首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A tradeoff between energy gain from foraging and safety from predation in refuges is a common situation for many herbivores that are vulnerable to predation while foraging. This tradeoff affects the population dynamics of the plant–herbivore–predator interaction. A new functional response is derived based on the Holling type 2 functional response and the assumption that the herbivore can forage at a rate that maximizes its fitness. The predation rate on the herbivore is assumed to be proportional to the product of the time that the herbivore spends foraging and a risk factor that reflects the habitat complexity; where greater complexity means greater interspersion of high food quality habitat and refuge habitat, which increases the amount of the edge zone between refuge and foraging areas, making foraging safer. The snowshoe hare is chosen as an example to demonstrate the resulting dynamics of an herbivore that has been intensely studied and that undergoes well-known cycling. Two models are studied in which the optimal foraging by hares is assumed, a vegetation–hare–generalist predator model and a vegetation–hare–specialist predator model. In both cases, the results suggest that the cycling of the snowshoe hare population will be greatly moderated by optimal foraging in a habitat consisting of interspersed high quality foraging habitat and refuge habitat. However, there are also large differences in the dynamics produced by the two models as a function of predation pressure.  相似文献   

2.
Abstract. Question: Which factors influence the effectiveness of biotic refuges for harbouring grazing‐sensitive species in pastures with a long history of grazing by large herbivores? Previous research showed that spiny clumps of the cactus Opuntia polyacantha provided refuges from cattle grazing for plants and for inflorescence production on short‐grass steppe. In this paper, seven factors that may have a potential positive influence on the refuge effects of cactus at a landscape scale were assessed. Location: Short‐grass steppe of the Great Plains of North America. Methods: The study was conducted in eight long‐term grazed pastures and their respective ungrazed controls that were established 60 years ago. Results: Heavy grazing intensities were necessary for some positive effects of cactus to manifest, and some refuge effects changed to negative effects under lower grazing pressure. Refuge effects increased with plant community productivity due to greater abundances of grazing‐sensitive species, and greater grazing intensities in the more productive areas. Cover of cactus cladodes (spine‐covered pads) inside clumps appeared to be the main limiting factor for refuge effects, probably by limiting available space for grazing‐sensitive species in the clumps. Other factors such as size and density of cactus clumps, and the presence of large refuges in the proximity of clumps had minor influence on the effectiveness of cactus refuges. Conclusions: The effects of biotic refuges largely varied with ecological conditions and structural characteristics of the refuge. Refuge effects were mainly influenced by grazing intensity, plant community productivity, and structural characteristics of the biotic refuges. A conceptual model of factors influencing refuge effects at a local landscape scale in plant communities grazed by large herbivores is presented.  相似文献   

3.
Herbivores can dramatically diminish revegetation success, but associational refuge theory predicts that neighbouring plants could hinder browsing of planted seedlings. The key to strategic restoration using associational refuge is to define which patch variables are effective against the appropriate herbivores, at multiple scales, and to understand which stages of the foraging process these variables disrupt. Our study aimed to test the capacity of existing vegetation to act as associational refuge for planted seedlings by affecting search, detection and consumption decisions, and more generally influence herbivore foraging patterns. We conducted a field trial with free‐ranging, mammalian herbivores and nursery‐raised, native tree seedlings. We quantified seedling browsing damage over time in relation to a suite of existing patch variables at two spatial scales (100 m2 and 4 m2). After two months, 78% of seedlings were browsed, suffering mean foliage loss of 90.5%. Focal seedlings were almost exclusively consumed by swamp wallabies Wallabia bicolor, an abundant generalist browser. Once a swamp wallaby investigated a seedling, the probability of consumption was high (86%). At the large scale, browsing of seedlings was delayed in patches with lower canopy cover and fewer browsed plant species. Seedlings in fern‐dominated patches escaped browsing for longer than those in grass‐dominated patches. At the small scale, browsing was delayed with higher cover of understorey vegetation. Associational refuge was provided by vegetation with characteristics, and at spatial scales, consistent with disrupted search and detection of focal seedlings by herbivores. Thus strategic placement of seedlings in existing vegetation – based on understanding which herbivore species is responsible and how it responds to vegetation – can take advantage of associational refuge during restoration. However, given rapid seedling detection by herbivores, associational refuge may be inadequate in the long‐term under high browsing pressure unless high absolute numbers of seedlings are planted among refuge.  相似文献   

4.
In response to feeding by phytophagous arthropods, plants emit volatile chemicals. This is shown to be an active physiological response of the plant and the released chemicals are therefore called herbivore-induced plant volatiles (HIPV). One of the supposed functions of HIPV for the plant is to attract carnivorous natural enemies of herbivores. Depending on which plant and herbivore species interact, blends of HIPV show qualitative and quantitative variation. Hence, one may ask whether this allows the natural enemies to discriminate between volatiles from plants infested by herbivore species that are either suitable or unsuitable as a food source for the natural enemy. Another question is whether natural enemies can also recognise HIPV when two or more herbivore species that differ in suitability as a food source simultaneously attack the same plant species. By reviewing the literature we show that arthropod predators and parasitoids can tell different HIPV blends apart in several cases of single plant–single herbivore systems and even in single plant–multiple herbivore systems. Yet, there are also cases where predators and parasitoids do not discriminate or discriminate only after having learned the association between HIPV and herbivores that are either suitable or non-suitable as a source of food. In this case, suitable herbivores may profit from colonising plants that are already infested by another non-suitable herbivore. The resulting temporal or partial refuge may have important population dynamical consequences, as such refuges have been shown to stabilise otherwise unstable predator–prey models of the Lotka-Volterra or Nicholson-Bailey type.  相似文献   

5.
植物与草食动物之间的协同适应及进化   总被引:8,自引:2,他引:8  
王德利 《生态学报》2004,24(11):2641-2648
通常协同进化是指一个物种 (或种群 )的遗传结构由于回应于另一个物种 (或种群 )遗传结构的变化而发生的相应改变。广义的理解 ,协同进化是相互作用的物种之间的互惠进化。生物之间、特别是植物与草食动物之间的协同适应与进化 ,已经成为生物进化、生态、遗传等学科十分关注的问题 ,可能成为生物学中各学科研究的交汇点或结点。作者具体阐述了 :(1)生物之间协同进化的研究意义 ,包括对生物学与生态学的价值 ;(2 )生物之间协同进化研究的限制或困难 ,诸如时间、研究对象、进化等级尺度和研究方法的限制 ;(3)植物与草食动物之间协同进化的主要研究对象 (系统 ) ,即昆虫传粉系统、昆虫诱导植物反应系统、种子散布系统、以及大型草食动物采食与植物反应系统 ;(4 )植物与草食动物之间协同进化的主要研究内容 ,包括适应特征 (性状 )——物种的可塑性 ,以及适应机制——物种适应过程与策略两个方面 ;(5 )植物与草食动物之间协同进化研究的存在问题及研究方向  相似文献   

6.
Extensive research has been conducted to reveal how species diversity affects ecosystem functions and services. Yet, consequences of diversity loss for ecosystems as a whole as well as for single community members are still difficult to predict. Arthropod communities typically are species‐rich, and their species interactions, such as those between herbivores and their predators or parasitoids, may be particularly sensitive to changes in community composition. Parasitoids forage for herbivorous hosts by using herbivore‐induced plant volatiles (indirect cues) and cues produced by their host (direct cues). However, in addition to hosts, non‐suitable herbivores are present in a parasitoid's environment which may complicate the foraging process for the parasitoid. Therefore, ecosystem changes in the diversity of herbivores may affect the foraging efficiency of parasitoids. The effect of herbivore diversity may be mediated by either species numbers per se, by specific species traits, or by both. To investigate how diversity and identity of non‐host herbivores influence the behaviour of parasitoids, we created environments with different levels of non‐host diversity. On individual plants in these environments, we complemented host herbivores with 1–4 non‐host herbivore species. We subsequently studied the behaviour of the gregarious endoparasitoid Cotesia glomerata L. (Hymenoptera: Braconidae) while foraging for its gregarious host Pieris brassicae L. (Lepidoptera: Pieridae). Neither non‐host species diversity nor non‐host identity influenced the preference of the parasitoid for herbivore‐infested plants. However, after landing on the plant, non‐host species identity did affect parasitoid behaviour, whereas non‐host diversity did not. One of the non‐host species, Trichoplusia ni Hübner (Lepidoptera: Noctuidae), reduced the time the parasitoid spent on the plant as well as the number of hosts it parasitized. We conclude that non‐host herbivore species identity has a larger influence on C. glomerata foraging behaviour than non‐host species diversity. Our study shows the importance of species identity over species diversity in a multitrophic interaction of plants, herbivores, and parasitoids.  相似文献   

7.
For foraging herbivores, both food quality and predation risk vary across the landscape. Animals should avoid low-quality food patches in favour of high-quality ones, and seek safe patches while avoiding risky ones. Herbivores often face the foraging dilemma, however, of choosing between high-quality food in risky places or low-quality food in safe places. Here, we explore how and why the interaction between food quality and predation risk affects foraging decisions of mammalian herbivores, focusing on browsers confronting plant toxins in a landscape of fear. We draw together themes of plant–herbivore and predator–prey interactions, and the roles of animal ecophysiology, behaviour and personality. The response of herbivores to the dual costs of food and fear depends on the interplay of physiology and behaviour. We discuss detoxification physiology in dealing with plant toxins, and stress physiology associated with perceived predation risk. We argue that behaviour is the interface enabling herbivores to stay or quit food patches in response to their physiological tolerance to these risks. We hypothesise that generalist and specialist herbivores perceive the relative costs of plant defence and predation risk differently and intra-specifically, individuals with different personalities and physiologies should do so too, creating individualised landscapes of food and fear. We explore the ecological significance and emergent impacts of these individual-based foraging outcomes on populations and communities, and offer predictions that can be clearly tested. In doing so, we provide an integrated platform advancing herbivore foraging theory with food quality and predation risk at its core.  相似文献   

8.
Parasitoid disturbance populations in agroecosystems can be maintained through the provision of habitat refuges with host resources. However, specialized herbivores that feed on different host plants have been shown to form host-specialized races. Parasitoids may subsequently specialize on these herbivore host races and therefore prefer parasitizing insects from the refuge, avoiding foraging on the crop. Evidence is therefore required that parasitoids are able to move between the refuge and the crop and that the refuge is a source of parasitoids, without being an important source of herbivore pests. A North-South transect trough the Chilean Central Valley was sampled, including apple orchards and surrounding Pyracantha coccinea (M. Roem) (Rosales: Rosacea) hedges that were host of Eriosoma lanigerum (Hemiptera: Aphididae), a globally important aphid pest of cultivated apples. At each orchard, aphid colonies were collected and taken back to the laboratory to sample the emerging hymenopteran parasitoid Aphelinus mali (Hymenoptera: Aphelinidae). Aphid and parasitoid individuals were genotyped using species-specific microsatellite loci and genetic variability was assessed. By studying genetic variation, natural geographic barriers of the aphid pest became evident and some evidence for incipient host-plant specialization was found. However, this had no effect on the population-genetic features of its most important parasitoid. In conclusion, the lack of genetic differentiation among the parasitoids suggests the existence of a single large and panmictic population, which could parasite aphids on apple orchards and on P. coccinea hedges. The latter could thus comprise a suitable and putative refuge for parasitoids, which could be used to increase the effectiveness of biological control. Moreover, the strong geographical differentiation of the aphid suggests local reinfestations occur mainly from other apple orchards with only low reinfestation from P. cocinnea hedges. Finally, we propose that the putative refuge could act as a source of parasitoids without being a major source of aphids.  相似文献   

9.
I address the selection of plants with different characteristics by herbivores of different body sizes by incorporating allometric relationships for herbivore foraging into optimal foraging models developed for herbivores. Herbivores may use two criteria in maximizing their nutritional intake when confronted with a range of food resources: a minimum digestibility and a minimum cropping rate. Minimum digestibility should depend on plant chemical characteristics and minimum cropping rate should depend on the density of plant items and their size (mass). If herbivores do select for these plant characteristics, then herbivores of different body sizes should select different ranges of these characteristics due to allometric relationships in digestive physiology, cropping ability and nutritional demands. This selectivity follows a regular pattern such that a herbivore of each body size can exclusively utilize some plants, while it must share other plants with herbivores of other body sizes. I empirically test this hypothesis of herbivore diet selectivity and the pattern of resource use that it produces in the field and experimentally. The findings have important implications for competition among herbivores and their population and community ecology. Furthermore, the results may have general applicability to other types of foragers, with general implications for how biodiversity is influenced.  相似文献   

10.
Insect attack can have major consequences for plant population dynamics. We used individually based simulation models to ask how insect oviposition behaviour influences persistence and potential stability of an herbivore–plant system. We emphasised effects on system dynamics of herbivore travel costs and of two kinds of behaviour that might evolve to mitigate travel costs: insect clutch size behaviour (whether eggs are laid singly or in groups) and female aggregation behaviour (whether females prefer or avoid plants already bearing eggs). Travel costs that increase as plant populations drop lead to inverse density dependence of plant reproduction under herbivore attack. Female clutch size and aggregation behaviours also strongly affect system dynamics. When females lay eggs in large clutches or aggregate their clutches, herbivore damage varies strongly among plants, providing probabilistic refuges that permit plant reproduction and persistence. However, the population dynamics depend strongly on whether insect behaviour is fixed or responds adaptively to plant population size: when (and only when) females increase clutch size or aggregation as plants become rare, refuges from herbivory weaken at high plant density, creating inverse density dependence in plant reproduction. Both herbivore travel costs themselves, and also insect behaviour that might evolve in response to travel costs, can thus create plant density dependence—a basic requirement for regulation of plant populations by their insect herbivores.  相似文献   

11.
Inbreeding can profoundly affect the interactions of plants with herbivores as well as with the natural enemies of the herbivores. We studied how plant inbreeding affects herbivore oviposition preference, and whether inbreeding of both plants and herbivores alters the probability of predation or parasitism of herbivore eggs. In a laboratory preference test with the specialist herbivore moth Abrostola asclepiadis and inbred and outbred Vincetoxicum hirundinaria plants, we discovered that herbivores preferred to oviposit on outbred plants. A field experiment with inbred and outbred plants that bore inbred or outbred herbivore eggs revealed that the eggs of the outbred herbivores were more likely to be lost by predation, parasitism or plant hypersensitive responses than inbred eggs. This difference did not lead to differences in the realized fecundity as the number of hatched larvae did not differ between inbred and outbred herbivores. Thus, the strength of inbreeding depression in herbivores decreases when their natural enemies are involved. Plant inbreeding did not alter the attraction of natural enemies of the eggs. We conclude that inbreeding can significantly alter the interactions of plants and herbivores at different life-history stages, and that some of these alterations are mediated by the natural enemies of the herbivores.  相似文献   

12.
While soil resource heterogeneity and root herbivory can have significant direct influences on plant growth, soil heterogeneity may also have indirect effects by influencing the foraging behavior of root herbivores. We used sand-filled greenhouse pots to assess root herbivore foraging behavior and potential interactions between patch quality, herbivore foraging, and plant biomass production (yield). Individual pots were divided into four quarters: one fertilized, and three unfertilized, two of which were planted with tree seedlings. Two treatments were used to create fertilized quarters: high-organic manure fertilizer, and slow-release mineral fertilizer. Seedlings of red maple (Acer rubrum L.) and Virginia pine (Pinus virginiana L.) were used to create two single-species and one mixed-species treatments. Root-feeding beetle larvae were added to the pots and allowed to forage freely for ∼8 weeks. At harvest, root herbivores in organic-fertilized pots were strongly attracted to fertilized quarters despite their relatively low-root biomass. Herbivore distribution was significantly different in mineral fertilized pots, where larvae were most abundant in planted quarters, which is also where most of the plant roots occurred. Whole pot plant yield was significantly reduced by larvae; this effect was stronger in the mineral fertilized pots than organic fertilized pots. While one of the plant species appeared more sensitive to herbivory, root herbivores had a greater influence on yield in mixed-species pots than in single-species pots. Overall, these results suggest that patch quality influences on herbivore foraging may indirectly alter yield and plant community composition. Responsible Editor: Angela Hodge.  相似文献   

13.
Fire and herbivores alter vegetation structure and function. Future fire activity is predicted to increase, and quantifying changes in vegetation communities arising from post‐fire herbivory is needed to better manage natural environments. We investigated the effects of post‐fire herbivory on understory plant communities in a coastal eucalypt forest in southeastern Australia. We quantified herbivore activity, understory plant diversity, and dominant plant morphology following a wildfire in 2017 using two sizes of exclosures. Statistical analysis incorporated the effect of exclusion treatments, time since fire, and the effect of a previous prescribed burn. Exclusion treatments altered herbivore activity, but time since fire did not. Herbivory reduced plant species richness, diversity, and evenness and promoted the dominance of the most abundant plants within the understory. Increasing time since fire reduced community diversity and evenness and influenced morphological changes to the dominant understory plant species, increasing size and dead material while decreasing abundance. We found the legacy effects of a previous prescribed burn had no effect on herbivores or vegetation within our study. Foraging by large herbivores resulted in a depauperate vegetation community. As post‐fire herbivory can alter vegetation communities, we postulate that management burning practices may exacerbate herbivore impacts. Future fire management strategies to minimize herbivore‐mediated alterations to understory vegetation could include aggregating management burns into larger fire sizes or linking fire management with herbivore management. Restricting herbivore access following fire (planned or otherwise) can encourage a more diverse and species‐rich understory plant community. Future research should aim to determine how vegetation change from post‐fire herbivory contributes to future fire risk.  相似文献   

14.
Plant secondary metabolites (PSMs) offer plants chemical defences against herbivores, and are known to influence intake and diet choice in both insect and mammalian herbivores. However, there is limited knowledge regarding how PSMs influence herbivore foraging decisions. Herbivore foraging decisions, in turn, directly impact on which individual plants, and plant species, are selected for consumption. We took advantage of the natural variation in sideroxylonal concentrations in the foliage of Eucalyptus melliodora (Cunn. ex Schauer) to investigate feeding patterns of a marsupial folivore, the common ringtail possum, Pseudocheirus peregrinus (Boddaert 1785). Foliage, collected from six trees, contained between 0.32 and 12.97 mg g-DM-1 sideroxylonal. With increasing sideroxylonal concentrations, possums decreased their total intake, rate of intake and intake per feeding bout, and increased their cumulative time spent feeding. Possums did not alter their total feeding time, number of feeding bouts or time per feeding bout in response to increasing sideroxylonal concentrations. Results demonstrate important behavioural changes in foraging patterns in response to sideroxylonal. These behavioural changes have important implications, in relation to altered foraging efficiency and potential predation risk, for herbivores foraging in the field. As a result, the spatial distribution of dietary PSMs across a landscape may directly influence herbivore fitness, and ultimately habitat selection of mammalian herbivores.  相似文献   

15.
Pollinators and herbivores can both affect the evolutionary diversification of plant reproductive traits. However, plant defences frequently alter antagonistic and mutualistic interactions, and therefore, variation in plant defences may alter patterns of herbivore‐ and pollinator‐mediated selection on plant traits. We tested this hypothesis by conducting a common garden field experiment using 50 clonal genotypes of white clover (Trifolium repens) that varied in a Mendelian‐inherited chemical antiherbivore defence—the production of hydrogen cyanide (HCN). To evaluate whether plant defences alter herbivore‐ and/or pollinator‐mediated selection, we factorially crossed chemical defence (25 cyanogenic and 25 acyanogenic genotypes), herbivore damage (herbivore suppression) and pollination (hand pollination). We found that herbivores weakened selection for increased inflorescence production, suggesting that large displays are costly in the presence of herbivores. In addition, herbivores weakened selection on flower size but only among acyanogenic plants, suggesting that plant defences reduce the strength of herbivore‐mediated selection. Pollinators did not independently affect selection on any trait, although pollinators weakened selection for later flowering among cyanogenic plants. Overall, cyanogenic plant defences consistently increased the strength of positive directional selection on reproductive traits. Herbivores and pollinators both strengthened and weakened the strength of selection on reproductive traits, although herbivores imposed ~2.7× stronger selection than pollinators across all traits. Contrary to the view that pollinators are the most important agents of selection on reproductive traits, our data show that selection on reproductive traits is driven primarily by variation in herbivory and plant defences in this system.  相似文献   

16.
《农业工程》2014,34(6):325-336
Ecologists have long ignored or underestimated the importance of plant–herbivore interactions owing to the diversities of herbivores, plant defensive strategies and ecological systems. In this review, we briefly discussed the categories of herbivores. Then we reviewed the major types of plant defenses against herbivores. Selective forces of herbivore pressures have led to the evolution of various defensive mechanisms in plants, which can be classified into (i) resistance traits that reduce the amount of damage received, including physical, chemical, and biotic traits; (ii) tolerance mechanisms that decrease the impact of herbivore damage, and (iii) escape strategies that reduce the probability of plants to be found by herbivores. These strategies have been studied at different levels from molecular genetics and genomics, to chemistry and physiology, to community and ecosystem ecology. We summarized the development of the methodology for studying plant defenses against herbivores. Particularly, 24 of those hypotheses and models, which are influential in the international community concerning the relationship between plants and herbivores, including the defensive mimicry hypothesis, the compensatory continuum hypothesis, the slow-growth-high-mortality hypothesis, etc, were introduced and grouped into four categories according to plant defense strategies in the present review. Finally, we also reviewed the research progress of plant–herbivore interactions in China, and discussed the perspectives of studies on plant–herbivore interactions.  相似文献   

17.
A comparatively recent focus in consumer–resource theory has been the examination of whether adaptive foraging by consumers, manifested through the functional response, can stabilize consumer–resource dynamics. We offer a brief synthesis of progress on this body of theory and identify the conditions likely to lead to stability. We also fill a gap in our understanding by analysing the potential for adaptively foraging herbivores, which are constrained by time available to feed and digestive capacity, to stabilize dynamics in a single-herbivore/two-plant resource system. Because foraging parameters of the adaptive functional response scale allometrically with herbivore body size, we parameterized our model system using published foraging data for an insect, a small mammal and a large mammal spanning four orders of magnitude in body size, and examined numerically the potential for herbivores to stabilize the consumer–resource interactions. We found in general that the herbivore–plant equilibrium will be unstable for all biologically realistic herbivore population densities. The instability arose for two reasons. First, each herbivore exhibited destabilizing adaptive consumer functional responses (i.e. density-independent or inversely density-dependent) whenever they selected a mixed diet. Secondly, the numerical response of herbivores, based on our assumption of density-independent herbivore population growth, results in herbivores reaching densities that enable them to exploit their resource populations to extinction. Our results and those of studies we reviewed indicate that, in general, adaptive consumers are unlikely to stabilize the dynamics of consumer–resource systems solely through the functional response. The implications of this for future work on consumer–resource theory are discussed.  相似文献   

18.
Loss of biodiversity poses one of the greatest threats to natural ecosystems throughout the world. However, a comprehensive understanding of the impacts of species losses from upper trophic levels is still emerging. Here we compare the impacts of large mammalian herbivore species loss on grassland plant community structure and composition in a South African and North American grassland. Herbaceous plant communities were surveyed at sites without large mammalian herbivores present and at sites with a single species of herbivore present in both locations, and additionally at one site in South Africa with multiple herbivore species. At both the North American and South African locations, plant communities on sites with a single herbivore species were more diverse and species rich than on sites with no herbivores. At the multi-herbivore site in South Africa, plant diversity and richness were comparable to that of the single herbivore site early in the growing season and to the no herbivore site late in the growing season. Analyses of plant community composition, however, indicated strong differences between the multi-herbivore site and the single and no herbivore sites, which were more similar to each other. In moderate to high-productivity ecosystems with one or a few species of large herbivores, loss of herbivores can cause a significant decrease in plant diversity and richness, and can have pronounced impacts on grassland plant community composition. In ecosystems with higher herbivore richness, species loss may also significantly alter plant community structure and composition, although standard metrics of community structure may obscure these differences.  相似文献   

19.
Boege K 《Oecologia》2005,143(1):117-125
Traits influencing plant quality as food and/or shelter for herbivores may change during plant ontogeny, and as a consequence, influence the amount of herbivory that plants receive as they develop. In this study, differences in herbivore density and herbivory were evaluated for two ontogenetic stages of the tropical tree Casearia nitida. To assess plant ontogenetic differences in foliage quality as food for herbivores, nutritional and defensive traits were evaluated in saplings and reproductive trees. Predatory arthropods were quantified and the foraging preferences of a parasitoid wasp of the genus Zacremnops were assessed. In addition, survival rates of lepidopteran herbivores (Geometridae) were evaluated experimentally. Herbivore density was three times higher and herbivory was 66% greater in saplings than in reproductive trees. Accordingly, concentrations of total foliar phenolics were higher in reproductive trees than in saplings, whereas leaf toughness, water and nitrogen concentration did not vary between ontogenetic stages. Survival rates of lepidopteran larvae exposed to natural enemies were equivalent in reproductive trees and saplings. Given the greater herbivore density on saplings, equal survival rates implied a greater foraging effort of predators on reproductive trees. Furthermore, observed foraging of parasitoid wasps was restricted to reproductive trees. I propose that herbivore density, and as a consequence, leaf damage were lower in reproductive trees than in saplings due to both traits influencing food quality, and architectural or unmeasured indirect defensive traits influencing foraging preference of natural enemies of herbivores.  相似文献   

20.
Spatial variations in the abundance of insect herbivores and in herbivore damage are both striking an commonplace. The standard explanations for heterogeneity in herbivore attack emphasize spatial variations in plant genetype, soils, or physical environment. Here I examine an alternative hypothesis-that heterogeneity arises in plant-herbivore systems, even in homogeneous environments, as a result of the direct coupling of herbivore movement to herbivore density and plant quality. Using a mathematical model for plant quality and herbivore growth and dispersal, I demonstrate how spatial instabilities about homogeneous steady state values result in both transient and stationary waves of damage to the plant. Key herbivore movement behaviors include the tendendy for herbivores to aggregate over a range of spatial scales for increased feeding efficiency and the tendency for herbivores to move up gradients in plant quality (herbivory-taxis). My approach translates the biased "random walk" behavior of individual herbivores into a continuum partial differential equation model. Analytical and numerical methods are used to demonstrate the nature of the spatio-temporal variations in plant quality and herbivore density.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号