphatic thioaldehydes mer-[W(CO)3(Me2PC2H4PMe2)(η2-SCHR′)] (3g-3l) could only be obtained from the highly electron-rich thiolate complex 1. The structure of 3i (R′=i-Bu) was determined by X-ray crystallography. In solution the complexes 3 and 4 are in equilibrium with small quantities of their isomers fac-[W(CO)3(R2PC2H4PR2)(η2-SCHR′)]. Reaction of complexes 3 with dimethylsulfate followed by salt metathesis with NH4PF6 gave the alkylation products mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCHR′)]PF6 (5a-5l) as mixtures of E and Z isomers. The methylated thioformaldehyde complex mer-[W(CO)3(Me2PC2H4PMe2)(η2-MeSCH2)]PF6 (5m) was prepared similarly. Nucleophilic addition of hydride (from LiAlH4) to 5 initially gave thioether complexes mer-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R′)] (mer-6) which rapidly isomerized to fac-[W(CO)3(Me2PC2H4PMe2)(MeSCH2R′)] (fac-6). 相似文献
10.
11.
太子河水体中多环芳烃分布与污染源解析 总被引:3,自引:0,他引:3
利用振荡提取-硅胶柱净化-HPLC荧光(FLD)/二级阵列检测器(DAD)检测法测定了太子河水中USEPA16种优控多环芳烃(PAHs)的含量。结果表明,枯水期(4月)、丰水期(7月)和平水期(10月)太子河水中PAHs总浓度分别为454.5~1379.7、1801.6~5868.9和367.0~5794.5ng.L-1,同国内外河流相比,太子河水中PAHs污染较严重,且具有明显的季节分布特征,丰水期PAHs浓度远高于枯水期。丰水期、平水期和枯水期太子河水中均以2~3环PAHs为主,但不同季节代表性PAHs的种类不同。污染来源分析表明,枯水期太子河水中PAHs主要来源于石油污染,丰水期和平水期主要来源于石油源和燃烧源的混合源。 相似文献
12.
Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries 总被引:7,自引:0,他引:7
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both. 相似文献
13.
Biodegradation of polycyclic aromatic hydrocarbons 总被引:67,自引:0,他引:67
Carl E. Cerniglia 《Biodegradation》1992,3(2-3):351-368
The intent of this review is to provide an outline of the microbial degradation of polycyclic aromatic hydrocarbons. A catabolically diverse microbial community, consisting of bacteria, fungi and algae, metabolizes aromatic compounds. Molecular oxygen is essential for the initial hydroxylation of polycyclic aromatic hydrocarbons by microorganisms. In contrast to bacteria, filamentous fungi use hydroxylation as a prelude to detoxification rather than to catabolism and assimilation. The biochemical principles underlying the degradation of polycyclic aromatic hydrocarbons are examined in some detail. The pathways of polycyclic aromatic hydrocarbon catabolism are discussed. Studies are presented on the relationship between the chemical structure of the polycyclic aromatic hydrocarbon and the rate of polycyclic aromatic hydrocarbon biodegradation in aquatic and terrestrial ecosystems. 相似文献
14.
In vitro protein folding of disulfide containing proteins is aided by the addition of a redox buffer, which is composed of a small molecule disulfide and/or a small molecule thiol. In this study, we examined redox buffers containing asymmetric dithiols 1-5, which possess an aromatic and aliphatic thiol, and symmetric dithiols 6 and 7, which possess two aromatic thiols, for their ability to fold reduced lysozyme at pH 7.0 and 8.0. Most in vivo protein folding catalysts are dithiols. When compared to glutathione and glutathione disulfide, the standard redox buffer, dithiols 1-5 improved the protein folding rates but not the yields. However, dithiols 6 and 7, and the corresponding monothiol 8 increased the folding rates 8-17 times and improved the yields 15-42% at 1mg/mL lysozyme. Moreover, aromatic dithiol 6 increased the in vitro folding yield as compared to the corresponding aromatic monothiol 8. Therefore, aromatic dithiols should be useful for protein folding, especially at high protein concentrations. 相似文献
15.
Effects of co-occurring aromatic hydrocarbons on degradation of individual polycyclic aromatic hydrocarbons in marine sediment slurries. 总被引:2,自引:5,他引:2 下载免费PDF全文
Rates of polycyclic aromatic hydrocarbon (PAH) degradation and mineralization were influenced by preexposure to alternate PAHs and a monoaromatic hydrocarbon at relatively high (100 ppm) concentrations in organic-rich aerobic marine sediments. Prior exposure to three PAHs and benzene resulted in enhanced [14C]naphthalene mineralization, while [14C]anthracene mineralization was stimulated only by benzene and anthracene preexposure. Preexposure of sediment slurries to phenanthrene stimulated the initial degradation of anthracene. Prior exposure to naphthalene stimulated the initial degradation of phenanthrene but had no effect on either the initial degradation or mineralization of anthracene. For those compounds which stimulated [14C]anthracene or [14C]naphthalene mineralization, longer preexposures (2 weeks) to alternative aromatic hydrocarbons resulted in an even greater stimulation response. Enrichment with individual PAHs followed by subsequent incubation with one or two PAHs showed no alteration in degradation patterns due to the simultaneous presence of PAHs. The evidence suggests that exposure of marine sediments to a particular PAH or benzene results in the enhanced ability of these sediments to subsequently degrade that PAH as well as certain other PAHs. The enhanced degradation of a particular PAH after sediments have been exposed to it may result from the selection and proliferation of specific microbial populations capable of degrading it. The enhanced degradation of other PAHs after exposure to a single PAH suggests that the populations selected have either broad specificity for PAHs, common pathways of PAH degradation, or both. 相似文献
16.
17.
18.
Anaerobic oxidation of aromatic compounds and hydrocarbons 总被引:10,自引:0,他引:10
Aromatic compounds and hydrocarbons have in common a great stability due to resonance energy and inertness of CbondH and CbondC bonds. It has been taken for granted that the metabolism of these compounds obligatorily depends on molecular oxygen. Oxygen is required first to introduce hydroxyl groups into the substrate and then to cleave the aromatic ring. However, newly discovered bacterial enzymes and reactions involved in oxidation of aromatic and hydrocarbon compounds to CO(2) in the complete absence of molecular oxygen have been discovered. Of special interest are two reactions: the reduction of the aromatic ring of benzoyl-coenzyme A and the addition of fumarate to hydrocarbons. These reactions transform aromatic rings and hydrocarbons into products that can be oxidized via more conventional beta-oxidation pathways. 相似文献
19.
《Process Biochemistry》2014,49(10):1723-1732
The removal and transformation of seven high molecular weight polycyclic aromatic hydrocarbons (PAHs), namely benz[a]anthracene, benzo[b]fluoranthene, benzo[k]fluoranthene, benzo[a]pyrene, dibenzo[a,h]anthracene, indeno[1,2,3-c,d]pyrene and benzo[g,h,i]perylene, by a freshwater microalga Selenastrum capricornutum under gold and white light irradiation was studied. The two light sources did not result in significant differences in the biodegradation of the selected PAHs in live algal cells, but white light was more effective in promoting photodegradation than was gold light in dead cells. The removal efficiency of seven PAHs, as well as the difference between live and dead microalgal cells, was PAH compound-dependent. Benz[a]anthracene and benzo[a]pyrene were highly transformed in live and dead algal cells, and dead cells displayed greater transformation levels than live cells. Further investigation comparing the transformation of single PAH compound, benzo[a]pyrene, by S. capricornutum and another green microalgal species, Chlorella sp., demonstrated that the transformation in dead cells was similar, indicating the process was algal-species independent. Dead algal cells most likely acted as a photosensitizer and accelerated the photodegradation of PAHs. 相似文献
20.
Anaerobic biodegradation of saturated and aromatic hydrocarbons 总被引:38,自引:0,他引:38
Saturated and aromatic hydrocarbons are wide-spread in our environment. These compounds exhibit low chemical reactivity and for many decades were thought to undergo biodegradation only in the presence of free oxygen. During the past decade, however, an increasing number of microorganisms have been detected that degrade hydrocarbons under strictly anoxic conditions. 相似文献