首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The folding of a polypeptide from an extended state to a well-defined conformation is studied using microsecond classical molecular dynamics (MD) simulations and replica exchange molecular dynamics (REMD) simulations in explicit solvent and in vacuo. It is shown that the solvated peptide folds many times in the REMD simulations but only a few times in the conventional simulations. From the folding events in the classical simulations we estimate an approximate folding time of 1-2 micros. The REMD simulations allow enough sampling to deduce a detailed Gibbs free energy landscape in three dimensions. The global minimum of the energy landscape corresponds to the native state of the peptide as determined previously by nuclear magnetic resonance (NMR) experiments. Starting from an extended state it takes about 50 ns before the native structure appears in the REMD simulations, about an order of magnitude faster than conventional MD. The calculated melting curve is in good qualitative agreement with experiment. In vacuo, the peptide collapses rapidly to a conformation that is substantially different from the native state in solvent.  相似文献   

2.
We perform a detailed analysis of the thermodynamics and folding kinetics of the SH3 domain fold with discrete molecular dynamic simulations. We propose a protein model that reproduces some of the experimentally observed thermodynamic and folding kinetic properties of proteins. Specifically, we use our model to study the transition state ensemble of the SH3 fold family of proteins, a set of unstable conformations that fold to the protein native state with probability 1/2. We analyze the participation of each secondary structure element formed at the transition state ensemble. We also identify the folding nucleus of the SH3 fold and test extensively its importance for folding kinetics. We predict that a set of amino acid contacts between the RT-loop and the distal hairpin are the critical folding nucleus of the SH3 fold and propose a hypothesis that explains this result.  相似文献   

3.
4.
We present an unusual method for parametrizing low-resolution force fields of the type used for protein structure prediction. Force field parameters were-determined by assigning each a fictitious mass and using a quasi-molecular dynamics algorithm in parameter space. The quasi-energy term favored folded native structures and specifically penalized folded nonnative structures. The force field was generated after optimizing less than 70 adjustable parameters, but shows a strong ability to discriminate between native structures and compact misfolded-alternatives. The functional form of the force field was chosen as in molecular mechanics and is not table-driven. It is continuous with continuous derivatives and is thus suitable for use with algorithms such as energy minimization or newtonian dynamics. Proteins 27:367–384, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

5.
It is a significant challenge to predict RNA secondary structures including pseudoknots. Here, a new algorithm capable of predicting pseudoknots of any topology, ProbKnot, is reported. ProbKnot assembles maximum expected accuracy structures from computed base-pairing probabilities in O(N2) time, where N is the length of the sequence. The performance of ProbKnot was measured by comparing predicted structures with known structures for a large database of RNA sequences with fewer than 700 nucleotides. The percentage of known pairs correctly predicted was 69.3%. Additionally, the percentage of predicted pairs in the known structure was 61.3%. This performance is the highest of four tested algorithms that are capable of pseudoknot prediction. The program is available for download at: http://rna.urmc.rochester.edu/RNAstructure.html.  相似文献   

6.
7.
8.
9.
Contact order and ab initio protein structure prediction   总被引:1,自引:0,他引:1       下载免费PDF全文
Although much of the motivation for experimental studies of protein folding is to obtain insights for improving protein structure prediction, there has been relatively little connection between experimental protein folding studies and computational structural prediction work in recent years. In the present study, we show that the relationship between protein folding rates and the contact order (CO) of the native structure has implications for ab initio protein structure prediction. Rosetta ab initio folding simulations produce a dearth of high CO structures and an excess of low CO structures, as expected if the computer simulations mimic to some extent the actual folding process. Consistent with this, the majority of failures in ab initio prediction in the CASP4 (critical assessment of structure prediction) experiment involved high CO structures likely to fold much more slowly than the lower CO structures for which reasonable predictions were made. This bias against high CO structures can be partially alleviated by performing large numbers of additional simulations, selecting out the higher CO structures, and eliminating the very low CO structures; this leads to a modest improvement in prediction quality. More significant improvements in predictions for proteins with complex topologies may be possible following significant increases in high-performance computing power, which will be required for thoroughly sampling high CO conformations (high CO proteins can take six orders of magnitude longer to fold than low CO proteins). Importantly for such a strategy, simulations performed for high CO structures converge much less strongly than those for low CO structures, and hence, lack of simulation convergence can indicate the need for improved sampling of high CO conformations. The parallels between Rosetta simulations and folding in vivo may extend to misfolding: The very low CO structures that accumulate in Rosetta simulations consist primarily of local up-down beta-sheets that may resemble precursors to amyloid formation.  相似文献   

10.
Tom Defay  Fred E. Cohen 《Proteins》1995,23(3):431-445
The results of a protein structure prediction contest are reviewed. Twelve different groups entered predictions on 14 proteins of known sequence whose structures had been determined but not yet disseminated to the scientific community. Thus, these represent true tests of the current state of structure prediction methodologies. From this work, it is clear that accurate tertiary structure prediction is not yet possible. However, protein fold and motif prediction are possible when the motif is recognizably similar to another known structure. Internal symmetry and the information inherent in an aligned family of homologous sequences facilitate predictive efforts. Novel folds remain a major challenge for prediction efforts. © 1995 Wiley-Liss, Inc.  相似文献   

11.
De novo prediction of protein structures, the prediction of structures from amino acid sequences which are not similar to those of hitherto resolved structures, has been one of the major challenges in molecular biophysics. In this paper, we develop a new method of de novo prediction, which combines the fragment assembly method and the simulation of physical folding process: structures which have consistently assembled fragments are dynamically searched by Langevin molecular dynamics of conformational change. The benchmarking test shows that the prediction is improved when the candidate structures are cross-checked by an empirically derived score function.  相似文献   

12.
The folding mechanism of the Villin headpiece (HP36) is studied by means of a novel approach which entails an initial coarse-grained Monte Carlo (MC) scheme followed by all-atom molecular dynamics (MD) simulations in explicit solvent. The MC evolution occurs in a simplified free-energy landscape and allows an efficient selection of marginally-compact structures which are taken as viable initial conformations for the MD. The coarse-grained MC structural representation is connected to the one with atomic resolution through a "fine-graining" reconstruction algorithm. This two-stage strategy is used to select and follow the dynamics of seven different unrelated conformations of HP36. In a notable case the MD trajectory rapidly evolves towards the folded state, yielding a typical root-mean-square deviation (RMSD) of the core region of only 2.4 A from the closest NMR model (the typical RMSD over the whole structure being 4.0 A). The analysis of the various MC-MD trajectories provides valuable insight into the details of the folding and mis-folding mechanisms and particularly about the delicate influence of local and nonlocal interactions in steering the folding process.  相似文献   

13.
Here, we report a 100 ns molecular dynamics simulation of the folding process of a recently designed autonomous-folding mini-protein designated as tc5b with a new AMBER force field parameter set developed based on condensed-phase quantum mechanical calculations and a Generalized Born continuum solvent model. Starting from its fully extended conformation, our simulation has produced a final structure resembling that of NMR native structure to within 1A main-chain root mean square deviation. Remarkably, the simulated structure stayed in the native state for most part of the simulation after it reached the state. Of greater significance is that our simulation has not only reached the correct main-chain conformation, but also a very high degree of accuracy in side-chain packing conformation. This feat has traditionally been a challenge for ab initio simulation studies. In addition to characterization of the trajectory, comparison of our results to experimental data is also presented. Analysis of the trajectory suggests that the rate-limiting step of folding of this mini-protein is the packing of the Trp side-chain.  相似文献   

14.
Conformational dynamics are essential to macromolecular function. This is certainly true of RNA, whose ability to undergo programmed conformational dynamics is essential to create and regulate complex biological processes. However, methods to easily and simultaneously interrogate both the structure and conformational dynamics of fully functional RNAs in isolation and in complex with proteins have not historically been available. Due to its ability to image and classify single particles, cryogenic electron microscopy (cryo-EM) has the potential to address this gap and may be particularly amenable to exploring structural dynamics within the three-dimensional folds of biologically active RNAs. We discuss the possibilities and current limitations of applying cryo-EM to simultaneously study RNA structure and conformational dynamics, and present one example that illustrates this (as of yet) not fully realized potential.  相似文献   

15.
16.
A novel method for the refinement of misfolded protein structures is proposed in which the properties of the solvent environment are oscillated in order to mimic some aspects of the role of molecular chaperones play in protein folding in vivo. Specifically, the hydrophobicity of the solvent is cycled by repetitively altering the partial charges on solvent molecules (water) during a molecular dynamics simulation. During periods when the hydrophobicity of the solvent is increased, intramolecular hydrogen bonding and secondary structure formation are promoted. During periods of increased solvent polarity, poorly packed regions of secondary structures are destabilized, promoting structural rearrangement. By cycling between these two extremes, the aim is to minimize the formation of long-lived intermediates. The approach has been applied to the refinement of structural models of three proteins generated by using the ROSETTA procedure for ab initio structure prediction. A significant improvement in the deviation of the model structures from the corresponding experimental structures was observed. Although preliminary, the results indicate computationally mimicking some functions of molecular chaperones in molecular dynamics simulations can promote the correct formation of secondary structure and thus be of general use in protein folding simulations and in the refinement of structural models of small- to medium-size proteins.  相似文献   

17.
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises.  相似文献   

18.
The villin headpiece helical subdomain (HP36) is one of the best known model systems for computational studies of fast‐folding all‐α miniproteins. HP21 is a peptide fragment—derived from HP36—comprising only the first and second helices of the full domain. Experimental studies showed that although HP21 is mostly unfolded in solution, it does maintain some persistent native‐like structure as indicated by the analysis of NMR‐derived chemical shifts. Here we compare the experimental data for HP21 with the results obtained from a 15‐μs long folding molecular dynamics simulation performed in explicit water and with full electrostatics. We find that the simulation is in good agreement with the experiment and faithfully reproduces the major experimental findings, namely that (a) HP21 is disordered in solution with <10% of the trajectory corresponding to transiently stable structures, (b) the most highly populated conformer is a native‐like structure with an RMSD from the corresponding portion of the HP36 crystal structure of <1 Å, (c) the simulation‐derived chemical shifts—over the whole length of the trajectory—are in reasonable agreement with the experiment giving reduced χ2 values of 1.6, 1.4, and 0.8 for the Δδ13Cα, Δδ13CO, and Δδ13Cβ secondary shifts, respectively (becoming 0.8, 0.7, and 0.3 when only the major peptide conformer is considered), and finally, (d) the secondary structure propensity scores are in very good agreement with the experiment and clearly indicate the higher stability of the first helix. We conclude that folding molecular dynamics simulations can be a useful tool for the structural characterization of even marginally stable peptides.  相似文献   

19.
Protein folding is an important and yet challenging topic in current molecular biology. In this work, the folding dynamics and mechanisms of the Trp-cage mini-protein were studied with molecular dynamics simulations, in the absence and presence of water solvents. The important intermediates during the Trp-cage folding were determined by gradually decreasing the simulation temperature. The folding transition temperature was identified to be approximately 400 K, and the folding pathway was decomposed into six steps: UI 1I 2I 3I 4F 1F 2, where U, I and F represent the unfolded, intermediate and folded states, respectively. The finding that the two helical subunits are successively formed is consistent with the experimental observations, and the Asp9/Arg16 salt bridge forms at the final stage and does not play a significant role during folding kinetics. The presence of water solvents induces hydrophobic collapse as the whole cage comparatively closes. Within aqueous solutions, the Trp-cage folding begins to contract into the meta-stable state, and by traversing the transition state it arrives at the native-like structure, which resembles the experimental structure closely.  相似文献   

20.
Kifer I  Nussinov R  Wolfson HJ 《Proteins》2011,79(6):1759-1773
The pathways by which proteins fold into their specific native structure are still an unsolved mystery. Currently, many methods for protein structure prediction are available, and most of them tackle the problem by relying on the vast amounts of data collected from known protein structures. These methods are often not concerned with the route the protein follows to reach its final fold. This work is based on the premise that proteins fold in a hierarchical manner. We present FOBIA, an automated method for predicting a protein structure. FOBIA consists of two main stages: the first finds matches between parts of the target sequence and independently folding structural units using profile-profile comparison. The second assembles these units into a 3D structure by searching and ranking their possible orientations toward each other using a docking-based approach. We have previously reported an application of an initial version of this strategy to homology based targets. Since then we have considerably enhanced our method's abilities to allow it to address the more difficult template-based target category. This allows us to now apply FOBIA to the template-based targets of CASP8 and to show that it is both very efficient and promising. Our method can provide an alternative for template-based structure prediction, and in particular, the docking-basedranking technique presented here can be incorporated into any profile-profile comparison based method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号