首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
Since deletions of the short arm of chromosome 17 are the most common genetic defects in human colorectal carcinoma (CC), we tested the YNZ22 locus (D17S30, 17p13.3) for loss of heterozygosity (LH) in adenocarcinoma and in the normal colonic mucosa of 49 CC patients, and studied the association of LH with clinicomorphological features of the tumor. Allele frequency distribution of YNZ22 did not differ for the patients and healthy people. LH in YNZ22 in the tumor was found in 33% (13/39) of all informative cases, its frequency being thrice higher in men than in women (chi 2 = 5.21, p = 0.022). The defect was associated with moderate or poor histological differentiation (P2 = 0.0055) and polyploidy > 3n (P2 = 0.0035) of tumor cells and with high incidence of post-surgery relapse or metastasis. Analysis of both YNZ22 and Alu-VpA/MycL1 (1p34.3) loci in the tumor allowed reliable relapse prognosis in 76% of the CC patients. The probability of post-surgery relapse or metastasis was estimated at no less than 67% for patients with LH in at least one of the two loci in the tumor, and at somewhat more than 20% for patients without LH.  相似文献   

3.
Three chromosome regions, i.e., 11p15, 13q, and 17p, were previously reported by three independent groups to be specifically reduced to hemizygosity in human primary breast cancer. We examined the DNA of 64 mammary tumors for loss of heterozygosity (LOH) with 28 polymorphic DNA markers dispersed on 10 arms of 8 different chromosomes. Complete or near-complete absence of LOH was observed on 5 arms (5 chromosomes). LOH at all three previously invoked regions was confirmed, and the highest frequency was found on 17p (67% of heterozygous patients). Allele loss of a marker from chromosome 3 (region p14-p21) was found in 7 of 15 informative cases. Concurrent LOH at 2 to 4 loci was noted in 20 of the 43 tumors showing LOH. Allele losses did not correlate with any of the six clinico-histopathological variables investigated, but in a group of patients in which we were unable to demonstrate LOH, the absence of distant metastases was statistically significant (P less than 0.05). These results suggest that some of the observed allele losses reflect random events, possibly as a result of genetic instability, but are not without biological significance for the progression of particular subclasses of breast tumors.  相似文献   

4.
PURPOSE: In gastric adenocarcinoma (GC), the major tumor suppressor genes (TSGs) such as p16, PTEN, Rb, E-cadherin, and p53, may play important roles in various regulatory pathways and in tumor suppression. This study evaluated the loss of heterozygosity (LOH) of microsatellite and protein expression of 5 TSGs and the results were examined for their correlation with clinicopathological factors. METHODS: LOH analysis was carried out using polymerase chain reactions with 15 polymorphic microsatellite markers of 5 chromosomes containing TSGs in 100 surgically resected tumors. Protein expression was evaluated by immunohistochemistry (IHC). RESULTS: LOH was detected in 83% of GCs. LOH of 9p21, 10q23, 13q14, 16q22, and 17p13 were detected in 26%, 31%, 24%, 22%, and 35% of cases, respectively. Protein expression of p16, PTEN, Rb, E-cadherin, and p53 were found to be 31%, 39%, 28%, 32%, and 46% of cases. Advanced GCs showed significantly higher rates of 17p13 LOH and p53 expression. 9p21 LOH and E-cadherin IHC were correlated with higher tumor grade. Lymph node metastasis was correlated with the LOH of 9p21, 16q22, and 17p13 and IHC of the Rb and p53. A higher stage was correlated with 10q23 and 17p13 in LOH and p53 for IHC. CONCLUSION: These results suggest that LOH and protein expression of various TSGs are important in carcinogenesis and tumor invasion. Additionally, LOH and IHC may be useful clinical indicators for determining the prognosis of patients with GCs. In particular, the 17p13 LOH and p53 for IHC can be applied as simple evaluations in the clinic.  相似文献   

5.
Abnormalities of some oncogenes, antioncogenes and losses of heterozygosity (LOH) of chromosome 11p, 17p, and 17q in colorectal carcinomas (CC) was studied. Amplification of ERBB-1/HER-1 oncogene was detected in 2 of 56 cases; ERBB-2/HER-2- in 4 of 62. There was a lack of evidence for C-MYC oncogene amplification (67 cases). LOH of chromosome 11p (HRAS-1 probe) was found in 2 of 37 informative (heterozygous) cases; such events were not accompanied by point mutations in "hot" codons (12th or 61st) in the remaining allele. Prevalence of A3 and A4 alleles of HRAS-1 oncogene (68 cases) as compared to healthy donors was noted. RB-1 (41 cases) and p53 (62 cases) suppressor genes did not show any alterations in Southern-blot analysis. LOH of chromosome 17p (YNZ-22 probe) was found in 15 of 26 heterozygous CC; 17q (THH-59 probe)--in 4 of 16. Analysis of 175th codon of p53 gene revealed only one case of mutation in 35 CC studied. Finally, we were able to detect genetic alterations in 23 of 40 (58%) CC, that were studied on each parameter using Southern-blot. We failed to find any correlation between various molecular abnormalities or clinical characteristics. The data obtained are in disagreement with the view concerning frequent involvement of p53 antioncogene in chromosome 17p deletions.  相似文献   

6.
Mutation analysis of p53 in ovarian tumors by DHPLC   总被引:5,自引:0,他引:5  
Up to now, ovarian carcinomas represent a major health problem among female cancers because they are the leading cause of death from gynecological malignancy. A high proportion of these tumors selects for mutations in the p53 gene. There is evidence that inactivation of the p53 protein could indicate poor prognosis and chemoresistance of patients. To set up a fast and sensitive test for p53 defects in tumor tissues, we analyzed ovarian cancer cells by denaturing high-performance liquid chromatography (DHPLC). A primer set spanning the whole coding region of p53 with seven fragments was designed and appropriate heteroduplex detection in DHPLC analysis was elaborated. The analysis of 45 ovarian tumor specimens yielded 17 genetic alterations (38%) occurring exclusively in the malignant tissue of the patients. In addition, frequent polymorphisms present in normal compared to tumor tissue could serve as a tool for the rapid identification of loss of heterozygosity (LOH) in the tumor. We observed that LOH in intron 2 or 3 correlated well with a lack of one allele in mutated fragments. In conclusion, DHPLC screening appears to be a sensitive and effective test for genetic alterations in tumors with p53 involvement. Since p53 mutations point to a poor prognosis state in several cancers, a fast screening of tumor material for genetic variations may have implications for further individual treatment of patients.  相似文献   

7.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK(-) mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6Mb to map various LOH endpoints on the 45Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I-IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15-20Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

8.
Loss of heterozygosity (LOH) is the predominant mechanism of spontaneous mutagenesis at the heterozygous thymindine kinase locus (tk) in TK6 cells. LOH events detected in spontaneous TK mutants (110 clones from p53 wild-type cells TK6-20C and 117 clones from p53-abrogated cells TK6-E6) were analyzed using 13 microsatellite markers spanning the whole of chromosome 17. Our analysis indicated an approximately 60-fold higher frequency of terminal deletions in p53-abrogated cells TK6-E6 compared to p53 wild-type cells TK6-20C whereas frequencies of point mutations (non-LOH events), interstitial deletions, and crossing over events were found to increase only less than twofold by such p53 abrogation. We then made use of an additional 17 microsatellite markers which provided an average map-interval of 1.6 Mb to map various LOH endpoints on the 45 Mb portion of chromosome 17q corresponding to the maximum length of LOH tracts (i.e. from the distal marker D17S932 to the terminal end). There appeared to be four prominent peaks (I–IV) in the distribution of LOH endpoints/Mb of Tk6-20C cells that were not evident in p53-abrogated cells TK6-E6, where they appeared to be rather broadly distributed along the 15–20 Mb length (D17S1807 to D17S1607) surrounding two of the peaks that we detected in TK6-20C cells (peaks II and III). We suggest that the chromosomal instability that is so evident in TK6-E6 cells may be due to DNA double-strand break repair occurring through non homologous end-joining rather than allelic recombination.  相似文献   

9.
Recent studies have shown that lung cancer patients frequently suffer inactivation of antioncogenes such as Rb gene (13q14) and p53 gene (17p13). In a study of 48 cases of non-small cell lung cancer (28 squamous-cell carcinomas, 11 adenocarcinomas, 4 large-cell carcinomas, and 5 other types) using restriction fragment length polymorphism analysis, we found DNA sequence deletions from chromosomes 1p32-36, 3p21, 11p15.5, and 11q13. The frequencies of allele loss on chromosome 1p, 3p, 11p and 11q are 31, 57, 20 and 49% of informative cases in this patient group, respectively. Of them, 19 tumors show one allele loss and 10 patients suffer two or more allele losses from different chromosomes.  相似文献   

10.
Since deletions of the short arm of chromosome 17 are the most common genetic defects in human colorectal carcinoma (CC), we tested the YNZ22locus (D17S30, 17p13.3) for loss of heterozygosity (LH) in adenocarcinoma and in the normal colonic mucosa of 49 CC patients, and studied the association of LH with clinicomorphological features of the tumor. Allele frequency distribution of YNZ22did not differ for the patients and healthy people. LH in YNZ22in the tumor was found in 33% (13/39) of all informative cases, its frequency being thrice higher in men than in women (2= 5.21, p= 0.022). The defect was associated with moderate or poor histological differentiation (P 2= 0.0055) and polyploidy >3n(P 2= 0.0035) of tumor cells and with high incidence of post-surgery relapse or metastasis. Analysis of both YNZ22and Alu-VpA/MycL1(1p34.3) loci in the tumor allowed reliable relapse prognosis in 76% of the CC patients. The probability of post-surgery relapse or metastasis was estimated at no less than 67% for patients with LH in at least one of the two loci in the tumor, and at somewhat more than 20% for patients without LH.  相似文献   

11.
OBJECTIVE: To evaluate the presence of allelic loss in 16q22.1, including the locus of E-cadherin, in pleural effusions in breast cancer patients. STUDY DESIGN: Molecular analysis of DNA was performed using a DNA extraction kit (NucleoSpin, Macherey-Nagel, Germany). Loss of heterozygosity (LOH) in primary tumors and pleural effusions was analyzed using a microsatellite marker of the CDH1 gene, D16S265, described in previous studies. LOH was evaluated by radioactive polymerase chain reaction assay in 17 samples of pleural effusions and breast tissues (primary tumors and nonneoplastic adjacent tissue) from breast cancer patients: 7 positive for neoplastic cells, 6 suspected and 4 cases without evidence of neoplastic cells in the effusions. RESULTS: Thirteen cases (76%) were informative. LOH was detected in 5 cases (38.5%). In 3 of them LOH was detected only in the cytologic sample, and in 2 of them LOH was detected in the primary tumor and cytologic sample. CONCLUSION: Results show that LOH in the CDH1 gene can identify tumor cells in pleural effusions when morphologic analysis is difficult.  相似文献   

12.
Simultaneous P53 loss and activation of the PTEN-restricted PI3K-AKT pathway frequently occur in aggressive breast cancers. P53 loss causes genome instability, while PTEN loss and/or activating mutations of PIK3CA and AKT promote cancer cell proliferation that also increases incidences of genomic aberrations. However, the genomic alterations associated with P53 loss and activated PTEN-PI3K-AKT signaling in breast cancer have not been defined. Spatiotemporally controlled breast cancer models with inactivation of both P53 and Pten in adult mice have not been established for studying genomic alterations. Herein, we deleted both floxed Pten and Tp53 genes in the mammary gland epithelial cells in adult mice using a RCAS virus-mediated Cre-expressing system. These mice developed small tumors in 21 weeks, and poorly differentiated larger tumors in 26 weeks. In these tumors, we identified 360 genes mutated by nonsynonymous point mutations and small insertions and deletions (NSPMs/InDels), 435 genes altered by copy number amplifications (CNAs), and 450 genes inactivated by copy number deletions (CNDs). Importantly, 22.2%, 75.9% and 27.3% of these genes were also altered in human breast tumors with P53 and PTEN losses or P53 loss and activated PI3K-AKT signaling by NSPMs/InDels, CNAs and CNDs, respectively. Therefore, inactivation of P53 and Pten in adult mice causes rapid-growing breast tumors, and these tumors recapitulate a significant number of genetic aberrations in human breast tumors with inactivated P53 and activated PTEN-PI3K-AKT signaling. Further characterization of these commonly altered genes in breast cancer should help to identify novel cancer-driving genes and molecular targets for developing therapeutics.  相似文献   

13.
We have used Swedish monozygotic twins concordant for breast cancer to study genetic changes associated with the development of breast cancer. Because loss of heterozygosity (LOH) at a specific genomic region may reflect the presence of a tumour suppressor gene, loss of the same allele in both of the twins concordant for breast cancer may pinpoint a tumour suppressor gene that confers a strong predisposition to breast cancer. DNA samples extracted from the matched tumour and normal tissues of nine twin pairs were analysed for allelic imbalance using a set of microsatellite markers on chromosomes 1, 13, 16 and 17, containing loci with known tumour suppressor genes. The two main regions, where more twin pairs than expected had lost the same allele, were located at 16qtel', including markers D16S393, D16S305 and D16S413, and at 17p13, distal to the p53 locus. Our results show that the monozygotic twin model can be used to suggest candidate regions of potential tumour suppressor genes, even with a limited number of twin pairs.  相似文献   

14.
Linkage analysis in familial breast and ovarian cancer and studies of allelic deletion in sporadic ovarian tumors have identified a region on chromosome 17q containing a candidate tumor-suppressor gene (referred to as BRCA1) of likely importance in ovarian carcinogenesis. We have examined normal and tumor DNA samples from 32 patients with sporadic and 8 patients with familial forms of the disease, for loss of heterozygosity (LOH) at 21 loci on chromosome 17 (7 on 17p and 14 on 17q). LOH on 17p was 55% (22/40) for informative 17pl3.1 and 17pl3.3 markers. When six polymorphic markers flanking the familial breast/ovarian cancer susceptibility locus on 17ql2-q21 were used, LOH was 58% (23/40), with one tumor showing telomeric retention. Evaluation of a set of markers positioned telomeric to BRCA1 resulted in the highest degree of LOH, 73% (29/40), indicating that a candidate locus involved in ovarian cancer may reside distal to BRCA1. Five of the tumors demonstrating allelic loss for 17q markers were from individuals with a strong family history of breast and ovarian cancer. More important, two of these tumors (unique patient number [UPN] 57 and UPN 79) retained heterozygosity for all informative markers spanning the BRCA1 locus but showed LOH at loci distal to but not including the anonymous markers CMM86 (D17S74) and 42D6 (D17S588), respectively. Deletion mapping of seven cases (two familial and five sporadic) showing limited LOH on 17q revealed a common region of deletion, distal to GH and proximal to D17S4, that spans −25 cM. These results suggest that a potential tumor-suppressor gene involved in both sporadic and familial ovarian cancer may reside on the distal portion of chromosome 17q and is distinct from the BRCA1 gene.  相似文献   

15.
p53 loss of heterozygosity (p53LOH) is frequently observed in Li-Fraumeni syndrome (LFS) patients who carry a mutant (Mut) p53 germ-line mutation. Here, we focused on elucidating the link between p53LOH and tumor development in stem cells (SCs). Although adult mesenchymal stem cells (MSCs) robustly underwent p53LOH, p53LOH in induced embryonic pluripotent stem cells (iPSCs) was significantly attenuated. Only SCs that underwent p53LOH induced malignant tumors in mice. These results may explain why LFS patients develop normally, yet acquire tumors in adulthood. Surprisingly, an analysis of single-cell sub-clones of iPSCs, MSCs and ex vivo bone marrow (BM) progenitors revealed that p53LOH is a bi-directional process, which may result in either the loss of wild-type (WT) or Mut p53 allele. Interestingly, most BM progenitors underwent Mutp53LOH. Our results suggest that the bi-directional p53LOH process may function as a cell-fate checkpoint. The loss of Mutp53 may be regarded as a DNA repair event leading to genome stability. Indeed, gene expression analysis of the p53LOH process revealed upregulation of a specific chromatin remodeler and a burst of DNA repair genes. However, in the case of loss of WTp53, cells are endowed with uncontrolled growth that promotes cancer.Heterozygosity, caused by a mutation in a single allele of a tumor suppressor gene (TSG), is one of the first steps in malignant transformation.1 Often, TSGs undergo loss of the wild-type (WT) allele, designated as loss of heterozygosity (LOH).2, 3, 4 Patients with the rare cancer predisposition Li-Fraumeni syndrome (LFS), carrying germ-line heterozygous p53 mutations,5 apparently exhibit normal development yet later in adult life develop a wide spectrum of tumors; predominantly sarcomas,6, 7, 8 where 40–60% of tumors exhibit WT p53 loss of heterozygosity (p53LOH).8Giving that cancer development could be associated with stemness deregulation challenges, the notion that the occurrence of p53LOH in stem cells (SCs) may contribute to the emergence of cancer SCs. Genomic fidelity is a hallmark of SCs.9 The genome of embryonic stem cells (ESCs) is extremely stable, whereas adult stem cells (ASCs) exhibit a less stable genome.10 Genetic deregulation in ASCs was shown to be associated with tumor development.11, 12, 13 Mesenchymal stem cells (MSCs) that acquire mutations in oncogenes/TSGs such as p53 may function as tumor-initiating cells leading to de-novo sarcomagensis.14, 15, 16, 17 Furthermore, MSCs isolated from young mice, aged in culture acquired clinically relevant p53 mutations.18 In all, these findings suggest a link between p53 inactivation in SCs and tumorigenesis.Although induced pluripotent stem cells (iPSCs) seemed to represent ESCs,19, 20 several studies questioned the assumption that iPSCs are as genomically stable as ESCs.21, 22, 23, 24 p53 was found to have a major role in the generation of iPSCs both in attenuating reprogramming and controlling the quality of the reprogrammed cells.25, 26 An additional role of p53 during reprogramming may be an indirect effect on cell proliferation27 and on the restriction of mesenchymal–epithelial transition during the early phases of reprogramming.28 Importantly, Mutp53 cells exhibiting a fully reprogrammed iPSC phenotype in vitro, form malignant tumors in vivo, instead of the benign teratomas induced by the WTp53-iPSCs.25 As p53 is the guardian of the genome, it is important to investigate how p53LOH would affect genome stability and tumorigenicity of iPSCs.The availability of in vitro SC p53LOH models (iPSCs, MSCs) can help decipher the role of p53LOH in cancer initiation. Indeed, the incidence of p53LOH was found to be extremely different between these SCs. Surprisingly, we found that reprograming of heterozygous p53 (HZp53) fibroblasts, which frequently undergo p53LOH, gave rise to iPSC clones, most of which retained their HZp53 status and exhibited features of normal WTp53-iPSCs. However, p53LOH process is robust in MSCs. Interestingly, single-cell sub-cloning of iPSCs, MSCs and ex vivo bone marrow (BM) progenitors revealed that, in addition to the loss of the WTp53, loss of the Mutp53 allele also takes place. Of note, this bi-directional p53LOH occurred in an age-dependent manner linking LOH to aging and tumorigenesis. Surprisingly, most of the p53LOH events in BM progenitors preferred the loss of the Mutp53 allele. Taken together, our results of a bi-directional p53LOH process, accompanied by a burst of DNA repair pathways, may suggest that p53LOH can be regarded as a DNA repair event. In the case of a DNA repair-orientated productive LOH process, where the Mutp53 allele is lost, cells are rescued of tumorigenesis. However, when the WTp53 allele is lost, cells become prone to tumor initiation.  相似文献   

16.
P53 is one of the most important tumor suppressor proteins in human cancers. Mutations in the TP53 gene are common features of malignant tumors and normally correlate to a more aggressive disease. In breast cancer, these gene alterations are present in approximately 20% of cases and are characteristically of missense type. In the present work we describe TP53 mutations in breast cancer biopsies and investigate whether wild and mutant p53 participate in protein aggregates formation in these breast cancer cases. We analyzed 88 biopsies from patients residing in the metropolitan area of Rio de Janeiro, and performed TP53 mutation screening using direct sequencing of exons 5-10. Seventeen mutations were detected, 12 of them were of missense type, 2 nonsenses, 2 deletions and 1 insertion. The presence of TP53 mutation was highly statistically associated to tumor aggressiveness of IDC cases, indicated here by Elston Grade III (p<0.0001). Paraffin embedded breast cancer tissues were analyzed for the presence of p53 aggregates through immunofluorescence co-localization assay, using anti-aggregate primary antibody A11, and anti-p53. Our results show that mutant p53 co-localizes with amyloid-like protein aggregates, depending on mutation type, suggesting that mutant p53 may form aggregates in breast cancer cells, in vivo.  相似文献   

17.
Somatic loss of heterozygosity (LOH) has been widely reported in breast cancer as a means of identifying putative tumor-suppressor genes. However, individual studies have rarely spanned more than a single chromosome, and the varying criteria used to declare LOH complicate efforts to formally differentiate regions of consistent versus sporadic (random) loss. We report here the compilation of an extensive database from 151 published LOH studies of breast cancer, with summary data from >15,000 tumors and primary allelotypes from >4,300 tumors. Allelic loss was evaluated at 1,168 marker loci, with large variation in the density of informative observations across the genome. Using studies in which primary allelotype information was available, we employed a likelihood-based approach with a formal chromosomal instability and selection model. The approach seeks direct evidence for preferential loss at each locus compared with nearby loci, accounts for heterogeneity across studies, and enables the direct comparison of candidate regions across the genome. Striking preferential loss was observed (in descending order of significance) in specific regions of chromosomes 7q, 16q, 13q, 17p, 8p, 21q, 3p, 18q, 2q, and 19p, as well as other regions, in many cases coinciding with previously identified candidate genes or known fragile sites. Many of these observations were not possible from any single LOH study, and our results suggest that many previously reported LOH results are not systematic or reproducible. Our approach provides a comparative framework for further investigation of regions exhibiting LOH and identifies broad genomic regions for which there exist few data.  相似文献   

18.
Mdm2 is a phosphoprotein that interacts with protein p53, inhibiting its activity. A serine located in position 17 of Mdm2, has been implicated in its phosphorylation process. We hypothesize that point mutations at serine 17 could block its phosphorylation and thereby increase the p53-Mdm2 interaction. This mechanism could increase the p53 degradation and cause a loss of the protective effect of p53 against tumorigenesis. This hypothesis was based on recent studies in vitro, demonstrating that when serine 17 is mutated, the DNA-dependent protein kinase, activated by genomic damage, is unable to phosphorylate it. Thus, we investigated whether structural point mutations at exon 3 of the Mdm2 gene, affecting codon 17, were present in 162 human primary tumors, 70 breast carcinomas, 14 bladder tumors, 18 colon adenocarcinomas and 60 testicular tumors. Direct sequencing of a fragment (204 bp) of exon 3 of the Mdm2 gene that contains the codon 17 showed no mutations at this position, independently of the presence or absence of p53 gene mutations in the same tumors. These results do not support the hypothesis that mutations in the Mdm2 gene at this level are involved in the tumorigenic process of human cancers.  相似文献   

19.
Summary The cause of Li-Fraumeni syndrome, a rare group syndrome of familial cancers, has recently been identified. Patients with this inherited condition are highly susceptible to specific neoplasms, including early-onset breast cancers. The available evidence links Li-Fraumeni syndrome to inherited mutations of the tumor suppressor gene p53. Moreover, somatically acquired p53 mutations and gene deletions are common feature in breast cancer of sporadic origin. These findings suggest that germline p53 mutations are important in familial and, possibly sporadic, breast tumors. We have therefore screened lymphocyte DNA from 19 unrelated bilateral cancer patients for germline p53 mutations in exons 5, 6, 7 and 8. We have however detected no germline mutations by means of the single-strand confirmation polymorphism technique in any of the lymphocyte DNAs examined and conclude that p53 mutations are not generally involved in bilateral breast cancer.  相似文献   

20.
Previous studies of follicular thyroid tumors have shown loss of heterozygosity (LOH) on the short arm of chromosome 3 in carcinomas, and on chromosome 10 in atypical adenomas and carcinomas, but not in common adenomas. We studied LOH on these chromosomal arms in 15 follicular thyroid carcinomas, 19 atypical follicular adenomas and 6 anaplastic (undifferentiated) carcinomas. Deletion mapping of chromosome 10 using 15 polymorphic markers showed that 15 (37.5%) of the tumors displayed LOH somewhere along the long arm. Thirteen of these tumors showed deletions involving the telomeric part of chromosome 10q, distal to D1OS 187. LOH on chromosome 3p was found in 8 (20%) cases. Seven of these also showed LOH on chromosome 10q. In eight cases LOH was seen on chromosome 10q but not 3p. In comparison, the retinoblastoma gene locus at chromosome 13q showed LOH in 22% of the tumors. Most of these also had deletions on chromosome 10q. The results indicate that a region at the telomeric part of 10q may be involved in progression of follicular thyroid tumors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号