首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Trypanosoma cruzi, the etiologic agent of Chagas disease, resists extreme fluctuations in osmolarity during its life cycle. T. cruzi possesses a robust regulatory volume decrease mechanism that completely reverses cell swelling when submitted to hypo-osmotic stress. The efflux of amino acids and K+ release could account for only part for this volume reversal. In this work we demonstrate that swelling of acidocalcisomes mediated by an aquaporin and microtubule- and cyclic AMP-mediated fusion of acidocalcisomes to the contractile vacuole complex with translocation of this aquaporin and the resulting water movement are responsible for the volume reversal not accounted for by efflux of osmolytes. Contractile vacuole bladders were isolated by subcellular fractionation in iodixanol gradients, showed a high concentration of basic amino acids and inorganic phosphate, and were able to transport protons in the presence of ATP or pyrophosphate. Taken together, these results strongly support a role for acidocalcisomes and the contractile vacuole complex in osmoregulation and identify a functional role for aquaporin in protozoal osmoregulation.  相似文献   

2.
We cloned an aquaporin gene from Trypanosoma cruzi (TcAQP) that encodes a protein of 231 amino acids, which is highly hydrophobic. The protein has six putative transmembrane domains and the two signature motifs asparagine-proline-alanine (NPA) which have been shown, in other aquaporins, to be involved in the formation of an aqueous channel spanning the bilayer. TcAQP was sensitive to endo H treatment, suggesting that the protein is N-glycosylated. Oocytes of Xenopus laevis expressing TcAQP swelled under hyposmotic conditions indicating water permeability, which was abolished after preincubating oocytes with very low concentrations of the AQP inhibitors HgCl(2) and AgNO(3). glycerol transport was detected. No Immunofluorescence microscopy of T. cruzi expressing GFP-TcAQP showed co-localization of TcAQP with the vacuolar proton pyrophosphatase (V-H(+)-PPase), a marker of acidocalcisomes. This localization was confirmed by Western blotting and immunofluorescence staining using polyclonal antibodies against a C-terminal peptide of TcAQP. In addition, there was a strong anterior labeling in a vacuole, close to the flagellar pocket, that was distinct from the acidocalcisomes and that was identified by immunogold electron microscopy as the contractile vacuole complex. Taking together, the presence of an aquaporin in acidocalcisomes and the contractile vacuole complex of T. cruzi, provides support for the role of these organelles in osmotic adaptations of these parasites.  相似文献   

3.
Acidocalcisomes are acidic electron-dense organelles, rich in polyphosphate (poly P) complexed with calcium and other cations. While its matrix contains enzymes related to poly P metabolism, the membrane of the acidocalcisomes has a number of pumps (Ca2+-ATPase, V-H+-ATPase, H+-PPase), exchangers (Na+/H+, Ca2+/H+), and at least one channel (aquaporin). Acidocalcisomes are present in both prokaryotes and eukaryotes and are an important storage of cations and phosphorus. They also play an important role in osmoregulation and interact with the contractile vacuole complex in a number of eukaryotic microbes. Acidocalcisomes resemble lysosome-related organelles (LRO) from mammalian cells in many of their properties. They share similar morphological characteristics, acidic properties, phosphorus contents and a system for targeting of their membrane proteins through adaptor complex-3 (AP-3). Storage of phosphate and cations may represent the ancestral physiological function of acidocalcisomes, with cation and pH homeostasis and osmoregulatory functions derived following the divergence of prokaryotes and eukaryotes.  相似文献   

4.
Acidocalcisomes are acidic calcium stores found in diverse organisms, being conserved from bacteria to man. They posses an acidic matrix that contains several cations bound to phosphates, mainly present in the form of short and long polyphosphate chains. Their matrix is acidified through the action of proton pumps such as a vacuolar proton ATPase and a vacuolar proton pyrophosphatase. The calcium uptake occurs through a Ca2+/H+ counter transporting ATPase located in the membrane of the organelle. Acidocalcisomes have been identified in a variety of microorganisms, including Apicomplexan parasites such as Plasmodium and Eimeria species, and in Toxoplasma gondii. In this paper, we review the structural, biochemical and physiological aspects of acidocalcisomes in Apicomplexan parasites and discuss their functional roles in the maintenance of intracellular ion homeostasis.  相似文献   

5.
Acidocalcisomes are acidic calcium storage compartments described initially in trypanosomatid and apicomplexan parasites. In this work, we describe organelles with properties similar to acidocalcisomes in the green alga Chlamydomonas reinhardtii. Nigericin and NH(4)Cl released (45)Ca(2+) from preloaded permeabilized cells, suggesting the incorporation of a significant amount of this cation into an acidic compartment. X-ray microanalysis of the electron-dense vacuoles or polyphosphate bodies of C. reinhardtii showed large amounts of phosphorus, magnesium, calcium, and zinc. Immunofluorescence microscopy, using antisera raised against a peptide sequence of the vacuolar type proton pyrophosphatase (H(+)-PPase) of Arabidopsis thaliana which is conserved in the C. reinhardtii enzyme, indicated localization in the plasma membrane, in intracellular vacuoles, and the contractile vacuole where it colocalized with the vacuolar proton ATPase (V-H(+)-ATPase). Purification of the electron-dense vacuoles using iodixanol density gradients indicated a preferential localization of the H(+)-PPase and the V-H(+)-ATPase activities in addition to high concentrations of PP(i) and short and long chain polyphosphate, but lack of markers for mitochondria and chloroplasts. In isolated electron-dense vacuoles, PP(i)-driven proton translocation was stimulated by potassium ions and inhibited by the PP(i) analog aminomethylenediphosphonate. Potassium fluoride, imidodiphosphate, N,N'-dicyclohexylcarbodiimide, and N-ethylmaleimide also inhibited PP(i) hydrolysis in the isolated organelles in a dose-dependent manner. These results indicate that the electron-dense vacuoles of C. reinhardtii are very similar to acidocalcisomes with regard to their chemical composition and the presence of proton pumps. Polyphosphate was also localized to the contractile vacuole by 4',6-diamidino-2-phenylindole staining, suggesting, with the immunochemical data, a link between these organelles and the acidocalcisomes.  相似文献   

6.
ABSTRACT. Acidocalcisomes are acidic organelles with a high concentration of phosphorus present as pyrophosphate (PPi) and polyphosphate (poly P) complexed with calcium and other cations. The acidocalcisome membrane contains a number of pumps (Ca2+‐ATPase, V‐H+‐ATPase, H+‐PPase), exchangers (Na+/H+, Ca2+/H+), and channels (aquaporins), while its matrix contains enzymes related to PPi and poly P metabolism. Acidocalcisomes have been observed in pathogenic, as well as non‐pathogenic prokaryotes and eukaryotes, e.g. Chlamydomonas reinhardtii, and Dictyostelium discoideum. Some of the potential functions of the acidocalcisome are the storage of cations and phosphorus, the participation of phosphorus in PPi and poly P metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis, and osmoregulation. In addition, acidocalcisomes resemble lysosome‐related organelles (LRO) from mammalian cells in many of their properties. For example, we found that platelet dense granules, which are LROs, are very similar to acidocalcisomes. They share a similar size, acidic properties, and both contain PPi, poly P, and calcium. Recent work that indicates that they also share the system for targeting of their membrane proteins through adaptor protein 3 reinforces this concept. The fact that acidocalcisomes interact with other organelles in parasitic protists, e.g. the contractile vacuole in Trypanosoma cruzi, and other vacuoles observed in Toxoplasma gondii, suggests that these cellular compartments may be associated with the endosomal/lysosomal pathway.  相似文献   

7.
Glucose is an essential substrate for Trypanosoma cruzi, the protozoan organism responsible for Chagas' disease. The glucose is intracellularly phosphorylated to glucose 6-phosphate. Previously, a hexokinase responsible for this phosphorylation has been characterized. Recently, we identified an ATP-dependent glucokinase in T. cruzi exhibiting a tenfold lower substrate affinity compared to the hexokinase. Both enzymes, which belong to very different groups of the same family, are located inside glycosomes, the peroxisome-like organelles of Kinetoplastida that are known to contain the first seven glycolytic steps as well as enzymes of the oxidative branch of the pentose phosphate pathway. Here, we present the crystallographic structure of T. cruzi glucokinase, in complex with glucose and ADP. The structure suggests a loose tetrameric assembly formed by the association of two tight dimers. TcGlcK was previously reported to exist in a concentration-dependent equilibrium of monomeric and dimeric states. Here, we used mass spectrometry analysis to confirm the existence of TcGlcK monomeric and dimeric states. The analysis of subunit interactions and comparison with the bacterial glucokinases give insights into the forces promoting the stability of the different oligomeric states. Each T. cruzi glucokinase monomer contains one glucose and one ADP molecule. In contrast to hexokinases, which show a moderate preference for the alpha anomer of glucose, the electron density clearly shows the d-glucose bound in the beta configuration in the T.cruzi glucokinase. Kinetic assays with alpha and beta-d-glucose further confirm a moderate preference of the T. cruzi glucokinase for the beta anomer. Structural comparison of the glucokinase and hexokinases permits the identification of a possible mechanism for anomer selectivity in these hexose-phosphorylating enzymes. The preference for distinct anomers suggests that in T. cruzi hexokinase and glucokinase are not directly competing for the same substrate and are probably both present because they exert distinct physiological functions.  相似文献   

8.
The Saccharomyces cerevisiae myosin-V, Myo2p, is essential for polarized growth, most likely through transport of secretory vesicles to the developing bud. Myo2p is also required for vacuole movement, a process not essential for growth. The globular region of the myosin-V COOH-terminal tail domain is proposed to bind cargo. Through random mutagenesis of this globular tail, we isolated six new single point mutants defective in vacuole inheritance, but not polarized growth. These point mutations cluster to four amino acids in an 11-amino acid span, suggesting that this region is important for vacuole movement. In addition, through characterization of myo2-DeltaAflII, a deletion of amino acids 1,459-1,491, we identified a second region of the globular tail specifically required for polarized growth. Whereas this mutant does not support growth, it complements the vacuole inheritance defect in myo2-2 (G1248D) cells. Moreover, overexpression of the myo2-DeltaAflII globular tail interferes with vacuole movement, but not polarized growth. These data indicate that this second region is dispensable for vacuole movement. The identification of these distinct subdomains in the cargo-binding domain suggests how myosin-Vs can move multiple cargoes. Moreover, these studies suggest that the vacuole receptor for Myo2p differs from the receptor for the essential cargo.  相似文献   

9.
Intracellular levels of cyclic nucleotide second messengers are regulated predominantly by a large superfamily of phosphodiesterases (PDEs). Trypanosoma cruzi, the causative agent of Chagas disease, encodes four different PDE families. One of these PDEs, T. cruzi PDE C2 (TcrPDEC2) has been characterized as a FYVE domain containing protein. Here, we report a novel role for TcrPDEC2 in osmoregulation in T. cruzi and reveal the relevance of its FYVE domain. Our data show that treatment of epimastigotes with TcrPDEC2 inhibitors improves their regulatory volume decrease, whereas cells overexpressing this enzyme are unaffected by the same inhibitors. Consistent with these results, TcrPDEC2 localizes to the contractile vacuole complex, showing strong labelling in the region corresponding to the spongiome. Furthermore, transgenic parasites overexpressing a truncated version of TcrPDEC2 without the FYVE domain show a failure in its targeting to the contractile vacuole complex and a marked decrease in PDE activity, supporting the importance of this domain to the localization and activity of TcrPDEC2. Taking together, the results here presented are consistent with the importance of the cyclic AMP signalling pathway in regulatory volume decrease and implicate TcrPDEC2 as a specifically localized PDE involved in osmoregulation in T. cruzi.  相似文献   

10.
A role for parasite genetic variability in the spectrum of Chagas disease is emerging but not yet evident, in part due to an incomplete understanding of the population structure of Trypanosoma cruzi. To investigate further the observed genotypic variation at the sequence and chromosomal levels in strains of standard and field-isolated T. cruzi we have undertaken a comparative analysis of 10 regions of the genome from two isolates representing T. cruzi I (Dm28c and Silvio X10) and two from T. cruzi II (CL Brener and Esmeraldo). Amplified regions contained intergenic (non-coding) sequences from tandemly repeated genes. Multiple nucleotide polymorphisms correlated with the T. cruzi I/T. cruzi II classification. Two intergenic regions had useful polymorphisms for the design of classification probes to test on genomic DNA from other known isolates. Two adjacent nucleotide polymorphisms in HSP 60 correlated with the T. cruzi I and T. cruzi II distinction. 1F8 nucleotide polymorphisms revealed multiple subdivisions of T. cruzi II: subgroups IIa and IIc displayed the T. cruzi I pattern; subgroups IId and IIe possessed both the I and II patterns. Furthermore, isolates from subgroups IId and IIe contained the 1F8 polymorphic markers on different chromosome bands supporting a genetic exchange event that resulted in chromosomes V and IX of T. cruzi strain CL Brener. Based on these analyses, T. cruzi I and subgroup IIb appear to be pure lines, while subgroups IIa/IIc and IId/IIe are hybrid lines. These data demonstrate for the first time that IIa/IIc are hybrid, consistent with the hypothesis that genetic recombination has occurred more than once within the T. cruzi lines.  相似文献   

11.
Trypanosoma rangeli is a parasite of a numerous wild and domestic animals, presenting wide geographical distribution and high immunological cross-reactivity with Trypanosoma cruzi, which may lead to misdiagnosis. T. rangeli has a complex life cycle, involving distinct morphological and functional forms in the vector. Here, we characterized the cell surface polypeptides and the phosphatase activities in short and long epimastigotes forms of T. rangeli, using intact living parasites. The surface protein profile revealed by the incubation of parasites with biotin showed a preferential expression of the 97, 70, 50, 45, 25-22, and 15 kDa biotinylated polypeptides in the long forms, in contrast to the 55 and 28 kDa biotinylated polypeptides synthesized by the short epimastigotes. Additionally, flow cytometry analysis showed that the short forms had relatively lower biotin surface binding than long ones. The involvement of phosphatases with the trypanosomatid differentiation has been proposed. In this sense, T. rangeli living parasites were able to hydrolyze the artificial substrate p-nitrophenylphosphate at a rate of 25.57+/-2.03 and 10.09+/-0.93 nmol p-NPP x h(-1) x 10(7) cells for the short and long epimastigotes, respectively. These phosphatase activities were linear with time for at least 60 min and the optimum pH lies in the acid range. Classical inhibitors of acid phosphatases, such as ammonium molybdate, sodium fluoride, and zinc chloride, showed a significant decrease in these phosphatase activities, with different patterns of inhibition. Additionally, these phosphatase activities presented different kinetic parameters (Km and Vmax) and distinct sensitivities to divalent cations. Both epimastigotes were unable to release phosphatase to the extracellular environment. Cytochemical analysis demonstrated the localization of these enzymes on the parasite surfaces (cell body and flagellum) and in intracellular vacuoles, resembling acidocalcisomes.  相似文献   

12.
Membrane rafts are small and dynamic regions enriched in sphingolipids, cholesterol, ganglioside GM1 and protein markers like flotillins, forming the flatter domains or caveolins, which are characterized as stable flask-shape invaginations. We explored whether membrane rafts participate in the entry of Trypanosoma cruzi's trypomastigotes into murine macrophages through transient depletion of macrophage membrane cholesterol with methyl-beta-cyclodextrin and treatment with filipin. These treatments led to a decrease in the trypomastigote invasion process. Macrophage pre incubated with increasing concentrations of cholera toxin B, that binds GM1, inhibited the adhesion and invasion of trypomastigote and amastigote forms. Immunofluorescence analysis demonstrated a colocalization of GM1, flotillin 1 and caveolin 1 in the T. cruzi parasitophorous vacuole. Taken together these data suggest that membrane rafts, including caveolae, are involved in the process of T. cruzi invasion of macrophages.  相似文献   

13.
We have previously identified a Trypanosoma cruzi gene encoding a protein named Tc52 sharing structural and functional properties with the thioredoxin and glutaredoxin family involved in thiol-disulfide redox reactions. Gene targeting strategy and immunological studies allowed showing that Tc52 is among T. cruzi virulence factors. Taking into account that T. cruzi has a genetic variability that might be important determinant that governs the different behaviour of T. cruzi clones in vitro and in vivo, we thought it was of interest to analyse the sequence polymorphism of Tc52 gene in several reference clones. The DNA sequences of 12 clones which represent the whole genetic diversity of T. cruzi allowed showing that 40 amino-acid positions over 400 analysed are targets for mutations. A number of residues corresponding to putative amino-acids playing a role in GSH binding and/or enzymatic function and others located nearby are subject to mutations. Although the immunological analysis showed that Tc52 is present in parasite extracts from different clones, it is possible that the amino-acid differences could affect the enzymatic and/or the immunomodulatory function of Tc52 variants and therefore the parasite phenotype.  相似文献   

14.
The exocyst complex is a multi-subunits evolutionary conserved complex, which was originally shown to be primarily associated with vesicular transport to the plasma membrane. A recent report (Kulich et al., 2013 Traffic; In Press) revealed that AtEXO70B1, one of the multiple subunits of the exocyst complex of Arabidopsis thaliana plants, is co-transported with the autophagy-associated Atg8f protein to the vacuole. This pathway does not involve the Golgi apparatus. The co-localization of AtEXO70B1 and Atg8f suggests either that both of these proteins are co-transported together to the vacuole or, alternatively, that Atg8 binds to a putative Atg8 interacting motif (AIM) located within the AtEXO70B1 polypeptide, apparently forming a tethering complex for an autophagic complex that is transported to the vacuole. In the present addendum, by tooling a bioinformatics approach, we show that AtEXO70B1 as well as the additional 20 paralogs of Arabidopsis EXO70 exocyst subunits each possess one or more AIMs whose consensus sequence implies their high fidelity binding to Atg8. This indicates that the autophagy machinery is strongly involved in the assembly, transport, and apparently also the function of AtEXO70B1 as well as the exocyst sub complex.  相似文献   

15.
Acidocalcisomes - conserved from bacteria to man   总被引:1,自引:0,他引:1  
Recent work has shown that acidocalcisomes, which are electron-dense acidic organelles rich in calcium and polyphosphate, are the only organelles that have been conserved during evolution from prokaryotes to eukaryotes. Acidocalcisomes were first described in trypanosomatids and have been characterized in most detail in these species. Acidocalcisomes have been linked with several functions, including storage of cations and phosphorus, polyphosphate metabolism, calcium homeostasis, maintenance of intracellular pH homeostasis and osmoregulation. Here, we review acidocalcisome ultrastructure, composition and function in different trypanosomatids and other organisms.  相似文献   

16.
Acidocalcisomes are acidic calcium and polyphosphate storage organelles found in a diverse range of organisms. Here we present evidence that the biogenesis of acidocalcisomes in Trypanosoma brucei is linked to the expression of adaptor protein-3 (AP-3) complex. Localization studies in cell lines expressing β3 and δ subunits of AP-3 fused to epitope tags revealed their partial co-localization with the vacuolar proton pyrophosphatase, a marker of acidocalcisomes, with the Golgi marker Golgi reassembly and stacking protein, and with antibodies against the small GTPase Rab11. Ablation of the β3 subunit by RNA interference (RNAi) resulted in disappearance of acidocalcisomes from both procyclic and bloodstream form trypanosomes, as revealed by immmunofluorescence and electron microscopy assays, with no alterations in trafficking of different markers to lysosomes. Knockdown of the β3 subunit resulted in lower acidic calcium, pyrophosphate, and polyphosphate content as well as defects in growth in culture, resistance to osmotic stress, and virulence in mice. Similar results were obtained by knocking down the expression of the δ subunit of AP-3. These results indicate that AP-3 is essential for the biogenesis of acidocalcisomes and for growth and virulence of T. brucei.  相似文献   

17.
Coccidia provide a rich hunting ground for drug-designers, as there are significant biochemical differences between the parasites and their hosts. Recent years have brought the discovery of the plastid and its possible metabolic machinery, characterisation of acidocalcisomes, reports on the apparent absence from some coccidia of a typical mitochondrion, and the discovery of the mannitol cycle and shikimate pathway in the parasites. Moreover, modern technologies such as genomics and proteomics are bringing new insights into the biochemistry of coccidia and highlighting possible drug targets in abundance. A major issue for would-be drug discoverers is to decide upon the targets to prioritise. This review provides an update on recent findings on how coccidia differ biochemically from vertebrates. It includes discoveries within coccidian parasites themselves but also uses findings in Plasmodium to provide an overview of biochemical features that may be characteristics of many apicomplexan parasites and so potential targets for broad-spectrum drugs.  相似文献   

18.
An active Trypanosoma cruzi transmission cycle maintained by wild rodents in the Andean valleys of Cochabamba Bolivia is described. Wild and domestic Triatoma infestans with 60% infection with T. cruzi were found and was evidenced in 47.5% (rodents) and 26.7% (marsupial) by parasitological and/or serologycal methods. Phyllotis ocilae and the marsupial species Thylamys elegans, are the most important reservoirs followed by Bolomys lactens and Akodon boliviensis. In spite of both genotypes (TCI and TCII) being prevalent in Bolivia, in our study area only T. cruzi I is being transmitted. Our data suggest that wild T. infestans and wild small mammals play an important role in the maintenance of the transmission cycle of T. cruzi. Furthermore, the finding of high prevalence of T. cruzi infection in wild T. infestans point to the risk of the dispersion of Chagas' disease.  相似文献   

19.
We studied the fate of different Trypanosoma cruzi trypomastigote forms after they invade Vero cells persistently colonised with Coxiella burnetii. When the invasion step was examined we found that persistent C. burnetii infection per se reduced only tissue-culture trypomastigote invasion, whereas raising vacuolar pH with Bafilomycin A1 and related drugs, increased invasion of both metacyclic and tissue-culture trypomastigotes when compared with control Vero cells. Kinetic studies of trypomastigote transfer indicated that metacyclic trypomastigotes parasitophorous vacuoles are more efficiently fused to C. burnetii vacuoles. The higher tissue-culture trypomastigote hemolysin and transialidase activities appear to facilitate their faster escape from the parasitophorous vacuole. Sialic acid deficient Lec-2 cells facilitate the escape of both forms. Endosomal-lysosomal sequential labelling with EEA1, LAMP-1, and Rab7 of the parasitophorous vacuoles formed during the entry of each infective form revealed that the phagosome maturation processes are also distinct. Measurements of C. burnetii vacuolar pH disclosed a marked preference for trypomastigote fusion with more acidic rickettsia vacuoles. Our results thus suggest that intravacuolar pH modulates the traffic of trypomastigote parasitophorous vacuoles in these doubly infected cells.  相似文献   

20.
In this work, we show the kinetics of pyrophosphate-driven H+ uptake by acidocalcisomes in digitonin-permeabilized promastigotes of Leptomonas wallacei. The vacuolar proton pyrophosphatase activity was optimal in the pH range of 7.5-8.0, was inhibited by imidiodiphosphate, and was completely dependent on K+ and PPi. H+ was released with the addition of Ca2+, suggesting the presence of a Ca2+/H+ antiport. In addition, X-ray elemental mapping associated with energy-filtering transmission electron microscopy showed that most of the Ca, Na, Mg, P, K, Fe, and Zn were located in acidocalcisomes. L. wallacei immunolabeled with antibodies against Trypanosoma cruzi pyrophosphatase show intense fluorescence in cytoplasmatic organelles of size and distribution similar to the acidocalcisomes. Altogether, the results show that L. wallacei acidocalcisomes possess a H+-pyrophosphatase with characteristics of type I V-H+-PPase. However, we did not find any evidence, either for the presence of H+-ATPases or for Na+/H+ exchangers in these acidocalcisomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号