首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 407 毫秒
1.
Reactive oxygen species (ROS) and Ca(2+) signals are closely associated with the pathogenesis of cardiac hypertrophy. However, the cause and effect of the two signals in cardiac hypertrophy remain to be clarified. We extend our recent report by investigating a potential interaction between ROS and Ca(2+) signals utilizing in vitro and in vivo angiotensin II (ANG II)-induced cardiac hypertrophy models. ANG II-induced initial Ca(2+) transients mediated by inositol trisphosphate (IP(3)) triggered initial ROS production in adult rat cardiomyocytes. The ROS generated by activation of the NAD(P)H oxidase complex via Rac1 in concert with Ca(2+) activates ADP-ribosyl cyclase to generate cyclic ADP-ribose (cADPR). This messenger-mediated Ca(2+) signal further augments ROS production, since 2,2'-dihydroxyazobenzene, an ADP-ribosyl cyclase inhibitor, or 8-Br-cADPR, an antagonistic analog of cADPR, abolished further ROS production. Data from short hairpin RNA (shRNA)-mediated knockdown of Akt1 and p47(phox) demonstrated that Akt1 is the upstream key molecule responsible for the initiation of Ca(2+) signal that activates p47(phox) to generate ROS in cardiomyocytes. Nuclear translocation of nuclear factor of activated T-cell in cardiomyocytes was significantly suppressed by treatment with NAD(P)H oxidase inhibitors as well as by shRNA against Akt1 and p47(phox). Our results suggest that in cardiomyocytes Ca(2+) and ROS messengers generated by ANG II amplify the initial signals in a cooperative manner, thereby leading to cardiac hypertrophy.  相似文献   

2.
Abnormal vascular smooth muscle cell (VSMC) growth plays a key role in the pathogenesis of hypertension and atherosclerosis. Angiotensin II (ANG II) elicits a hypertrophic growth response characterized by an increase in protein synthesis without cell proliferation. The present study investigated the role of the nonreceptor tyrosine kinase PYK2 in the regulation of ANG II-induced signaling pathways that mediate VSMC growth. Using coimmunoprecipitation analysis, the role of PYK2 as an upstream regulator of both extracellular signal-related kinase (ERK) 1/2 mitogen-activated protein kinase and phosphatidylinositol 3-kinase (PI 3-kinase) pathways was examined in cultured rat aortic VSMC. ANG II (100 nM) promoted the formation of a complex between PYK2 and the ERK1/2 regulators Shc and Grb2. ANG II caused a rapid and Ca(2+)-dependent tyrosine phosphorylation of the adapter molecule p130Cas, which coimmunoprecipitated both PYK2 and PI 3-kinase in ANG II-treated VSMC. Complex formation between PI 3-kinase and p130Cas and PYK2 was associated with a rapid phosphorylation of the ribosomal p70(S6) kinase in a Ca(2+)- and tyrosine kinase-dependent manner. These data suggest that PYK2 is an important regulator of multiple signaling pathways involved in ANG II-induced VSMC growth.  相似文献   

3.
Chronic activation of the angiotensin II (ANG II) type 1 receptor (AT-1R) is critical in the development of chronic kidney disease. ANG II activates mesangial cells (MCs) and stimulates the synthesis of extracellular matrix components. To determine the molecular mechanisms underlying the induction of MC collagen, a mouse mesangial cell line MES-13 was employed. ANG II treatment induced an increase in collagen synthesis, which was abrogated by co-treatment with losartan (an AT-1R antagonist), wortmannin (a phosphoinositide 3-kinase (PI3K) inhibitor), an Akt inhibitor, and stable transfection of dominant negative-Akt1. ANG II induced a significant increase in PI3K activity, which was abolished by co-treatment with losartan or 2',5'-dideoxyadenosine (2',5'-DOA, an adenylyl cyclase inhibitor) but not by PD123319 (an AT-2R antagonist) or H89 (a protein kinase A (PKA) inhibitor). The Epac (exchange protein directly activated by cAMP)-specific cAMP analog, 8-pHPT-2'-O-Me-cAMP, significantly increased PI3K activity, whereas a PKA-specific analog, 6-benzoyladenosine-cAMP, showed no effect. The ANG II-induced increase in PI3K activity was also blocked by co-treatment with PP2, an Src inhibitor, or AG1478, an epidermal growth factor receptor (EGFR) antagonist. ANG II induced phosphorylation of Akt and p70S6K and EGFR, which was abrogated by knockdown of c-Src by small interference RNA. Knockdown of Src also effectively abolished ANG II-induced collagen synthesis. Conversely, stable transfection of a constitutively active Src mutant enhanced basal PI3K activity and collagen production, which was abrogated by AG1478 but not by 2',5'-DOA. Moreover, acute treatment with ANG II significantly increased Src activity, which was abrogated with co-treatment of 2',5'-DOA. Taken together, these results suggest that ANG II induces collagen synthesis in MCs by activating the ANG II/AT-1R-EGFR-PI3K pathway. This transactivation is dependent on cAMP/Epac but not on PKA. Src kinase plays a pivotal role in this signaling pathway between cAMP and EGFR. This is the first demonstration that an AT1R-PI3K/Akt crosstalk, along with transactivation of EGFR, mediates ANG II-induced collagen synthesis in MCs.  相似文献   

4.
Caveolae are identifiable plasma membrane invaginations. The main structural proteins of caveolae are the caveolins. There are three caveolins expressed in mammals, designated Cav-1, Cav-2, and Cav-3. It has been postulated that Cav-1 acts as a scaffold protein for signaling proteins; these include ion channels, enzymes, and other ligand receptors like membrane-associated estrogen receptor (ER)alpha or ERbeta. Caveolae-associated membrane proteins are involved in regulating some of the rapid estrogenic effects of 17beta-estradiol. One important system related to the activity of ERalpha and caveolae is the renin-angiotensin system. Angiotensin II (ANG II) has numerous actions in vascular smooth muscle, including modulation of vasomotor tone, cell growth, apoptosis, phosphatidylinositol 3-kinase (PI3K)/Akt activation, and others. Many proteins associated with caveolae are in close relation with the scaffolding domain of Cav-1 (82-101 amino acid residues). It has been proposed that this peptide may acts as a kinase inhibitor. Therefore, to explore the ability of Cav-1 scaffolding peptide (CSP-1) to regulate ANG II function and analyze the relationship between ERalpha and ANG II type 1 and 2 (AT(1) and AT(2)) receptors, we decided to study the effects of CSP-1 on ANG II-induced intracellular Ca(2+) kinetics and the effect of 17beta-estradiol on this modulation using human smooth muscle cells in culture, intracellular Ca(2+) concentration measurements, immuno- and double-immunocytochemistry confocal analysis of receptor expression, immunoblot analysis, and immunocoprecipitation assays to demonstrate coexpression. We hypothesized that CSP-1 inhibits ANG II-mediated increases in intracellular Ca(2+) concentrations by interfering with intracellular signaling including the PI3K/Akt pathway. We also hypothesize that AT(2) receptors associate with Cav-1. Our results show that there is a close association of AT(1), AT(2), and ERalpha with Cav-1 in human arterial smooth muscle cells in culture. CSP-1 inhibits ANG II-induced intracellular signaling.  相似文献   

5.
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger cyclic ADP-ribose (cADPR) from beta-NAD(+). In this study, we examined the molecular basis of which beta-adrenergic receptor (betaAR) stimulation induces cADPR formation and characterized cardiac ADPR-cyclase. The results revealed that isoproterenol-mediated increase of [Ca(2+)](i) in rat cardiomyocytes was blocked by pretreatment with a cADPR antagonistic derivative 8-Br-cADPR, a PKA inhibitor H89 or high concentration of ryanodine. Moreover, incubation of ventricular lysates with isoproterenol, forskolin or cAMP resulted in activation of ADPR-cyclase that was inhibited by pretreatment with H89. Supporting the observations, the cADPR antagonist and H89 blocked 8-CPT-cAMP, a cell-permeant cAMP analog-induced increase in [Ca(2+)](i) but not cGMP-mediated increase. Characterization of partially purified cardiac ADPR-cyclase showed a molecular mass of approximately 42 kDa and no cross-activity with CD38 antibodies, and the enzyme activity was inhibited by Zn(2+) but not dithiothreitol. Microinjection of the enzyme into rat cardiomyocytes increased the level of [Ca(2+)](i) in a concentration-dependent manner. The enzyme-mediated increase of [Ca(2+)](i) was blocked by the cADPR antagonist. These findings suggest that betaAR-mediated regulation of [Ca(2+)](i) in rat cardiomyocytes is primed by activation of cardiac ADPR-cyclase via cAMP/PKA signaling and that cardiac ADPR-cyclase differs from CD38 in biochemical and immunological properties.  相似文献   

6.
7.
In addition to well-documented vascular growth-promoting effects, ANG II exerts proapoptotic effects that are poorly understood. IGF-1 is a potent survival factor for human vascular smooth muscle cells (hVSMC), and its antiapoptotic effects are mediated via the IGF-1 receptor (IGF-1R) through a signaling pathway involving phosphatidylinositol 3-kinase and Akt. We hypothesized that there would be cross talk between ANG II proapoptotic effects and IGF-1 survival effects in hVSMC. To investigate ANG II-induced apoptosis and the potential involvement of IGF-1, we exposed quiescent and nonquiescent hVSMC to ANG II. ANG II induced apoptosis only in nonquiescent cells but stimulated hypertrophy in quiescent cells. ANG II-induced apoptosis was characterized by marked inhibition of Akt phosphorylation and stimulation of membrane Fas ligand (FasL) expression, caspase-8 activation, and a reduction in soluble FasL expression. Adenovirally mediated overexpression of Akt rescued hVSMC from ANG II-induced apoptosis. IGF-1R activation increased Akt phosphorylation and soluble FasL expression, and these effects were completely blocked by coincubating hVSMC with ANG II. In conclusion, ANG II-induced apoptosis of hVSMC is characterized by marked inhibition of Akt phosphorylation and stimulation of an extrinsic cell death signaling pathway via upregulation of membrane FasL expression, caspase-8 activation, and a reduction in soluble FasL expression. Furthermore, ANG II antagonizes the antiapoptotic effect of IGF-1 by blocking its ability to increase Akt phosphorylation and soluble FasL. These findings provide novel insights into ANG II-induced apoptotic signaling and have significant implication for understanding ANG II-induced remodeling in hypertension and atherosclerosis.  相似文献   

8.
Angiotensin II (ANG II) promotes vascular smooth muscle cell (VSMC) growth, stimulates Ca(2+)-calmodulin (CaM)-dependent kinase II (CaMKII), and activates cytosolic Ca(2+)-dependent phospholipase A2 (cPLA2), which releases arachidonic acid (AA). ANG II also generates H2O2 and activates Akt, which have been implicated in ANG II actions in VSMC. This study was conducted to investigate the relationship of these signaling molecules to Akt activation in rat aortic VSMC. ANG II increased Akt activity, as measured by its phosphorylation at serine-473. ANG II (200 nM)-induced Akt phosphorylation was decreased by extracellular Ca2+ depletion and calcium chelator EGTA and inhibitors of CaM [N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide] and CaMKII [(2-[N-(2-hydroxyethyl)]-N-(4-me-thoxybenzenesulfonyl)]amino-N-(4-chlorocinnamyl)-N-methylbenzyl-amine)]. cPLA2 inhibitor pyrrolidine-1, antisense oligonucleotide, and retroviral small interfering RNA also attenuated ANG II-induced Akt phosphorylation. AA increased Akt phosphorylation, and AA metabolism inhibitor 5,8,11,14-eicosatetraynoic acid (ETYA) blocked ANG II- and AA-induced Akt phosphorylation (199.03 +/- 27.91% with ANG II and 110.18 +/- 22.40% with ETYA + ANG II; 405.00 +/- 86.22% with AA and 153.97 +/- 63.26% with ETYA + AA). Inhibitors of lipoxygenase (cinnamyl-3,4-dihydroxy-alpha-cyanocinnamate) and cytochrome P-450 (ketoconazole and 17-octadecynoic acid), but not cyclooxygenase (indomethacin), attenuated ANG II- and AA-induced Akt phosphorylation. Furthermore, 5(S)-, 12(S)-, 15(S)-, and 20-hydroxyeicosatetraenoic acids and 5,6-, 11,12-, and 14,15-epoxyeicosatrienoic acids increased Akt phosphorylation. Catalase inhibited ANG II-increased H2O2 production but not Akt phosphorylation. Oleic acid, which also increased H2O2 production, did not cause Akt phosphorylation. These data suggest that ANG II-induced Akt activation in VSMC is mediated by AA metabolites, most likely generated via lipoxygenase and cytochrome P-450 consequent to AA released by CaMKII-activated cPLA2 and independent of H2O2 production.  相似文献   

9.
CD38 is an ADP-ribosyl cyclase, producing a potent Ca(2+) mobilizer cyclic ADP-ribose (cADPR). In this study, we have investigated a role of CD38 and its regulation through interleukin-8 (IL8) signaling in lymphokine-activated killer (LAK) cells. Incubation of LAK cells with IL8 resulted in an increase of cellular cADPR level and a rapid rise of intracellular Ca(2+) concentration ([Ca(2+)](i)), which was sustained for a long period of time (>10 min). Preincubation of an antagonistic cADPR analog, 8-Br-cADPR (8-bromo-cyclic adenosine diphosphate ribose), abolished the sustained Ca(2+) signal only but not the initial Ca(2+) rise. An inositol 1,4,5-trisphosphate (IP(3)) receptor antagonist blocked both Ca(2+) signals. Interestingly, the sustained Ca(2+) rise was not observed in the absence of extracellular Ca(2+). Functional CD38-null (CD38(-)) LAK cells showed the initial rapid increase of [Ca(2+)](i) but not the sustained Ca(2+) rise in response to IL8 treatment. An increase of cellular cADPR level by cGMP analog, 8-pCPT-cGMP (8-(4-chlorophenylthio)-guanosine-3',5'-cyclic monophosphate), but not cAMP analog or phorbol 12-myristate 13-acetate was observed. IL8 treatment resulted in the increase of cGMP level that was inhibited by the IP(3) receptor blocker but not a protein kinase C inhibitor. cGMP-mediated Ca(2+) rise was blocked by 8-Br-cADPR. In addition, IL8-mediated LAK cell migration was inhibited by 8-Br-cADPR and a protein kinase G inhibitor. Consistent with these observations, IL8-induced migration of CD38(-) LAK cells was not observed. However, direct application of cADPR or 8-pCPT-cGMP stimulated migration of CD38(-) cells. These results demonstrate that CD38 is stimulated by sequential activation of IL8 receptor, IP(3)-mediated Ca(2+) rise, and cGMP/protein kinase G and that CD38 plays an essential role in IL8-induced migration of LAK cells.  相似文献   

10.
Regulation of the PHAS-1-eukaryotic initiation factor-4E (eIF4E) complex is the rate-limiting step in the initiation of protein synthesis. This study characterized the upstream signaling pathways that mediate ANG II-dependent phosphorylation of PHAS-1 and eIF4E in vascular smooth muscle. ANG II-dependent PHAS-1 phosphorylation was maximal at 10 min (2.47 ± 0.3 fold vs. control). This effect was completely blocked by the specific inhibitors of phosphatidylinositol 3-kinase (PI3-kinase, LY-294002), mammalian target of rapamycin, and extracellular signal-regulated kinase 1/2 (ERK1/2, U-0126) or by a recombinant adenovirus encoding dominant-negative Akt. PHAS-1 phosphorylation was followed by dissociation of eIF4E. Increased ANG II-induced eIF4E phosphorylation was observed at 45 min (2.63 ± 0.5 fold vs. control), was maximal at 90 min (3.38 ± 0.3 fold vs. control), and was sustained at 2 h. This effect was blocked by inhibitors of the ERK1/2 and p38 mitogen-activated protein (MAP) kinase pathways, but not by PI3-kinase inhibition, and was dependent on PKC, intracellular Ca2+, and tyrosine kinases. Downregulation of proline-rich tyrosine kinase 2 (PYK2) by antisense oligonucleotides led to a near-complete inhibition of PHAS-1 and eIF4E phosphorylation in response to ANG II. Therefore, PYK2 represents a proximal signaling intermediate that regulates ANG II-induced vascular smooth muscle cell protein synthesis via regulation of the PHAS-1-eIF4E complex. tyrosine kinase; antisense oligonucleotides; protein synthesis  相似文献   

11.
The present study evaluated the effects of peroxisome proliferator-activated receptor (PPAR)-gamma activators on ANG II-induced signaling pathways and cell growth. Vascular smooth muscle cells (VSMC) derived from rat mesenteric arteries were treated with ANG II, with/without the AT1 receptor blocker valsartan or the AT2 receptor blocker PD-123319, after pretreatment for 24 h with the PPAR-gamma activators 15-deoxy-delta(12,14)-prostaglandin J2 (15d-PGJ2) or rosiglitazone. Both 15d-PGJ2 and rosiglitazone decreased ANG II-induced DNA synthesis. Rosiglitazone treatment increased nuclear PPAR-gamma expression and activity in VSMC. However, rosiglitazone did not alter expression of PPAR-alpha/beta, ERK 1/2, Akt, or ANG II receptors. 15d-PGJ2 and rosiglitazone decreased ERK 1/2 and Akt peak activity, both of which were induced by ANG II via the AT1 receptor. Rosiglitazone inhibited ANG II-enhanced phosphorylation of eukaryotic initiation factor 4E-binding protein 1 (4E-BP1), as well as Src homology (SH) 2-containing inositol phosphatase 2 (SHIP2). PPAR-gamma activation reduced ANG II-induced growth associated with inhibition of ERK 1/2, Akt, 4E-BP1, and SHIP2. Modulation of these pathways by PPAR-gamma activators may contribute to regression of vascular remodeling in hypertension.  相似文献   

12.
Angiotensin (ANG) IV stimulation of pulmonary artery (PA) endothelial cells (PAECs) but not of PA smooth muscle cells (PASMCs) resulted in significant increased production of cGMP in PASMCs. ANG IV receptors are not present in PASMCs, and PASMC nitric oxide synthase activity was not altered by ANG IV. ANG IV caused a dose-dependent vasodilation of U-46619-precontracted endothelium-intact but not endothelium-denuded PAs, and this response was blocked by the ANG IV receptor antagonist divalinal ANG IV but not by ANG II type 1 and 2 receptor blockers. ANG IV receptor-mediated increased intracellular Ca(2+) concentration ([Ca(2+)](i)) release from intracellular stores in PAECs was blocked by divalinal ANG IV as well as by the G protein, phospholipase C, and phosphoinositide (PI) 3-kinase inhibitors guanosine 5'-O-(2-thiodiphosphate), U-73122, and LY-294002, respectively, and was regulated by both PI 3-kinase- and ryanodine-sensitive Ca(2+) stores. Basal and ANG IV-mediated vasorelaxation of endothelium-denuded PAs was restored by exogenous PAECs but not by exogenous PAECs pretreated with the intracellular Ca(2+) chelator 1,2-bis(o-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid-AM. These results demonstrate that ANG IV-mediated vasodilation of PAs is endothelium dependent and regulated by [Ca(2+)](i) release through receptor-coupled G protein-phospholipase C-PI 3-kinase signaling mechanisms.  相似文献   

13.
The calcium-sensing receptor (CaR) is a G protein-coupled receptor that regulates physiological processes including Ca(2+) metabolism, Na(+), Cl(-), K(+), and H(2)0 balance, and the growth of some epithelial cells through diverse signaling pathways. Although many effects of CaR are mediated by the heterotrimeric G proteins Galpha(q) and Galpha(i), not all signaling pathways regulated by CaR have been identified. We used human embryonic kidney (HEK)-293 cells that stably express human CaR to study the regulation of inositol lipid metabolism by CaR. The nonfunctional mutant CaR(R796W) was used as a negative control. We found that CaR regulates phosphatidylinositol (PI) 4-kinase, the first step in inositol lipid biosynthesis. In cells pretreated with to inhibit phospholipase C activation and to block the degradation of PI 4,5-bisphosphate to form [(3)H]inositol trisphosphate (IP(3)), CaR stimulated the accumulation of [(3)H]PI monophosphate (PIP). Additionally, wortmannin, an inhibitor of both PI 3-kinase and type III PI 4-kinase, blocked CaR-stimulated accumulation of [(3)H]PIP and inhibited [(3)H]IP(3) production. CaR-stimulated inositol lipid synthesis was attributable to PI 4-kinase and not PI 3-kinase because CaR did not activate Akt, a downstream target of PI 3-kinase. CaR associates with PI 4-kinase based on the findings that CaR and the 110-kDa PI 4-kinase beta can be co-immunoprecipitated with antibodies against either CaR or PI 4-kinase. The PI-4 kinase in co-immunoprecipitates with anti-CaR antibody was activated in Ca(2+)-stimulated HEK-293 cells, which stably express the wild type CaR. Pertussis toxin did not affect the formation of [(3)H]IP(3) or the rise in intracellular Ca(2+) (Handlogten, M. E., Huang, C. F., Shiraishi, N., Awata, H., and Miller, R. T. (2001) J. Biol. Chem. 276, 13941-13948). RGS4, an accelerator of GTPase activity of members of the Galpha(i) and Galpha(q) families, attenuated the CaR-stimulated PLC activation and IP(3) accumulation, which is mediated by Galpha(q), but did not inhibit CaR-stimulated [(3)H]PIP formation. In HEK-293 cells, which express wild type CaR, Rho was enriched in immune complexes co-immunoprecipitated with the anti-CaR antibody. C(3) toxin, an inhibitor of Rho, also inhibited the CaR-stimulated [(3)H]IP(3) production but did not lead to CaR-stimulated [(3)H]PIP formation, reflecting inhibition of PI 4-kinase. Taken together, our data demonstrate that CaR stimulates PI 4-kinase, the first step in inositol lipid biosynthesis conversion of PI to PI 4-P by Rho-dependent and Galpha(q)- and Galpha(i)-independent pathways.  相似文献   

14.
Transient increases, or oscillations, of cytoplasmic free Ca(2+) concentration, [Ca(2+)](i), occur during fertilization of animal egg cells. In sea urchin eggs, the increased Ca(2+) is derived from intracellular stores, but the principal signaling and release system involved has not yet been agreed upon. Possible candidates are the inositol 1,4,5-trisphosphate receptor/channel (IP(3)R) and the ryanodine receptor/channel (RyR) which is activated by cGMP or cyclic ADP-ribose (cADPR). Thus, it seemed that direct measurements of the likely second messenger candidates during sea urchin fertilization would be essential to an understanding of the Ca(2+) signaling pathway. We therefore measured the cGMP, cADPR and inositol 1,4,5-trisphosphate (IP(3)) contents of sea urchin eggs during the early stages of fertilization and compared these with the [Ca(2+)](i) rise in the presence or absence of an inhibitor against soluble guanylate cyclase. We obtained three major experimental results: (1) cytosolic cGMP levels began to rise first, followed by cADPR and IP(3) levels, all almost doubling before the explosive increase of [Ca(2+)](i); (2) most of the rise in IP(3) occurred after the Ca(2+) peak; IP(3) production could also be induced by the artificial elevation of [Ca(2+)](i), suggesting the large increase in IP(3) is a consequence, rather than a cause, of the Ca(2+) transient; (3) the measured increase in cGMP was produced by the soluble guanylate cyclase of eggs, and inhibition of soluble guanylate cyclase of eggs diminished the production of both cADPR and IP(3) and the [Ca(2+)](i) increase without the delay of Ca(2+) transients. Taken together, these results suggest that the RyR pathway involving cGMP and cADPR is not solely responsible for the initiating event, but contributes to the Ca(2+) transients by stimulating IP(3) production during fertilization of sea urchin eggs.  相似文献   

15.
The role of epidermal growth factor receptor (EGFR) tyrosine kinase and its downstream targets in the regulation of the transition from the G0/G1 phase into DNA synthesis in response to ANG II has not been previously investigated in intestinal epithelial IEC-18 cells. ANG II induced a rapid and striking EGFR tyrosine phosphorylation, which was prevented by selective inhibitors of EGFR tyrosine kinase activity (e.g., AG-1478) or by broad-spectrum matrix metalloproteinase (MMP) inhibitor GM-6001. Pretreatment of these cells with either AG-1478 or GM-6001 reduced ANG II-stimulated DNA synthesis by approximately 50%. To elucidate the downstream targets of EGFR, we demonstrated that ANG II stimulated phosphorylation of Akt at Ser473, mTOR at Ser2448, p70S6K1 at Thr389, and S6 ribosomal protein at Ser(235/236). Pretreatment with AG-1478 inhibited Akt, p70S6K1, and S6 ribosomal protein phosphorylation. Inhibition of phosphatidylinositol (PI)3-kinase with LY-294002 or mTOR/p70S6K1 with rapamycin reduced [3H]thymidine incorporation by 50%, i.e., to levels comparable to those achieved by addition of either AG-1478 or GM-6001. Utilizing Akt small-interfering RNA targeted to Akt1 and Akt2, Akt protein knockdown dramatically inhibited p70S6K1 and S6 ribosomal protein phosphorylation. In contrast, AG-1478 or Akt gene silencing exerted no detectable inhibitory effect on ANG II-induced extracellular signal-regulated kinase 1/2 phosphorylation in IEC-18 cells. Taken together, our results demonstrate that EGFR transactivation mediates ANG II-stimulated mitogenesis through the PI3-kinase/Akt/mTOR/p70S6K1 signaling pathway in IEC-18 cells.  相似文献   

16.
We have previously shown that transactivation-proficient hepatitis virus B X protein (HBx) protects Hep 3B cells from transforming growth factor-beta (TGF-beta)-induced apoptosis via activation of the phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway. This work further investigated how HBx activates PI 3-kinase. Src activity was elevated in Hep 3B cells following expression of transactivation-proficient HBx or HBx-GFP fusion proteins. The Src family kinase inhibitor PP2 and C-terminal Src kinase (Csk) both alleviated HBx-mediated PI 3-kinase activation and protection from TGF-beta-induced apoptosis. Therefore, HBx activated a survival signal by linking Src to PI 3-kinase. Systemic subcellular fractionation and membrane flotation assays indicated that approximately 1.5% of ectopically expressed HBxGFP was associated with periplasmic membrane where Src was located. However, neither nucleus-targeted nor periplasmic membrane-targeted HBxGFP was able to upregulate Src activity or to augment PI 3-kinase survival signaling pathway.  相似文献   

17.
Rhinovirus (RV) is responsible for the majority of common colds and triggers exacerbations of asthma and chronic obstructive lung disease. We have shown that RV serotype 39 (RV39) infection activates phosphatidylinositol 3 (PI 3)-kinase and the serine threonine kinase Akt minutes after infection and that the activation of PI 3-kinase and Akt is required for maximal interleukin-8 (IL-8) expression. Here, we further examine the contributions of Src and PI 3-kinase activation to RV-induced Akt activation and IL-8 expression. Confocal fluorescent microscopy of 16HBE14o- human bronchial epithelial cells showed rapid (10-min) colocalization of RV39 with Src, p85alpha PI 3-kinase, p110beta PI 3-kinase, Akt and Cit-Akt-PH, a fluorescent Akt pleckstrin homology domain which binds PI(3,4,5)P(3). The chemical Src inhibitor PP2 {4-amino-5-(4-chlorophenyl)-7-(t-butyl)pyrazolo [3,4-d]pyrimidine} and the PI 3-kinase inhibitor LY294002 each inhibited Akt phosphorylation and the colocalization of RV39 with Akt. Digoxigenin-tagged RV coprecipitated with a Crosstide kinase likely to be Akt, and inhibition of Src blocked kinase activity. Digoxigenin-tagged RV39 colocalized with the lipid raft marker ceramide. In 16HBE14o- and primary mucociliary differentiated human bronchial epithelial cells, inhibition of Src kinase activity with the Src family chemical inhibitor PP2, dominant-negative Src (K297R), and Src small interfering RNA (siRNA) each inhibited RV39-induced IL-8 expression. siRNA against p110beta PI 3-kinase also inhibited IL-8 expression. These data demonstrate that, in the context of RV infection, Src and p110beta PI 3-kinase are upstream activators of Akt and the IL-8 promoter and that RV colocalizes with Src, PI 3-kinase, and Akt in lipid rafts.  相似文献   

18.
Angiotensin II, a hypertrophic/anti-apoptotic hormone, utilizes reactive oxygen species (ROS) as growth-related signaling molecules in vascular smooth muscle cells (VSMCs). Recently, the cell survival protein kinase Akt/protein kinase B (PKB) was proposed to be involved in protein synthesis. Here we show that angiotensin II causes rapid phosphorylation of Akt/PKB (6- +/- 0.4-fold increase). Exogenous H(2)O(2) (50-200 microM) also stimulates Akt/PKB phosphorylation (maximal 8- +/- 0.2-fold increase), suggesting that Akt/PKB activation is redox-sensitive. Both angiotensin II and H(2)O(2) stimulation of Akt/PKB are abrogated by the phosphatidylinositol 3-kinase (PI3-K) inhibitors wortmannin and LY294002 (2(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one), suggesting that PI3-K is an upstream mediator of Akt/PKB activation in VSMCs. Furthermore, diphenylene iodonium, an inhibitor of flavin-containing oxidases, or overexpression of catalase to block angiotensin II-induced intracellular H(2)O(2) production significantly inhibits angiotensin II-induced Akt/PKB phosphorylation, indicating a role for ROS in agonist-induced Akt/PKB activation. In VSMCs infected with dominant-negative Akt/PKB, angiotensin II-stimulated [(3)H]leucine incorporation is attenuated. Thus, our studies indicate that Akt/PKB is part of the remarkable spectrum of angiotensin II signaling pathways and provide insight into the highly organized signaling mechanisms coordinated by ROS, which mediate the hypertrophic response to angiotensin II in VSMCs.  相似文献   

19.
Effect of angiotensin II (ANG II) on mouse embryonic stem (ES) cell proliferation was examined. ANG II increased [(3)H] thymidine incorporation in a time- (>4 h) and dose- (>10(-9) M) dependent manner. The ANG II-induced increase in [(3)H] thymidine incorporation was blocked by inhibition of ANG II type 1 (AT(1)) receptor but not by ANG II type 2 (AT(2)) receptor, and AT(1) receptor was expressed. ANG II increased inositol phosphates formation and [Ca(2+)](i), and translocated PKC alpha, delta, and zeta to the membrane fraction. Consequently, the inhibition of PLC/PKC suppressed ANG II-induced increase in [(3)H] thymidine incorporation. The inhibition of EGF receptor kinase or tyrosine kinase prevented ANG II-induced increase in [(3)H] thymidine incorporation. ANG II phosphorylated EGF receptor and increased Akt, mTOR, and p70S6K1 phosphorylation blocked by AG 1478 (EGF receptor kinase blocker). ANG II-induced increase in [(3)H] thymidine incorporation was blocked by the inhibition of p44/42 MAPKs but not by p38 MAPK inhibition. Indeed, ANG II phosphorylated p44/42 MAPKs, which was prevented by the inhibition of the PKC and AT(1) receptor. ANG II increased c-fos, c-jun, and c-myc levels. ANG II also increased the protein levels of cyclin D1, cyclin E, cyclin-dependent kinase (CDK) 2, and CDK4 but decreased the p21(cip1/waf1) and p27(kip1), CDK inhibitory proteins. These proteins were blocked by the inhibition of AT(1) receptor, PLC/PKC, p44/42 MAPKs, EGF receptor, or tyrosine kinase. In conclusion, ANG II-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC and EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse ES cells.  相似文献   

20.
Angiotensin II (Ang II) exerts contractile and trophic effects in glomerular mesangial cells (MCs). One potential downstream target of Ang II is the protein kinase Akt/protein kinase B (PKB). We investigated the effect of Ang II on Akt/PKB activity in MCs. Ang II causes rapid activation of Akt/PKB (5-10 min) but delayed activation of phosphoinositide 3-kinase (PI3-K) (30 min). Activation of Akt/PKB by Ang II was not abrogated by the PI3-K inhibitors or by the introduction of a dominant negative PI3-K, indicating that in MCs, PI3-K is not an upstream mediator of Akt/PKB activation by Ang II. Incubation of MCs with phospholipase A2 inhibitors also blocked Akt/PKB activation by Ang II. AA mimicked the effect of Ang II. Inhibitors of cyclooxygenase-, lipoxyogenase-, and cytochrome P450-dependent metabolism did not influence AA-induced Akt/PKB activation. However, the antioxidants N-acetylcysteine and diphenylene iodonium inhibited both AA- and Ang II-induced Akt/PKB activation. Dominant negative mutant of Akt/PKB or antioxidants, but not the dominant negative form of PI3-K, inhibited Ang II-induced protein synthesis and cell hypertrophy. These data provide the first evidence that Ang II induces protein synthesis and hypertrophy in MCs through AA/redox-dependent pathway and Akt/PKB activation independent of PI3-K.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号