首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

Catalytic domains of Type II restriction endonucleases (REases) belong to a few unrelated three-dimensional folds. While the PD-(D/E)XK fold is most common among these enzymes, crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI). Bioinformatics analyses supported by mutagenesis experiments suggested that some REases belong to the HNH fold (e.g. R.KpnI), and that a small group represented by R.Eco29kI belongs to the GIY-YIG fold. However, for a large fraction of REases with known sequences, the three-dimensional fold and the architecture of the active site remain unknown, mostly due to extreme sequence divergence that hampers detection of homology to enzymes with known folds.  相似文献   

2.
Type II restriction enzymes are commercially important deoxyribonucleases and very attractive targets for protein engineering of new specificities. At the same time they are a very challenging test bed for protein structure prediction methods. Typically, enzymes that recognize different sequences show little or no amino acid sequence similarity to each other and to other proteins. Based on crystallographic analyses that revealed the same PD-(D/E)XK fold for more than a dozen case studies, they were nevertheless considered to be related until the combination of bioinformatics and mutational analyses has demonstrated that some of these proteins belong to other, unrelated folds PLD, HNH, and GIY-YIG. As a part of a large-scale project aiming at identification of a three-dimensional fold for all type II REases with known sequences (currently approximately 1000 proteins), we carried out preliminary structure prediction and selected candidates for experimental validation. Here, we present the analysis of HpaI REase, an ORFan with no detectable homologs, for which we detected a structural template by protein fold recognition, constructed a model using the FRankenstein monster approach and identified a number of residues important for the DNA binding and catalysis. These predictions were confirmed by site-directed mutagenesis and in vitro analysis of the mutant proteins. The experimentally validated model of HpaI will serve as a low-resolution structural platform for evolutionary considerations in the subgroup of blunt-cutting REases with different specificities. The research protocol developed in the course of this work represents a streamlined version of the previously used techniques and can be used in a high-throughput fashion to build and validate models for other enzymes, especially ORFans that exhibit no sequence similarity to any other protein in the database.  相似文献   

3.
MOTIVATION: Restriction endonucleases (REases) and homing endonucleases (HEases) are biotechnologically important enzymes. Nearly all structurally characterized REases belong to the PD-(D/E)XK superfamily of nucleases, while most HEases belong to an unrelated LAGLIDADG superfamily. These two protein folds are typically associated with very different modes of protein-DNA recognition, consistent with the different mechanisms of action required to achieve high specificity. REases recognize short DNA sequences using multiple contacts per base pair, while HEases recognize very long sites using a few contacts per base pair, thereby allowing for partial degeneracy of the target sequence. Thus far, neither REases with the LAGLIDADG fold, nor HEases with the PD-(D/E)XK fold, have been found. RESULTS: Using protein fold recognition, we have identified the first member of the PD-(D/E)XK superfamily among homing endonucleases, a cyanobacterial enzyme I-Ssp6803I. We present a model of the I-Ssp6803I-DNA complex based on the structure of Type II restriction endonuclease R.BglI and predict the active site and residues involved in specific DNA sequence recognition by I-Ssp6803I. Our finding reveals a new unexpected evolutionary link between HEases and REases and suggests how PD-(D/E)XK nucleases may develop a 'HEase-like' way of interacting with the extended DNA sequence. This in turn may be exploited to study the evolution of DNA sequence specificity and to engineer nucleases with new substrate specificities.  相似文献   

4.
The restriction endonuclease (REase) R. HphI is a Type IIS enzyme that recognizes the asymmetric target DNA sequence 5'-GGTGA-3' and in the presence of Mg(2+) hydrolyzes phosphodiester bonds in both strands of the DNA at a distance of 8 nucleotides towards the 3' side of the target, producing a 1 nucleotide 3'-staggered cut in an unspecified sequence at this position. REases are typically ORFans that exhibit little similarity to each other and to any proteins in the database. However, bioinformatics analyses revealed that R.HphI is a member of a relatively big sequence family with a conserved C-terminal domain and a variable N-terminal domain. We predict that the C-terminal domains of proteins from this family correspond to the nuclease domain of the HNH superfamily rather than to the most common PD-(D/E)XK superfamily of nucleases. We constructed a three-dimensional model of the R.HphI catalytic domain and validated our predictions by site-directed mutagenesis and studies of DNA-binding and catalytic activities of the mutant proteins. We also analyzed the genomic neighborhood of R.HphI homologs and found that putative nucleases accompanied by a DNA methyltransferase (i.e. predicted REases) do not form a single group on a phylogenetic tree, but are dispersed among free-standing putative nucleases. This suggests that nucleases from the HNH superfamily were independently recruited to become REases in the context of RM systems multiple times in the evolution and that members of the HNH superfamily may be much more frequent among the so far unassigned REase sequences than previously thought.  相似文献   

5.

Background

The majority of experimentally determined crystal structures of Type II restriction endonucleases (REases) exhibit a common PD-(D/E)XK fold. Crystal structures have been also determined for single representatives of two other folds: PLD (R.BfiI) and half-pipe (R.PabI), and bioinformatics analyses supported by mutagenesis suggested that some REases belong to the HNH fold. Our previous bioinformatic analysis suggested that REase R.Eco29kI shares sequence similarities with one more unrelated nuclease superfamily, GIY-YIG, however so far no experimental data were available to support this prediction. The determination of a crystal structure of the GIY-YIG domain of homing endonuclease I-TevI provided a template for modeling of R.Eco29kI and prompted us to validate the model experimentally.

Results

Using protein fold-recognition methods we generated a new alignment between R.Eco29kI and I-TevI, which suggested a reassignment of one of the putative catalytic residues. A theoretical model of R.Eco29kI was constructed to illustrate its predicted three-dimensional fold and organization of the active site, comprising amino acid residues Y49, Y76, R104, H108, E142, and N154. A series of mutants was constructed to generate amino acid substitutions of selected residues (Y49A, R104A, H108F, E142A and N154L) and the mutant proteins were examined for their ability to bind the DNA containing the Eco29kI site 5'-CCGCGG-3' and to catalyze the cleavage reaction. Experimental data reveal that residues Y49, R104, E142, H108, and N154 are important for the nuclease activity of R.Eco29kI, while H108 and N154 are also important for specific DNA binding by this enzyme.

Conclusion

Substitutions of residues Y49, R104, H108, E142 and N154 predicted by the model to be a part of the active site lead to mutant proteins with strong defects in the REase activity. These results are in very good agreement with the structural model presented in this work and with our prediction that R.Eco29kI belongs to the GIY-YIG superfamily of nucleases. Our study provides the first experimental evidence for a Type IIP REase that does not belong to the PD-(D/E)XK or HNH superfamilies of nucleases, and is instead a member of the unrelated GIY-YIG superfamily.  相似文献   

6.
Restriction endonucleases (REases) are DNA-cleaving enzymes that have become indispensable tools in molecular biology. Type II REases are highly divergent in sequence despite their common structural core, function and, in some cases, common specificities towards DNA sequences. This makes it difficult to identify and classify them functionally based on sequence, and has hampered the efforts of specificity-engineering. Here, we define novel REase sequence motifs, which extend beyond the PD-(D/E)XK hallmark, and incorporate secondary structure information. The automated search using these motifs is carried out with a newly developed fast regular expression matching algorithm that accommodates long patterns with optional secondary structure constraints. Using this new tool, named Scan2S, motifs derived from REases with specificity towards GATC- and CGGG-containing DNA sequences successfully identify REases of the same specificity. Notably, some of these sequences are not identified by standard sequence detection tools. The new motifs highlight potential specificity-determining positions that do not fully overlap for the GATC- and the CCGG-recognizing REases and are candidates for specificity re-engineering.  相似文献   

7.
R.MvaI is a Type II restriction enzyme (REase), which specifically recognizes the pentanucleotide DNA sequence 5'-CCWGG-3' (W indicates A or T). It belongs to a family of enzymes, which recognize related sequences, including 5'-CCSGG-3' (S indicates G or C) in the case of R.BcnI, or 5'-CCNGG-3' (where N indicates any nucleoside) in the case of R.ScrFI. REases from this family hydrolyze the phosphodiester bond in the DNA between the 2nd and 3rd base in both strands, thereby generating a double strand break with 5'-protruding single nucleotides. So far, no crystal structures of REases with similar cleavage patterns have been solved. Characterization of sequence-structure-function relationships in this family would facilitate understanding of evolution of sequence specificity among REases and could aid in engineering of enzymes with new specificities. However, sequences of R.MvaI or its homologs show no significant similarity to any proteins with known structures, thus precluding straightforward comparative modeling. We used a fold recognition approach to identify a remote relationship between R.MvaI and the structure of DNA repair enzyme MutH, which belongs to the PD-(D/E)XK superfamily together with many other REases. We constructed a homology model of R.MvaI and used it to predict functionally important amino acid residues and the mode of interaction with the DNA. In particular, we predict that only one active site of R.MvaI interacts with the DNA target at a time, and the cleavage of both strands (5'-CCAGG-3' and 5'-CCTGG-3') is achieved by two independent catalytic events. The model is in good agreement with the available experimental data and will serve as a template for further analyses of R.MvaI, R.BcnI, R.ScrFI and other related enzymes.  相似文献   

8.
The PD-(D/E)XK nuclease domains, initially identified in type II restriction enzymes, serve as models for studying aspects of protein-DNA interactions, mechanisms of phosphodiester hydrolysis, and provide indispensable tools for techniques in genetic engineering and molecular medicine. However, the low degree of amino acid conservation hampers the possibility of identification of PD-(D/E)XK superfamily members based solely on sequence comparisons. In several proteins implicated in DNA recombination and repair the restriction enzyme-like nuclease domain has been found only after the corresponding structures were determined experimentally. Here, we identified highly diverged variants of the PD-(D/E)XK domain in many proteins and open reading frames using iterative database searches and progressive, structure-guided alignment of sequence profiles. We predicted the possible cellular function for many hypothetical proteins based on their relative similarity to characterized nucleases or observed presence of additional domains. We also identified the nuclease domain in genuine recombinases and restriction enzymes, whose homology to other PD-(D/E)XK enzymes has not been demonstrated previously. The first superfamily-wide comparative analysis, not limited to nucleases of known structure, will guide cloning and characterization of novel enzymes and planning new experiments to better understand those already studied.  相似文献   

9.

Background  

PD-(D/E)XK nucleases constitute a large and highly diverse superfamily of enzymes that display little sequence similarity despite retaining a common core fold and a few critical active site residues. This makes identification of new PD-(D/E)XK nuclease families a challenging task as they usually escape detection with standard sequence-based methods. We developed a modified transitive meta profile search approach and to consider the structural diversity of PD-(D/E)XK nuclease fold more thoroughly we analyzed also lower than threshold Meta-BASIC hits to select potentially correct predictions placed among unreliable or incorrect ones.  相似文献   

10.
Guzzo CR  Nagem RA  Barbosa JA  Farah CS 《Proteins》2007,69(3):644-651
The YaeQ family of proteins are found in many Gram-negative and a few Gram-positive bacteria. We have determined the first structure of a member of the YaeQ family by X-ray crystallography. Comparisons with other structures indicate that YaeQ represents a new compact protein fold built around a variation of the PD-(D/E)XK nuclease motif found in type II endonucleases and enzymes involved in DNA replication, repair, and recombination. We show that catalytically important residues in the PD-(D/E)XK nuclease superfamily are spatially conserved in YaeQ and other highly conserved YaeQ residues may be poised to interact with nucleic acid structures.  相似文献   

11.
Type II restriction endonucleases (REases) are deoxyribonucleases that cleave DNA sequences with remarkable specificity. Type II REases are highly divergent in sequence as well as in topology, i.e. the connectivity of secondary structure elements. A widely held assumption is that a structural core of five beta-strands flanked by two alpha-helices is common to these enzymes. We introduce a systematic procedure to enumerate secondary structure elements in an unambiguous and reproducible way, and use it to analyze the currently available X-ray structures of Type II REases. Based on this analysis, we propose an alternative definition of the core, which we term the alphabetaalpha-core. The alphabetaalpha-core includes the most frequently observed secondary structure elements and is not a sandwich, as it consists of a five-strand beta-sheet and two alpha-helices on the same face of the beta-sheet. We use the alphabetaalpha-core connectivity as a basis for grouping the Type II REases into distinct structural classes. In these new structural classes, the connectivity correlates with the angles between the secondary structure elements and with the cleavage patterns of the REases. We show that there exists a substructure of the alphabetaalpha-core, namely a common conserved core, ccc, defined here as one alpha-helix and four beta-strands common to all Type II REase of known structure.  相似文献   

12.
We describe two uncommon roles for Zn2+ in enzyme KpnI restriction endonuclease (REase). Among all of the REases studied, KpnI REase is unique in its DNA binding and cleavage characteristics. The enzyme is a poor discriminator of DNA sequences, cleaving DNA in a promiscuous manner in the presence of Mg2+. Unlike most Type II REases, the active site of the enzyme comprises an HNH motif, which can accommodate Mg2+, Mn2+, or Ca2+. Among these metal ions, Mg2+ and Mn2+ induce promiscuous cleavage by the enzyme, whereas Ca2+-bound enzyme exhibits site-specific cleavage. Examination of the sequence of the protein revealed the presence of a zinc finger CCCH motif rarely found in proteins of prokaryotic origin. The zinc binding motif tightly coordinates zinc to provide a rigid structural framework for the enzyme needed for its function. In addition to this structural scaffold, another atom of zinc binds to the active site to induce high fidelity cleavage and suppress the Mg2+- and Mn2+-mediated promiscuous behavior of the enzyme. This is the first demonstration of distinct structural and catalytic roles for zinc in an enzyme, suggesting the distinct origin of KpnI REase.  相似文献   

13.
PD-(D/E)XK nucleases, initially represented by only Type II restriction enzymes, now comprise a large and extremely diverse superfamily of proteins. They participate in many different nucleic acids transactions including DNA degradation, recombination, repair and RNA processing. Different PD-(D/E)XK families, although sharing a structurally conserved core, typically display little or no detectable sequence similarity except for the active site motifs. This makes the identification of new superfamily members using standard homology search techniques challenging. To tackle this problem, we developed a method for the detection of PD-(D/E)XK families based on the binary classification of profile-profile alignments using support vector machines (SVMs). Using a number of both superfamily-specific and general features, SVMs were trained to identify true positive alignments of PD-(D/E)XK representatives. With this method we identified several PFAM families of uncharacterized proteins as putative new members of the PD-(D/E)XK superfamily. In addition, we assigned several unclassified restriction enzymes to the PD-(D/E)XK type. Results show that the new method is able to make confident assignments even for alignments that have statistically insignificant scores. We also implemented the method as a freely accessible web server at http://www.ibt.lt/bioinformatics/software/pdexk/.  相似文献   

14.
Several unique protein folds that catalyze the hydrolysis of phosphodiester bonds have arisen independently in nature, including the PD(D/E)XK superfamily (typified by type II restriction endonucleases and many recombination and repair enzymes) and the HNH superfamily (found in an equally wide array of enzymes, including bacterial colicins and homing endonucleases). Whereas the identity and position of catalytic residues within the PD(D/E)XK superfamily are highly variable, the active sites of HNH nucleases are much more strongly conserved. In this study, the ability of an HNH nuclease to tolerate a mutation of its most conserved catalytic residue (its histidine general base), and the mechanism of the most active enzyme variant, were characterized. Conversion of this residue into several altered chemistries, glutamine, lysine, or glutamate, resulted in measurable activity. The histidine to glutamine mutant displays the highest residual activity and a pH profile similar to that of the wild-type enzyme. This activity is dependent on the presence of a neighboring imidazole ring, which has taken over as a less efficient general base for the reaction. This result implies that mutational pathways to alternative HNH-derived catalytic sites do exist but are not as extensively or successfully diverged or reoptimized in nature as variants of the PD(D/E)XK nuclease superfamily. This is possibly due to multiple steric constraints placed on the compact HNH motif, which is simultaneously involved in protein folding, DNA binding, and catalysis, as well as the use of a planar, aromatic imidazole group as a general base.  相似文献   

15.
Rare-cutting restriction enzymes are important tools in genome analysis. We report here the crystal structure of SdaI restriction endonuclease, which is specific for the 8 bp sequence CCTGCA/GG ("/" designates the cleavage site). Unlike orthodox Type IIP enzymes, which are single domain proteins, the SdaI monomer is composed of two structural domains. The N domain contains a classical winged helix-turn-helix (wHTH) DNA binding motif, while the C domain shows a typical restriction endonuclease fold. The active site of SdaI is located within the C domain and represents a variant of the canonical PD-(D/E)XK motif. SdaI determinants of sequence specificity are clustered on the recognition helix of the wHTH motif at the N domain. The modular architecture of SdaI, wherein one domain mediates DNA binding while the other domain is predicted to catalyze hydrolysis, distinguishes SdaI from previously characterized restriction enzymes interacting with symmetric recognition sequences.  相似文献   

16.
Thus far, identification of functionally important residues in Type II restriction endonucleases (REases) has been difficult using conventional methods. Even though known REase structures share a fold and marginally recognizable active site, the overall sequence similarities are statistically insignificant, unless compared among proteins that recognize identical or very similar sequences. Bsp6I is a Type II REase, which recognizes the palindromic DNA sequence 5′GCNGC and cleaves between the cytosine and the unspecified nucleotide in both strands, generating a double-strand break with 5′-protruding single nucleotides. There are no solved structures of REases that recognize similar DNA targets or generate cleavage products with similar characteristics. In straightforward comparisons, the Bsp6I sequence shows no significant similarity to REases with known structures. However, using a fold-recognition approach, we have identified a remote relationship between Bsp6I and the structure of PvuII. Starting from the sequence–structure alignment between Bsp6I and PvuII, we constructed a homology model of Bsp6I and used it to predict functionally significant regions in Bsp6I. The homology model was supported by site-directed mutagenesis of residues predicted to be important for dimerization, DNA binding and catalysis. Completing the picture of sequence–structure–function relationships in protein superfamilies becomes an essential task in the age of structural genomics and our study may serve as a paradigm for future analyses of superfamilies comprising strongly diverged members with little or no sequence similarity.  相似文献   

17.

Background

Restriction enzymes (REases) are commercial reagents commonly used in recombinant DNA technologies. They are attractive models for studying protein-DNA interactions and valuable targets for protein engineering. They are, however, extremely divergent: the amino acid sequence of a typical REase usually shows no detectable similarities to any other proteins, with rare exceptions of other REases that recognize identical or very similar sequences. From structural analyses and bioinformatics studies it has been learned that some REases belong to at least four unrelated and structurally distinct superfamilies of nucleases, PD-DxK, PLD, HNH, and GIY-YIG. Hence, they are extremely hard targets for structure prediction and homology-based inference of sequence-function relationships and the great majority of REases remain structurally and evolutionarily unclassified.

Results

SfiI is a REase which recognizes the interrupted palindromic sequence 5'GGCCNNNN^NGGCC3' and generates 3 nt long 3' overhangs upon cleavage. SfiI is an archetypal Type IIF enzyme, which functions as a tetramer and cleaves two copies of the recognition site in a concerted manner. Its sequence shows no similarity to other proteins and nothing is known about the localization of its active site or residues important for oligomerization. Using the threading approach for protein fold-recognition, we identified a remote relationship between SfiI and BglI, a dimeric Type IIP restriction enzyme from the PD-DxK superfamily of nucleases, which recognizes the 5'GCCNNNN^NGGC3' sequence and whose structure in complex with the substrate DNA is available. We constructed a homology model of SfiI in complex with its target sequence and used it to predict residues important for dimerization, tetramerization, DNA binding and catalysis.

Conclusions

The bioinformatics analysis suggest that SfiI, a Type IIF enzyme, is more closely related to BglI, an "orthodox" Type IIP restriction enzyme, than to any other REase, including other Type IIF REases with known structures, such as NgoMIV. NgoMIV and BglI belong to two different, very remotely related branches of the PD-DxK superfamily: the α-class (EcoRI-like), and the β-class (EcoRV-like), respectively. Thus, our analysis provides evidence that the ability to tetramerize and cut the two DNA sequences in a concerted manner was developed independently at least two times in the evolution of the PD-DxK superfamily of REases. The model of SfiI will also serve as a convenient platform for further experimental analyses.  相似文献   

18.
M Zaremba  G Sasnauskas  V Siksnys 《FEBS letters》2012,586(19):3324-3329
Type II restriction endonucleases (REases) exist in multiple oligomeric forms. The tetrameric REases have two DNA binding interfaces and must synapse two recognition sites to achieve cleavage. It was hypothesised that binding of two recognition sites by tetrameric enzymes contributes to their fidelity. Here, we experimentally determined the fidelity for Bse634I REase in different oligomeric states. Surprisingly, we find that tetramerisation does not increase REase fidelity in comparison to the dimeric variant. Instead, an inherent ability to act concertedly at two sites provides tetrameric REase with a safety-catch to prevent host DNA cleavage if a single unmodified site becomes available.  相似文献   

19.
Using algorithms for protein sequence analysis we predict that some of the canonical type II and type IIS restriction enzymes have an active site with a substantially different architecture and fold from the "typical" PD-(D/E)xK superfamily. These results suggest that they are related to nucleases from the HNH and GIY-YIG superfamilies.  相似文献   

20.
Proteins belonging to PD-(D/E)XK phosphodiesterases constitute a functionally diverse superfamily with representatives involved in replication, restriction, DNA repair and tRNA–intron splicing. Their malfunction in humans triggers severe diseases, such as Fanconi anemia and Xeroderma pigmentosum. To date there have been several attempts to identify and classify new PD-(D/E)KK phosphodiesterases using remote homology detection methods. Such efforts are complicated, because the superfamily exhibits extreme sequence and structural divergence. Using advanced homology detection methods supported with superfamily-wide domain architecture and horizontal gene transfer analyses, we provide a comprehensive reclassification of proteins containing a PD-(D/E)XK domain. The PD-(D/E)XK phosphodiesterases span over 21 900 proteins, which can be classified into 121 groups of various families. Eleven of them, including DUF4420, DUF3883, DUF4263, COG5482, COG1395, Tsp45I, HaeII, Eco47II, ScaI, HpaII and Replic_Relax, are newly assigned to the PD-(D/E)XK superfamily. Some groups of PD-(D/E)XK proteins are present in all domains of life, whereas others occur within small numbers of organisms. We observed multiple horizontal gene transfers even between human pathogenic bacteria or from Prokaryota to Eukaryota. Uncommon domain arrangements greatly elaborate the PD-(D/E)XK world. These include domain architectures suggesting regulatory roles in Eukaryotes, like stress sensing and cell-cycle regulation. Our results may inspire further experimental studies aimed at identification of exact biological functions, specific substrates and molecular mechanisms of reactions performed by these highly diverse proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号