首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Glucose transport is a highly regulated process and is dependent on a variety of signaling events. Glycogen synthase kinase-3 (GSK-3) has been implicated in various aspects of the regulation of glucose transport, but the mechanisms by which GSK-3 activity affects glucose uptake have not been well defined. We report that basal glycogen synthase kinase-3 (GSK-3) activity regulates glucose transport in several cell types. Chronic inhibition of basal GSK-3 activity (8-24 h) in several cell types, including vascular smooth muscle cells, resulted in an approximately twofold increase in glucose uptake due to a similar increase in protein expression of the facilitative glucose transporter 1 (GLUT1). Conversely, expression of a constitutively active form of GSK-3beta resulted in at least a twofold decrease in GLUT1 expression and glucose uptake. Since GSK-3 can inhibit mammalian target of rapamycin (mTOR) signaling via phosphorylation of the tuberous sclerosis complex subunit 2 (TSC2) tumor suppressor, we investigated whether chronic GSK-3 effects on glucose uptake and GLUT1 expression depended on TSC2 phosphorylation and TSC inhibition of mTOR. We found that absence of functional TSC2 resulted in a 1.5-to 3-fold increase in glucose uptake and GLUT1 expression in multiple cell types. These increases in glucose uptake and GLUT1 levels were prevented by inhibition of mTOR with rapamycin. GSK-3 inhibition had no effect on glucose uptake or GLUT1 expression in TSC2 mutant cells, indicating that GSK-3 effects on GLUT1 and glucose uptake were mediated by a TSC2/mTOR-dependent pathway. The effect of GSK-3 inhibition on GLUT1 expression and glucose uptake was restored in TSC2 mutant cells by transfection of a wild-type TSC2 vector, but not by a TSC2 construct with mutated GSK-3 phosphorylation sites. Thus, TSC2 and rapamycin-sensitive mTOR function downstream of GSK-3 to modulate effects of GSK-3 on glucose uptake and GLUT1 expression. GSK-3 therefore suppresses glucose uptake via TSC2 and mTOR and may serve to match energy substrate utilization to cellular growth.  相似文献   

2.
Two signaling pathways, phosphoinositide 3-kinase (PI-3k)/Akt and Ras/MAPK, are major effectors triggered by nerve growth factor (NGF). Rac1, Cdc42 and GSK-3beta are reported to be targets of PI-3k in the signal transduction for neurite outgrowth. Immediately after NGF was added, broad ruffles were observed temporarily around the periphery of PC12 cells prior to neurite growth. As PC12D cells are characterized by a very rapid extension of neurites in response to various agents, the signaling pathways described above were studied in relation to the NGF-induced formation of ruffles and outgrowth of neurites. Wortmannin, an Akt inhibitor (V), and GSK-3beta inhibitor (SB425286) suppressed the neurite growth in NGF-treated cells, but not in dbcAMP-treated cells. The outgrowth of neurites induced by NGF but not by dbcAMP was inhibited with the expression of mutant Ras. But upon the expression of dominant-negative Rac1, cells often extended protrusions, incomplete neurites, lacking F-actin. Intact neurites were observed in cells with dominant-negative Cdc42. These results suggest that NGF-dependent neurite outgrowth occurs via a mechanism involving activation of the Ras/PI-3K/Akt/GSK-3beta pathway, while dbcAMP-dependent neurite growth might be induced in a distinct manner. However, inhibitors for GSK-3beta and PI-3k (wortmannin) did not suppress the NGF-dependent formation of ruffles. In addition, the formation of ruffles was not inhibited by the expression of mutant Ras. On the other hand, it was suppressed by the expression of dominant-negative Rac1 or Cdc42. These results suggest that the NGF-induced ruffling requires activation of Rac1 and Cdc42, but does not require Ras, PI-3k, Akt and GSK-3beta. Taken together, the NGF-dependent formation of ruffles might not require Ras/PI-3k/Akt/GSK-3beta, but these pathways might contribute to the formation of intact neurites due to combined actions including Rac1.  相似文献   

3.
Protein kinase B (PKB)/Akt is known to promote cell migration, and this may contribute to the enhanced invasiveness of malignant cells. To elucidate potential mechanisms by which PKB/Akt promotes the migration phenotype, we have investigated its role in the endosomal transport and recycling of integrins. Whereas the internalization of alpha v beta 3 and alpha 5 beta 1 integrins and their transport to the recycling compartment were independent of PKB/Akt, the return of these integrins (but not internalized transferrin) to the plasma membrane was regulated by phosphatidylinositol 3-kinases and PKB/Akt. The blockade of integrin recycling and cell spreading on integrin ligands effected by inhibition of PKB/Akt was reversed by inhibition of glycogen synthase kinase 3 (GSK-3). Moreover, expression of nonphosphorylatable active GSK-3 beta mutant GSK-3 beta-A9 suppressed recycling of alpha 5 beta 1 and alpha v beta 3 and reduced cell spreading on ligands for these integrins, indicating that PKB/Akt promotes integrin recycling by phosphorylating and inactivating GSK-3. We propose that the ability of PKB/Akt to act via GSK-3 to promote the recycling of matrix receptors represents a key mechanism whereby integrin function and cell migration can be regulated by growth factors.  相似文献   

4.
Previous studies from our laboratory have shown anti-proliferative and pro-apoptotic effects of 3,3'-diindolylmethane (DIM) through regulation of Akt and androgen receptor (AR) in prostate cancer cells. However, the mechanism by which DIM regulates Akt and AR signaling pathways has not been fully investigated. It has been known that FOXO3a and glycogen synthase kinase-3beta (GSK-3beta), two targets of activated Akt, interact with beta-catenin, regulating cell proliferation and apoptotic cell death. More importantly, FOXO3a, GSK-3beta, and beta-catenin are all AR coregulators and regulate the activity of AR, mediating the development and progression of prostate cancers. Here, we investigated the molecular effects of B-DIM, a formulated DIM with higher bioavailability, on Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling in hormone-sensitive LNCaP and hormone-insensitive C4-2B prostate cancer cells. We found that B-DIM significantly inhibited the phosphorylation of Akt and FOXO3a and increased the phosphorylation of beta-catenin, leading to the inhibition of cell growth and induction of apoptosis. We also found that B-DIM significantly inhibited beta-catenin nuclear translocation. By electrophoretic mobility shift and chromatin immunoprecipitation assays, we found that B-DIM inhibited FOXO3a binding to the promoter of AR and promoted FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive prostate cancer cells. These results suggest that B-DIM-induced cell growth inhibition and apoptosis induction are partly mediated through the regulation of Akt/FOXO3a/GSK-3beta/beta-catenin/AR signaling. Therefore, B-DIM could be a promising non-toxic agent for possible treatment of hormone-sensitive but most importantly hormone-refractory prostate cancers.  相似文献   

5.
The phosphatidylinositol 3-kinase (PI 3-kinase)/Akt signaling pathway is an important mediator of growth factor-dependent survival of mammalian cells. A variety of targets of the Akt protein kinase have been implicated in cell survival, including the protein kinase glycogen synthase kinase 3beta (GSK-3beta). One of the targets of GSK-3beta is translation initiation factor 2B (eIF2B), linking global regulation of protein synthesis to PI 3-kinase/Akt signaling. Because of the central role of protein synthesis, we have investigated the involvement of eIF2B, which is inhibited as a result of GSK-3beta phosphorylation, in programmed cell death. We demonstrate that expression of eIF2B mutants lacking the GSK-3beta phosphorylation or priming sites is sufficient to protect both Rat-1 and PC12 cells from apoptosis induced by overexpression of GSK-3beta, inhibition of PI 3-kinase, or growth factor deprivation. Consistent with these effects on cell survival, expression of nonphosphorylatable eIF2B prevented inhibition of protein synthesis following treatment of cells with the PI 3-kinase inhibitor LY294002. Conversely, cycloheximide induced apoptosis of PC12 and Rat-1 cells, further indicating that protein synthesis was required for cell survival. Inhibition of translation resulting from treatment with cycloheximide led to the release of cytochrome c from mitochondria, similar to the effects of inhibition of PI 3-kinase. Expression of nonphosphorylatable eIF2B prevented cytochrome c release resulting from PI 3-kinase inhibition but did not affect cytochrome c release or apoptosis induced by cycloheximide. Regulation of translation resulting from phosphorylation of eIF2B by GSK-3beta thus appears to contribute to the control of cell survival by the PI 3-kinase/Akt signaling pathway, acting upstream of mitochondrial cytochrome c release.  相似文献   

6.
7.
The subcellular localization of insulin signaling proteins is altered by various stimuli such as insulin, insulin-like growth factor I, and oxidative stress and is thought to be an important mechanism that can influence intracellular signal transduction and cellular function. This study examined the possibility that exercise may also alter the subcellular localization of insulin signaling proteins in human skeletal muscle. Nine untrained males performed 60 min of cycling exercise (approximately 67% peak pulmonary O2 uptake). Muscle biopsies were sampled at rest, immediately after exercise, and 3 h postexercise. Muscle was fractionated by centrifugation into the following crude fractions: cytosolic, nuclear, and a high-speed pellet containing membrane and cytoskeletal components. Fractions were analyzed for protein content of insulin receptor, insulin receptor substrate (IRS)-1 and -2, p85 subunit of phosphatidylinositol 3-kinase, Akt, and glycogen synthase kinase-3 (GSK-3). There was no significant change in the protein content of the insulin signaling proteins in any of the crude fractions after exercise or 3 h postexercise. Exercise had no significant effect on the phosphorylation of IRS-1 Tyr612 in any of the fractions. In contrast, exercise increased (P < 0.05) the phosphorylation of Akt Ser473 and GSK-3alpha/beta Ser9/21 in the cytosolic fraction only. In conclusion, exercise can increase phosphorylation of downstream insulin signaling proteins specifically in the cytosolic fraction but does not result in changes in the subcellular localization of insulin signaling proteins in human skeletal muscle. Change in the subcellular protein localization is therefore an unlikely mechanism to influence signal transduction pathways and cellular function in skeletal muscle after exercise.  相似文献   

8.
9.
We have previously shown that genistein could inhibit Akt activation and down-regulate AR (androgen receptor) and PSA (prostate-specific antigen) expression in prostate cancer (PCa) cells. However, pure genistein showed increased lymph node metastasis in an animal model, but such an adverse effect was not seen with isoflavone, suggesting that further mechanistic studies are needed for elucidating the role of isoflavone in PCa. It is known that FOXO3a and GSK-3beta, targets of Akt, regulate cell proliferation and apoptosis. Moreover, FOXO3a, GSK-3beta, and Src are AR regulators and regulate transactivation of AR, mediating the development and progression of PCa. Therefore, we investigated the molecular effects of isoflavone on the Akt/FOXO3a/GSK-3beta/AR signaling network in hormone-sensitive LNCaP and hormone-insensitive C4-2B PCa cells. We found that isoflavone inhibited the phosphorylation of Akt and FOXO3a, regulated the phosphorylation of Src, and increased the expression of GSK-3beta, leading to the down-regulation of AR and its target gene PSA. We also found that isoflavone inhibited AR nuclear translocation and promoted FOXO3a translocation to the nucleus. By electrophoretic mobility shift assay and chromatin immunoprecipitation assay, we found that isoflavone inhibited FOXO3a binding to the promoter of AR and increased FOXO3a binding to the p27(KIP1) promoter, resulting in the alteration of AR and p27(KIP1) expression, the inhibition of cell proliferation, and the induction of apoptosis in both androgen-sensitive and -insensitive PCa cells. These results suggest that isoflavone-induced inhibition of cell proliferation and induction of apoptosis are partly mediated through the regulation of the Akt/FOXO3a/GSK-3beta/AR signaling network. In conclusion, our data suggest that isoflavone could be useful for the prevention and/or treatment of PCa.  相似文献   

10.
TSC2, or tuberin, is the product of the tuberous sclerosis tumor suppressor gene TSC2 and acts downstream of the phosphatidylinositol 3-kinase-Akt signaling pathway to negatively regulate cellular growth. One mechanism underlying its function is to assemble into a heterodimer with the TSC1 gene product TSC1, or hamartin, resulting in a reduction in phosphorylation, and hence activation, of the ribosomal subunit S6 kinase (S6K). We identified a novel interaction between TSC2 and 14-3-3beta. We found that 14-3-3beta does not interfere with TSC1-TSC2 binding and can form a ternary complex with these two proteins. Association between 14-3-3beta and TSC2 requires phosphorylation of TSC2 at a unique residue that is not a known Akt phosphorylation site. The overexpression of 14-3-3beta compromises the ability of the TSC1-TSC2 complex to reduce S6K phosphorylation. The antagonistic activity of 14-3-3beta toward TSC is dependent on the 14-3-3beta-TSC2 interaction, since a mutant of TSC2 that is not recognized by 14-3-3beta is refractory to 14-3-3beta. We suggest that 14-3-3 proteins interact with the TSC1-TSC2 complex and negatively regulate the function of the TSC proteins.  相似文献   

11.
Zinc is an essential catalytic and structural element of many proteins and a signaling messenger that is released by neuronal activity at many central excitatory synapses. Excessive synaptic release of zinc followed by entry into vulnerable neurons contributes severe neuronal cell death. We have previously observed that zinc-induced neuronal cell death is accompanied by Akt activation in embryonic hippocampal progenitor (H19-7) cells. In the present study, we examined the role of Akt activation and its downstream signaling events during extracellular zinc-induced neuronal cell death. Treatment of H19-7 cells with 10 microM of zinc plus zinc ionophore, pyrithione, led to increased phosphorylation of Akt at Ser-473/Thr-308 and increased Akt kinase activity. Zinc-induced Akt activation was accompanied by increased Tyr-phosphorylated GSK-3beta as well as increased GSK-3beta kinase activity. Transient overexpression of a kinase-deficient Akt mutant remarkably suppressed GSK-3beta activation and cell death. Furthermore, tau phosphorylation, but not the degradation of beta-catenin, was dependent upon zinc-induced GSK-3beta activation and contributed to cell death. The current data suggest that, following exposure to zinc, the sequential activation of Akt and GSK-3beta plays an important role directing hippocampal neural precursor cell death.  相似文献   

12.
13.
Catecholamines, acting through adrenergic receptors, play an important role in modulating the effects of insulin on glucose metabolism. Insulin activation of glycogen synthesis is mediated in part by the inhibitory phosphorylation of glycogen synthase kinase-3 (GSK-3). In this study, catecholamine regulation of GSK-3beta was investigated in Rat-1 fibroblasts stably expressing the alpha1A-adrenergic receptor. Treatment of these cells with either insulin or phenylephrine (PE), an alpha1-adrenergic receptor agonist, induced Ser-9 phosphorylation of GSK-3beta and inhibited GSK-3beta activity. Insulin-induced GSK-3beta phosphorylation is mediated by the phosphatidylinositol 3-kinase/Akt signaling pathway. PE treatment does not activate phosphatidylinositol 3-kinase or Akt (Ballou, L. M., Cross, M. E., Huang, S., McReynolds, E. M., Zhang, B. X., and Lin, R. Z. (2000) J. Biol. Chem. 275, 4803-4809), but instead inhibits insulin-induced Akt activation and GSK-3beta phosphorylation. Experiments using protein kinase C (PKC) inhibitors suggest that phorbol ester-sensitive novel PKC and G? 6983-sensitive atypical PKC isoforms are involved in the PE-induced phosphorylation of GSK-3beta. Indeed, PE treatment of Rat-1 cells increased the activity of atypical PKCzeta, and expression of PKCzeta in COS-7 cells stimulated GSK-3beta Ser-9 phosphorylation. In addition, PE-induced GSK-3beta phosphorylation was reduced in Rat-1 cells treated with a cell-permeable PKCzeta pseudosubstrate peptide inhibitor. These results suggest that the alpha1A-adrenergic receptor regulates GSK-3beta through two signaling pathways. One pathway inhibits insulin-induced GSK-3beta phosphorylation by blocking insulin activation of Akt. The second pathway stimulates Ser-9 phosphorylation of GSK-3beta, probably via PKC.  相似文献   

14.
15.
16.
17.
Numerous studies reveal that phosphatidylinositol (PI) 3-kinase and Akt protein kinase are important mediators of cell survival. However, the survival-promoting mechanisms downstream of these enzymes remain uncharacterized. Glycogen synthase kinase-3 beta (GSK-3 beta), which is inhibited upon phosphorylation by Akt, was recently shown to function during cell death induced by PI 3-kinase inhibitors. In this study, we tested whether GSK-3 beta is critical for the death of sympathetic neurons caused by the withdrawal of their physiological survival factor, the nerve growth factor (NGF). Stimulation with NGF resulted in PI 3-kinase-dependent phosphorylation of GSK-3 beta and inhibition of its protein kinase activity, indicating that GSK-3 beta is targeted by PI 3-kinase/Akt in these neurons. Expression of the GSK-3 beta inhibitor Frat1, but not a mutant Frat1 protein that does not bind GSK-3 beta, rescued neurons from death caused by inhibiting PI 3-kinase. Similarly, expression of Frat1 or kinase-deficient GSK-3 beta reduced death caused by inhibiting Akt. In NGF-maintained neurons, overexpression of GSK-3 beta caused a small but significant decrease in survival. However, expression of neither Frat1, kinase-deficient GSK-3 beta, nor GSK-3-binding protein inhibited NGF withdrawal-induced death. Thus, although GSK-3 beta function is required for death caused by inactivation of PI 3-kinase and Akt, neuronal death caused by NGF withdrawal can proceed through GSK-3 beta-independent pathways.  相似文献   

18.
Glycogen synthase kinase-3beta (GSK-3beta) is a key component of several signaling pathways. We found that a short variant of 'TNF-like weak inducer of apoptosis' (shortTWEAK) formed a complex with GSK-3beta in a yeast two-hybrid system. We demonstrate that shortTWEAK and GSK-3beta colocalize in the nucleus of human neuroblastoma cells. We also show that TWEAK is internalized in different cell lines and that it translocates to the nucleus. This event causes the degradation of IkappaBalpha, the nuclear translocation of both GSK-3beta and p65, and the induction of NF-kappaB-driven gene expression. We demonstrate that the induction of IL-8 expression by TWEAK can be counteracted by LiCl. Taken together, these data suggest that GSK-3beta plays an important role in the signal transduction pathway between TWEAK and NF-kappaB.  相似文献   

19.
The purpose of this study was to determine whether exogenous zinc prevents cardiac reperfusion injury by targeting the mitochondrial permeability transition pore (mPTP) via glycogen synthase kinase-3beta (GSK-3beta). The treatment of cardiac H9c2 cells with ZnCl2 (10 microM) in the presence of zinc ionophore pyrithione for 20 min significantly enhanced GSK-3beta phosphorylation at Ser9, indicating that exogenous zinc can inactivate GSK-3beta in H9c2 cells. The effect of zinc on GSK-3beta activity was blocked by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY-294002 but not by the mammalian target of rapamycin (mTOR) inhibitor rapamycin or the PKC inhibitor chelerythrine, implying that PI3K but not mTOR or PKC accounts for the action of zinc. In support of this interpretation, zinc induced a significant increase in Akt but not mTOR phosphorylation. Further experiments found that zinc also increased mitochondrial GSK-3beta phosphorylation. This may indicate an involvement of the mitochondria in the action of zinc. The effect of zinc on mitochondrial GSK-3beta phosphorylation was not altered by the mitochondrial ATP-sensitive K+ channel blocker 5-hydroxydecanoic acid. Zinc applied at reperfusion reduced cell death in cells subjected to simulated ischemia/reperfusion, indicating that zinc can prevent reperfusion injury. However, zinc was not able to exert protection in cells transfected with the constitutively active GSK-3beta (GSK-3beta-S9A-HA) mutant, suggesting that zinc prevents reperfusion injury by inactivating GSK-3beta. Cells transfected with the catalytically inactive GSK-3beta (GSK-3beta-KM-HA) also revealed a significant decrease in cell death, strongly supporting the essential role of GSK-3beta inactivation in cardioprotection. Moreover, zinc prevented oxidant-induced mPTP opening through the inhibition of GSK-3beta. Taken together, these data suggest that zinc prevents reperfusion injury by modulating the mPTP opening through the inactivation of GSK-3beta. The PI3K/Akt signaling pathway is responsible for the inactivation of GSK-3beta by zinc.  相似文献   

20.
During central nervous system development, growth factors and their associated receptor protein tyrosine kinases regulate many neuronal functions such as neurite extension and dendrite maturation. Hepatocyte growth factor (HGF) and its receptor, c-Met, can promote formation of neurites and enhance elaboration of dendrites in mature neurons, but their effects on the early stages of dendrite maturation in hippocampal neurons and the signaling pathways by which they promote dendrite formation have not been studied. Exogenous HGF treatment effectively enhanced the phosphorylation and activation of c-Met in cultured hippocampal neurons at 4 days in vitro. HGF treatment increased the number of dendrites and promoted dendrite elongation in these neurons. Consistent with these results, HGF activated Akt, which phosphorylates glycogen synthase kinase-3beta (GSK-3beta) to inactivate it, and reduced phosphorylation of microtubule-associated protein 2 (MAP2), which can promote microtubule polymerization and dendrite elongation when dephosphorylated. Conversely, pharmacological inhibition of c-Met with its specific inhibitor, PHA-665752, or genetic knock-down of c-Met with short hairpin RNAs (shRNAs) suppressed HGF-induced phosphorylation of Akt and GSK-3beta, increased phosphorylation of MAP2, and reduced dendrite number and length in cultured hippocampal neurons. Moreover, suppressing c-Met with PHA-665752 or by shRNA decreased MAP2 expression. Inhibiting Akt activity with the phosphoinositide-3-kinase inhibitor LY294002 or Akt inhibitor X suppressed HGF-induced phosphorylation of GSK-3beta, increased MAP2 phosphorylation, and blocked the ability of HGF to enhance dendritic length. These observations indicate that HGF and c-Met can regulate the early stages of dendrite maturation via activation of the Akt/GSK-3beta pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号