首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Holliday junction (HJ) resolution is a fundamental step for completion of homologous recombination. HJ resolving enzymes (resolvases) distort the junction structure upon binding and prior cleavage, raising the possibility that the reactivity of the enzyme can be affected by a particular geometry and topology at the junction. Here, we employed a DNA origami nano-scaffold in which each arm of a HJ was tethered through the base-pair hybridization, allowing us to make the junction core either flexible or inflexible by adjusting the length of the DNA arms. Both flexible and inflexible junctions bound to Bacillus subtilis RecU HJ resolvase, while only the flexible junction was efficiently resolved into two duplexes by this enzyme. This result indicates the importance of the structural malleability of the junction core for the reaction to proceed. Moreover, cleavage preferences of RecU-mediated reaction were addressed by analyzing morphology of the reaction products.  相似文献   

3.
BLM, the protein mutated in Bloom's syndrome, possesses a helicase activity that can dissociate DNA structures, including the Holliday junction, expected to arise during homologous recombination. BLM is stably associated with topoisomerase IIIalpha (Topo IIIalpha) and the BLAP75 protein. The BLM-Topo IIIalpha-BLAP75 (BTB) complex can efficiently resolve a DNA substrate that harbors two Holliday junctions (the double Holliday junction) in a non-crossover manner. Here we show that the Holliday junction unwinding activity of BLM is greatly enhanced as a result of its association with Topo IIIalpha and BLAP75. Enhancement of this BLM activity requires both Topo IIIalpha and BLAP75. Importantly, Topo IIIalpha cannot be substituted by Escherichia coli Top3, and the Holliday junction unwinding activity of BLM-related helicases WRN and RecQ is likewise impervious to Topo IIIalpha and BLAP75. However, the topoisomerase activity of Topo IIIalpha is dispensable for the enhancement of the DNA unwinding reaction. We have also ascertained the requirement for the BLM ATPase activity in double Holliday junction dissolution and DNA unwinding by constructing, purifying, and characterizing specific mutant variants that lack this activity. These results provide valuable information concerning how the functional integrity of the BTB complex is governed by specific protein-protein interactions among the components of this complex and the enzymatic activities of BLM and Topo IIIalpha.  相似文献   

4.
Holliday junction resolving enzymes are required by all life forms that catalyse homologous recombination, including all cellular organisms and many bacterial and eukaryotic viruses. Here we report the identification of three distinct Holliday junction resolving enzyme activities present in two highly divergent archaeal species. Both Sulfolobus and Pyrococcus share the Hjc activity, and in addition possess unique secondary activities (Hje and Hjr). We propose by analogy with the two other domains of life that the latter enzymes are viral in origin, suggesting the widespread existence of archaeal viruses that rely on homologous recombination as part of their life cycle.  相似文献   

5.
Tang S  Huang W  Zhong M  Yin L  Jiang H  Hou S  Gan P  Yuan Y 《Journal of Proteomics》2012,75(8):2352-2360
Multidrug resistance (MDR) to anticancer drugs is a major obstacle to successful chemotherapy of tumors. Understanding the molecular basis to chemoresistance is likely to provide better treatment. Cell lines resistant to cis-diamminedichloroplatinum (CNE2/cDDP) were established from human nasopharyngeal carcinoma (NPC) cell lines CNE2. Comparative proteomics involving 2-dimensional gel electrophoresis (2-DE) and ESI-Q-TOF-MS were performed on protein extracted from CNE2 and CNE2/cDDP cell lines to screen drug resistance-related proteins. Keratin 1 (KRT1), cathepsin D (CTSD) and annexin a5 (ANXA5) were identified as three proteins showing higher expression in CNE2/cDDP compared to CNE2. Furthermore, suppression of KRT1 expression by siRNA resulted in decreased MDR in siRNA-CNE2/cDDP cells. And upregulation of KRT1 could result in increased of drug resistance in NPC cell lines. Taken together, KRT1 protein and its activity levels were higher in cDDP-resistant NPC cell lines compared to their parental cell lines. These data clearly linked KRT1 and cDDP resistance mechanisms. KRT1 could serve as a biomarker for chemotherapy sensitivity of NPC.  相似文献   

6.
7.
The Saccharomyces cerevisiae Rmi1 protein is a component of the highly conserved Sgs1-Top3-Rmi1 complex. Deletion of SGS1, TOP3, or RMI1 is synthetically lethal when combined with the loss of the Mus81-Mms4 or Slx1-Slx4 endonucleases, which have been implicated in Holliday junction (HJ) resolution. To investigate the causes of this synthetic lethality, we isolated a temperature-sensitive mutant of the RMI1 strain, referred to as the rmi1-1 mutant. At the restrictive temperature, this mutant phenocopies an rmi1Δ strain but behaves like the wild type at the permissive temperature. Following a transient exposure to methyl methanesulfonate, rmi1-1 mutants accumulate unprocessed homologous recombination repair (HRR) intermediates. These intermediates are slowly resolved at the restrictive temperature, revealing a redundant resolution activity when Rmi1 is impaired. This resolution depends on Mus81-Mms4 but not on either Slx1-Slx4 or another HJ resolvase, Yen1. Similar results were also observed when Top3 function was impaired. We propose that the Sgs1-Top3-Rmi1 complex constitutes the main pathway for the processing of HJ-containing HRR intermediates but that Mus81-Mms4 can also resolve these intermediates.  相似文献   

8.
Holliday junction resolving enzymes are ubiquitous proteins that function in the pathway of homologous recombination, catalyzing the rearrangement and repair of DNA. They are metal ion-dependent endonucleases with strong structural specificity for branched DNA species. Whereas the eukaryotic nuclear enzyme remains unknown, an archaeal Holliday junction resolving enzyme, Hjc, has recently been identified. We demonstrate that Hjc manipulates the global structure of the Holliday junction into a 2-fold symmetric X shape, with local disruption of base pairing around the point of cleavage that occurs in a region of duplex DNA 3' to the point of strand exchange. Primary and secondary structural analysis reveals the presence of a conserved catalytic metal ion binding domain in Hjc that has been identified previously in several restriction enzymes. The roles of catalytic residues conserved within this domain have been confirmed by site-directed mutagenesis. This is the first example of this domain in an archaeal enzyme of known function as well as the first in a Holliday junction resolving enzyme.  相似文献   

9.
Lu R  Bian F  Lin J  Su Z  Qu Y  Pflugfelder SC  Li DQ 《PloS one》2012,7(6):e38825
There is a great interest in using epithelium generated in vitro for tissue bioengineering. Mouse 3T3 fibroblasts have been used as a feeder layer to cultivate human epithelia including corneal epithelial cells for more than 3 decades. To avoid the use of xeno-components, we evaluated human fibroblasts as an alternative feeder supporting human corneal epithelial regeneration. Five human fibroblast cell lines were used for evaluation with mouse 3T3 fibroblasts as a control. Human epithelial cells isolated from fresh corneal limbal tissue were seeded on these feeders. Colony forming efficiency (CFE) and cell growth capacity were evaluated on days 5-14. The phenotype of the regenerated epithelia was evaluated by morphology and immunostaining with epithelial markers. cDNA microarray was used to analyze the gene expression profile of the supportive human fibroblasts. Among 5 strains of human fibroblasts evaluated, two newborn foreskin fibroblast cell lines, Hs68 and CCD1112Sk, were identified to strongly support human corneal epithelial growth. Tested for 10 passages, these fibroblasts continually showed a comparative efficiency to the 3T3 feeder layer for CFE and growth capacity of human corneal epithelial cells. Limbal epithelial cells seeded at 1 × 10(4) in a 35-mm dish (9.6 cm(2)) grew to confluence (about 1.87-2.41 × 10(6) cells) in 12-14 days, representing 187-241 fold expansion with over 7-8 doublings on these human feeders. The regenerated epithelia expressed K3, K12, connexin 43, p63, EGFR and integrin β1, resembling the phenotype of human corneal epithelium. DNA microarray revealed 3 up-regulated and 10 down-regulated genes, which may be involved in the functions of human fibroblast feeders. These findings demonstrate that commercial human fibroblast cell lines support human corneal epithelial regeneration, and have potential use in tissue bioengineering for corneal reconstruction.  相似文献   

10.
Prompted by the close relationship between tyrosine recombinases and type IB topoisomerases we have investigated the ability of human topoisomerase I to resolve the typical intermediate of recombinase catalysis, the Holliday junction. We demonstrate that human topoisomerase I catalyzes unidirectional resolution of a synthetic Holliday junction substrate containing two preferred cleavage sites surrounded by DNA sequences supporting branch migration. Deleting part of the N-terminal domain (amino acid residues 1-202) did not affect topoisomerase I resolution activity, whereas a topoisomerase I variant lacking both the N-terminal domain and amino acid residues 660-688 of the linker domain was unable to resolve the Holliday junction substrate. The inability of the double deleted variant to mediate resolution correlated with the inability of this enzyme to introduce concomitant cleavage at the two preferred cleavage sites in a single Holliday junction substrate, which is a prerequisite for resolution. As determined by the gel electrophoretic mobility of native enzyme or enzyme crosslinked by disulfide bridging, the double deleted mutant existed almost entirely in a dimeric form. The impairment of this enzyme in performing double cleavages on the Holliday junction substrate may be explained by only one cleavage competent active site being formed at a time within the dimer. The assembly of only one active site within dimers is a well-known characteristic of the tyrosine recombinases. Hence, the obtained results may suggest a recombinase-like active site assembly of the double deleted topoisomerase I variant. Taken together the presented results consolidate the relationship between type IB topoisomerases and tyrosine recombinases.  相似文献   

11.
FXIII is a transglutaminase consisting of two catalytic (FXIIIA) and two non-catalytic subunits (FXIIIB) in plasma, where this enzyme is responsible for stabilizing fibrin clots. Although possible functions of intracellular FXIIIA have been proposed, these remain to be established. We show that a 40 kDa protein species of FXIIIA is present in the human neuroblastoma cell lines SH-SY5Y and LAN5. These data reveal the presence of a new uncharacterised variant of FXIIIA, possibly due to an alternative splicing, in nervous cells.  相似文献   

12.
We have solved the crystal structure of the Holliday junction resolving enzyme T7 endonuclease I at 2.1 A resolution using the multiwavelength anomalous dispersion (MAD) technique. Endonuclease I exhibits strong structural specificity for four-way DNA junctions. The structure shows that it forms a symmetric homodimer arranged in two well-separated domains. Each domain, however, is composed of elements from both subunits, and amino acid side chains from both protomers contribute to the active site. While no significant structural similarity could be detected with any other junction resolving enzyme, the active site is similar to that found in several restriction endonucleases. T7 endonuclease I therefore represents the first crystal structure of a junction resolving enzyme that is a member of the nuclease superfamily of enzymes.  相似文献   

13.
Enzymatic activities that cleave Holliday junctions are required for the resolution of recombination intermediates and for the restart of stalled replication forks. Here we show that human cell-free extracts possess two distinct endonucleases that can cleave Holliday junctions. The first cleaves Holliday junctions in a structure- and sequence-specific manner, and associates with an ATP-dependent branch migration activity. Together, these activities promote branch migration/resolution reactions similar to those catalysed by the Escherichia coli RuvABC resolvasome. Like RuvC-mediated resolution, the products can be religated. The second, containing Mus81 protein, cuts Holliday junctions but the products are mostly non-ligatable. Each nuclease has a defined substrate specificity: the branch migration-associated resolvase is highly specific for Holliday junctions, whereas the Mus81-associated endonuclease is one order of magnitude more active upon replication fork and 3'-flap structures. Thus, both nucleases are capable of cutting Holliday junctions formed during recombination or through the regression of stalled replication forks. However, the Mus81-associated endonuclease may play a more direct role in replication fork collapse by catalysing the cleavage of stalled fork structures.  相似文献   

14.
DNA recombination is a universal biological event responsible both for the generation of genetic diversity and for the maintenance of genome integrity. A four-way DNA junction, also termed Holliday junction, is the key intermediate in nearly all recombination processes. This junction is the substrate of recombination enzymes that promote branch migration or catalyze its resolution. We have determined the crystal structure of a four-way DNA junction by multiwavelength anomalous diffraction, and refined it to 2.16 A resolution. The structure has two-fold symmetry, with pairwise stacking of the double-helical arms, which form two continuous B-DNA helices that run antiparallel, cross in a right-handed way, and contain two G-A mismatches. The exchanging backbones form a compact structure with strong van der Waals contacts and hydrogen bonds, implying that a conformational change must occur for the junction to branch-migrate or isomerize. At the branch point, two phosphate groups from one helix occupy the major groove of the other one, establishing sequence-specific hydrogen bonds. These interactions, together with different stacking energies and steric hindrances, explain the preference for a particular junction stacked conformer.  相似文献   

15.
The RuvA, RuvB and RuvC proteins of Escherichia coli act together to process Holliday junctions formed during recombination and DNA repair. RuvA has a well-defined DNA binding surface that is sculptured specifically to accommodate a Holliday junction and allow subsequent loading of RuvB and RuvC. A negatively charged pin projecting from the centre limits binding of linear duplex DNA. The amino-acid sequences forming the pin are highly conserved. However, in certain Mycoplasma and Ureaplasma species the structure is extended by four amino acids and two acidic residues forming a crucial charge barrier are missing. We investigated the significance of these differences by analysing RuvA from Mycoplasma pneumoniae. Gel retardation and surface plasmon resonance assays revealed that this protein binds Holliday junctions and other branched DNA structures in a manner similar to E. coli RuvA. Significantly, it binds duplex DNA more readily. However it does not support branch migration mediated by E. coli RuvB and when bound to junction DNA is unable to provide a platform for stable binding of E. coli RuvC. It also fails to restore radiation resistance to an E. coli ruvA mutant. The data presented suggest that the modified pin region retains the ability to promote junction-specific DNA binding, but acts as a physical obstacle to linear duplex DNA rather than as a charge barrier. They also indicate that such an obstacle may interfere with the binding of a resolvase. Mycoplasma species may therefore process Holliday junctions via uncoupled branch migration and resolution reactions.  相似文献   

16.
A key step in meiotic recombination involves the nucleolytic resolution of Holliday junctions to generate crossovers. Although the enzyme that performs this function in human cells is presently unknown, recent studies led to the identification of the XPG-family endonuclease GEN1 that promotes Holliday junction resolution in vitro, suggesting that it may perform a related function in vivo. Here, we show that ectopic expression of GEN1 in fission yeast mus81Δ strains results in Holliday junction resolution and crossover formation during meiosis.  相似文献   

17.
Mus81-Eme1 are essential components of a Holliday junction resolvase.   总被引:22,自引:0,他引:22  
Mus81, a fission yeast protein related to the XPF subunit of ERCC1-XPF nucleotide excision repair endonuclease, is essential for meiosis and important for coping with stalled replication forks. These processes require resolution of X-shaped DNA structures known as Holliday junctions. We report that Mus81 and an associated protein Eme1 are components of an endonuclease that resolves Holliday junctions into linear duplex products. Mus81 and Eme1 are required during meiosis at a late step of meiotic recombination. The mus81 meiotic defect is rescued by expression of a bacterial Holliday junction resolvase. These findings constitute strong evidence that Mus81 and Eme1 are subunits of a nuclear Holliday junction resolvase.  相似文献   

18.
19.
The human Rad51B protein is involved in the recombinational repair of damaged DNA. Chromosomal rearrangements of the Rad51B gene have been found in uterine leiomyoma patients, suggesting that the Rad51B gene suppresses tumorigenesis. In the present study, we found that the purified Rad51B protein bound to single-stranded DNA and double-stranded DNA in the presence of ATP and either Mg(2+) or Mn(2+) and hydrolyzed ATP in a DNA-dependent manner. When the synthetic Holliday junction was present along with the half-cruciform and double-stranded oligonucleotides, the Rad51B protein only bound to the synthetic Holliday junction, which mimics a key intermediate in homologous recombination. In contrast, the human Rad51 protein bound to all three DNA substrates with no obvious preference. Therefore, the Rad51B protein may have a specific function in Holliday junction processing in the homologous recombinational repair pathway in humans.  相似文献   

20.
Prorenin, the inactive biosynthetic precursor of renin, is proteolytically cleaved in the renal juxtaglomerular cells to renin. The activity of renin is rate-limiting for generation of angiotensin II in the circulation. We identified a renal thiol protease which activates and accurately cleaves the 43-amino acid prosegment of human recombinant prorenin. In the current studies, 6.5 mg of this protease was purified from human renal cortex using a three-step procedure dependent upon Leu-Leu-arginyl affinity chromatography. This represented an overall 766-fold purification and resulted in three protein bands on sodium dodecyl sulfate-polyacrylamide gel electrophoresis of molecular weights 30,000, 25,000, and 24,000. All three bands cross-reacted with an anti-human liver cathepsin B antibody upon immunoblot analysis; electrolution of each band and amino-terminal sequence analysis confirmed that the Mr 30,000 protein was mature cathepsin B and the Mr 25,000 and 24,000 bands were cathepsin B subunits. The pH optimum for the hydrolysis of pure human recombinant prorenin by pure renal cathepsin B was 6, and the Michaelis-Menten constant, Km, of the reaction was 1.4 x 10(-9) M. Immunostaining of human kidney using a sheep anti-human cathepsin B antibody demonstrated the presence of cathepsin B in the juxtaglomerular areas of the kidney, as well as in the renal proximal tubules. Electron microscopic immunohistochemistry using the same antibody demonstrated cathepsin B in dense secretory granules of the juxtaglomerular cells. Renin was also shown to be present in these granules. This study provides both biochemical and morphological evidence that renal cathepsin B is a human prorenin-processing enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号