首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 7 毫秒
1.
Simultaneous analysis of heart rate variability (HRV), blood pressure variability (BPV) and baroreflex sensitivity (BRS) with different types of measures may provide non-duplicative information about autonomic cardiovascular regulation. Therefore, a multiple signal analysis of cardiovascular time series will enhance the physiological understanding of neuro cardiovascular regulation with deconditioning in bedrest or related gravitational physiological studies. It has been shown that age is an important determinant of HRV and BRS in healthy subjects. Whereas in the case of BPV, the effect of aging seems to depend upon the activity status of the subjects. In view of the facts that most of the previous works were dealing with only the variability of one kind of cardiovascular parameters in one study with conventional time-domain and/or frequency-domain analysis, we therefore designed the present work to compare the HRV, BPV and BRS between young and middle-aged male healthy subjects in one study with the same subjects using various techniques, including the approximate entropy (ApEn) measurement, a statistic quantifying HRV "complexity" derived from non-linear dynamics.  相似文献   

2.
3.
The aim of this investigation was to evaluate sex differences in baroreflex and heart rate variability (HRV) dysfunction and indexes of end-organ damage in the TG(mRen2)27 (Ren2) rat, a model of renin overexpression and tissue renin-angiotensin-aldosterone system overactivation. Blood pressure (via telemetric monitoring), blood pressure variability [BPV; SD of systolic blood pressure (SBP)], spontaneous baroreflex sensitivity, HRV [HRV Triangular Index (HRV-TI), standard deviation of the average NN interval (SDNN), low and high frequency power (LF and HF, respectively), and Poincaré plot analysis (SD1, SD2)], and cardiovascular function (pressure-volume loop analysis and proteinuria) were evaluated in male and female 10-wk-old Ren2 and Sprague Dawley rats. The severity of hypertension was greater in Ren2 males (R2-M) than in Ren2 females (R2-F). Increased BPV, suppression of baroreflex gain, decreased HRV, and associated end-organ damage manifested as cardiac dysfunction, myocardial remodeling, elevated proteinuria, and tissue oxidative stress were more pronounced in R2-M compared with R2-F. During the dark cycle, HRV-TI and SDNN were negatively correlated with SBP within R2-M and positively correlated within R2-F; within R2-M, these indexes were also negatively correlated with end-organ damage [left ventricular hypertrophy (LVH)]. Furthermore, within R2-M only, LVH was strongly correlated with indexes of HRV representing predominantly vagal (HF, SD1), but not sympathetic (LF, SD2), variability. These data demonstrated relative protection in females from autonomic dysfunction and end-organ damage associated with elevated blood pressure in the Ren2 model of hypertension.  相似文献   

4.
Endurance-trained athletes have increased heart rate variability (HRV), but it is not known whether exercise training improves the HRV and baroreflex sensitivity (BRS) in sedentary persons. We compared the effects of low- and high-intensity endurance training on resting heart rate, HRV, and BRS. The maximal oxygen uptake and endurance time increased significantly in the high-intensity group compared with the control group. Heart rate did not change significantly in the low-intensity group but decreased significantly in the high-intensity group (-6 beats/min, 95% confidence interval; -10 to -1 beats/min, exercise vs. control). No significant changes occurred in either the time or frequency domain measures of HRV or BRS in either of the exercise groups. Exercise training was not able to modify the cardiac vagal outflow in sedentary, middle-aged persons.  相似文献   

5.
Hypoperfusion of active skeletal muscle elicits a reflex pressor response termed the muscle metaboreflex. Dynamic exercise attenuates spontaneous baroreflex sensitivity (SBRS) in the control of heart rate (HR) during rapid, spontaneous changes in blood pressure (BP). Our objective was to determine whether muscle metaboreflex activation (MRA) further diminishes SBRS. Conscious dogs were chronically instrumented for measurement of HR, cardiac output, mean arterial pressure, and left ventricular systolic pressure (LVSP) at rest and during mild (3.2 km/h) or moderate (6.4 km/h at 10% grade) dynamic exercise before and after MRA (via partial reduction of hindlimb blood flow). SBRS was evaluated as the slopes of the linear relations (LRs) between HR and LVSP during spontaneous sequences of at least three consecutive beats when HR changed inversely vs. pressure (expressed as beats x min(-1) x mmHg(-1)). During mild exercise, these LRs shifted upward, with a significant decrease in SBRS (-3.0 +/- 0.4 vs. -5.2 +/- 0.4, P<0.05 vs. rest). MRA shifted LRs upward and rightward and decreased SBRS (-2.1 +/- 0.1, P<0.05 vs. mild exercise). Moderate exercise shifted LRs upward and rightward and significantly decreased SBRS (-1.2 +/- 0.1, P<0.05 vs. rest). MRA elicited further upward and rightward shifts of the LRs and reductions in SBRS (-0.9 +/- 0.1, P<0.05 vs. moderate exercise). We conclude that dynamic exercise resets the arterial baroreflex to higher BP and HR as exercise intensity increases. In addition, increases in exercise intensity, as well as MRA, attenuate SBRS.  相似文献   

6.
The aim of the study was to assess the instantaneous spectral components of heart rate variability (HRV) and systolic blood pressure variability (SBPV) and determine the low-frequency (LF) and high-frequency baroreflex sensitivity (HF-BRS) during a graded maximal exercise test. The first hypothesis was that the hyperpnea elicited by heavy exercise could entail a significant increase in HF-SBPV by mechanical effect once the first and second ventilatory thresholds (VTs) were exceeded. It was secondly hypothesized that vagal tone progressively withdrawing with increasing load, HF-BRS could decrease during the exercise test. Fifteen well-trained subjects participated in this study. Electrocardiogram (ECG), blood pressure, and gas exchanges were recorded during a cycloergometer test. Ventilatory equivalents were computed from gas exchange parameters to assess VTs. Spectral analysis was applied on cardiovascular series to compute RR and systolic blood pressure power spectral densities, cross-spectral coherence, gain, and alpha index of BRS. Three exercise intensity stages were compared: below (A1), between (A2), and above (A3) VTs. From A1 to A3, both HF-SBPV (A1: 45 +/- 6, A2: 65 +/- 10, and A3: 120 +/- 23 mm2Hg, P < 0.001) and HF-HRV increased (A1: 20 +/- 5, A2: 23 +/- 8, and A3:40 +/- 11 ms2, P < 0.02), maintaining HF-BRS (gain, A1: 0.68 +/- 0.12, A2: 0.63 +/- 0.08, and A3: 0.57 +/- 0.09; alpha index, A1: 0.58 +/- 0.08, A2: 0.48 +/- 0.06, and A3: 0.50 +/- 0.09 ms/mmHg, not significant). However, LF-BRS decreased (gain, A1: 0.39 +/- 0.06, A2: 0.17 +/- 0.02, and A3: 0.11 +/- 0.01, P < 0.001; alpha index, A1: 0.46 +/- 0.07, A2: 0.20 +/- 0.02, and A3: 0.14 +/- 0.01 ms/mmHg, P < 0.001). As expected, once VTs were exceeded, hyperpnea induced a marked increase in both HF-HRV and HF-SBPV. However, this concomitant increase allowed the maintenance of HF-BRS, presumably by a mechanoelectric feedback mechanism.  相似文献   

7.
In heart failure (HF), there is a reduced baroreflex sensitivity at rest, and during dynamic exercise there is enhanced muscle metaboreflex activation (MRA). However, how the arterial baroreflex modulates HR during exercise is unknown. We tested the hypothesis that spontaneous baroreflex sensitivity (SBRS) is attenuated during exercise in HF and that MRA further depresses SBRS. In seven conscious dogs we measured heart rate (HR), cardiac output, and left ventricular systolic pressure at rest and during mild and moderate dynamic exercise, before and during MRA (via imposed reductions of hindlimb blood flow), and before and after induction of HF (by rapid ventricular pacing). SBRS was assessed by the sequences method. In control, SBRS was reduced from rest with a progressive resetting of the baroreflex stimulus-response relationship in proportion to exercise intensity and magnitude of MRA. In HF, SBRS was significantly depressed in all settings; however, the changes with exercise and MRA occurred with a pattern similar to the control state. As in control, the baroreflex stimulus-response relationship showed an intensity- and muscle metaboreflex (MMR)-dependent rightward and upward shift. The results of this study indicate that HF induces an impairment in baroreflex control of HR at rest and during exercise, although the effects of exercise and MRA on SBRS occur with a similar pattern as in control, indicating the persistence of some vagal activity.  相似文献   

8.
The goal of this study was to determine the baroreflex influence on systolic arterial pressure (SAP) and pulse interval (PI) variability in conscious mice. SAP and PI were measured in C57Bl/6J mice subjected to sinoaortic deafferentation (SAD, n = 21) or sham surgery (n = 20). Average SAP and PI did not differ in SAD or control mice. In contrast, SAP variance was enhanced (21 +/- 4 vs. 9.5 +/- 1 mmHg2) and PI variance reduced (8.8 +/- 2 vs. 26 +/- 6 ms2) in SAD vs. control mice. High-frequency (HF: 1-5 Hz) SAP variability quantified by spectral analysis was greater in SAD (8.5 +/- 2.0 mmHg2) compared with control (2.5 +/- 0.2 mmHg2) mice, whereas low-frequency (LF: 0.1-1 Hz) SAP variability did not differ between the groups. Conversely, LF PI variability was markedly reduced in SAD mice (0.5 +/- 0.1 vs. 10.8 +/- 3.4 ms2). LF oscillations in SAP and PI were coherent in control mice (coherence = 0.68 +/- 0.05), with changes in SAP leading changes in PI (phase = -1.41 +/- 0.06 radians), but were not coherent in SAD mice (coherence = 0.08 +/- 0.03). Blockade of parasympathetic drive with atropine decreased average PI, PI variance, and LF and HF PI variability in control (n = 10) but had no effect in SAD (n = 6) mice. In control mice, blockade of sympathetic cardiac receptors with propranolol increased average PI and decreased PI variance and LF PI variability (n = 6). In SAD mice, propranolol increased average PI (n = 6). In conclusion, baroreflex modulation of PI contributes to LF, but not HF PI variability, and is mediated by both sympathetic and parasympathetic drives in conscious mice.  相似文献   

9.
Heart failure is associated with autonomic imbalance, and this can be evaluated by a spectral analysis of heart rate variability. However, the time course of low-frequency (LF) and high-frequency (HF) heart rate variability changes, and their functional correlates during progression of the disease are not exactly known. Progressive heart failure was induced in 16 beagle dogs over a 7-wk period by rapid ventricular pacing. Spectral analysis of heart rate variability and respiration, echocardiography, hemodynamic measurements, plasma atrial natriuretic factor, and norepinephrine was obtained at baseline and every week, 30 min after pacing interruption. Progressive heart failure increased heart rate (from 91 +/- 4 to 136 +/- 5 beats/min; P < 0.001) and decreased absolute and normalized (percentage of total power) HF variability from week 1 and 2, respectively (P < 0.01). Absolute LF variability did not change during the study until it disappeared in two dogs at week 7 (P < 0.05). Normalized LF variability increased in moderate heart failure (P < 0.01), leading to an increased LF-to-HF ratio (P < 0.05), but decreased in severe heart failure (P < 0.044; week 7 vs. week 5). Stepwise regression analysis revealed that among heart rate variables, absolute HF variability was closely associated with wedge pressure, right atrial and pulmonary arterial pressure, left ventricular ejection fraction and volume, ratio of maximal velocity of early (E) and atrial (A) mitral flow waves, left atrial diameter, plasma norepinephrine, and atrial natriuretic peptide (0.45 < r < 0.65, all P < 0.001). In tachycardia-induced heart failure, absolute HF heart rate variability is a more reliable indicator of cardiac dysfunction and neurohumoral activation than LF heart rate variability.  相似文献   

10.
Nineteen males (aged 45-68 yr) were studied before and after either a period of regular endurance exercise [walk/jog 3-4 days/wk for 30 +/- 1 (SE) wk, n = 11] or unchanged physical activity (38 +/- 2 wk, n = 8) (controls) to determine the influence of physical training on cardiac parasympathetic (vagal) tone and baroreflex control of heart rate (HR) and limb vascular resistance (VR) at rest in middle-aged and older men. Training resulted in a marked increase in maximal O2 uptake (31.6 +/- 1.2 vs. 41.0 +/- 1.8 ml.kg-1.min-1, 2.56 +/- 0.16 vs. 3.20 +/- 0.18 l/min, P less than 0.05) and small (P less than 0.05) reductions in body weight (81.2 +/- 3.5 vs. 78.7 +/- 4.0 kg) and body fat (23.8 +/- 1.3 vs. 20.9 +/- 1.3%). HR at rest was slightly, but consistently, lower after training (63 +/- 2 vs. 58 +/- 1 beats/min, P less than 0.05). In general, HR variability (index of cardiac vagal tone) was greater after training. Chronotropic responsiveness to either brief carotid baroreflex stimulation (neck suction) or inhibition (neck pressure), or to non-specific arterial baroreflex inhibition induced by a hypotensive level of lower body suction, was unchanged after training. In contrast, the magnitude of the reflex increase in forearm VR in response to three levels of lower body suction was markedly attenuated after training (38-59%; P less than 0.05 at -10 and -30 mmHg; P = 0.07 at -20 mmHg). None of these variables or responses was altered over time in the controls. These findings indicate that in healthy, previously sedentary, middle-aged and older men, strenuous and prolonged endurance training 1) elicits large increases in maximal exercise capacity and small reductions in HR at rest, 2) may increase cardiac vagal tone at rest, 3) does not alter arterial baroreflex control of HR, and 4) results in a diminished forearm vasoconstrictor response to reductions in baroreflex sympathoinhibition.  相似文献   

11.
AimsThe present study evaluated the effects of ovariectomy on heart rate and arterial pressure variability and cardiac baroreflex sensitivity (BRS) in female spontaneously hypertensive (SHR) and Wistar–Kyoto rats (WKY).Main methodsSham-surgery animals were used as control. Sixteen weeks after ovariectomy or sham-surgery, animals were recorded. Time series of pulse interval (PI) and systolic AP (SAP) were analyzed by means of autoregressive spectral analysis, which quantifies the power of very low (VLF = 0.01–0.25 Hz), low (LF = 0.25–0.75 Hz) and high frequency (HF = 0.75–2.5 Hz) bands. BRS was assessed by means of linear regression between changes of PI and SAP induced by vasoactive drugs or calculation of α-index, a spontaneous BRS index.Key findingsThere was no difference in baseline PI or SAP between ovariectomized and sham SHR. Spectral analysis of heart rate variability suggested a shift of sympatho-vagal balance toward sympathetic predominance in ovariectomized SHR (LF/HF = 1.8 ± 0.2 versus 0.7 ± 0.2 in sham SHR, p < 0.05). Ovariectomy increased total variance and VLF power of SAP in SHR (29.1 ± 9.6 mmHg2 and 18.6 ± 6.3 mmHg2 versus 9.1 ± 2.1 mmHg2 and 4.3 ± 1.4 mmHg2, respectively, in sham SHR, p < 0.05). In addition, ovariectomy reduced reflex bradycardia in SHR (0.18 ± 0.03 ms/mmHg versus 0.34 ± 0.06 ms/mmHg in sham SHR, p < 0.05). Ovariectomy did not affect heart rate and SAP variability or BRS in WKY.SignificanceThese data showed that ovarian hormones deprivation induced marked changes on cardiovascular control, increasing SAP variability and cardiac sympatho-vagal balance and blunting BRS in female hypertensive animals, which reinforce the possible protective role of ovarian hormones on the cardiovascular system.  相似文献   

12.
During orthostatic stress, arterial and cardiopulmonary baroreflexes play a key role in maintaining arterial pressure by regulating heart rate. This study presents a mathematical model that can predict the dynamics of heart rate regulation in response to postural change from sitting to standing. The model uses blood pressure measured in the finger as an input to model heart rate dynamics in response to changes in baroreceptor nerve firing rate, sympathetic and parasympathetic responses, vestibulo-sympathetic reflex, and concentrations of norepinephrine and acetylcholine. We formulate an inverse least squares problem for parameter estimation and successfully demonstrate that our mathematical model can accurately predict heart rate dynamics observed in data obtained from healthy young, healthy elderly, and hypertensive elderly subjects. One of our key findings indicates that, to successfully validate our model against clinical data, it is necessary to include the vestibulo-sympathetic reflex. Furthermore, our model reveals that the transfer between the nerve firing and blood pressure is nonlinear and follows a hysteresis curve. In healthy young people, the hysteresis loop is wide, whereas, in healthy and hypertensive elderly people, the hysteresis loop shifts to higher blood pressure values, and its area is diminished. Finally, for hypertensive elderly people, the hysteresis loop is generally not closed, indicating that, during postural change from sitting to standing, baroreflex modulation does not return to steady state during the first minute of standing.  相似文献   

13.
Experiments tested the effect of stress coupled with cholinesterase inhibition on blood pressure, heart rate, baroreflex index, and variability in time and frequency domain in conscious mice. The objective was to determine whether cholinergic systems interact with stress to alter cardiovascular responses. Male C57BL/6J mice with arterial catheters were exposed to 3-day treatments: 1) intermittent shaker stress, 2) pyridostigmine (10 mg.kg(-1).day(-1)); or 3) combined pyridostigmine and stress. Pyridostigmine reduced blood cholinesterase (-33%) with no added effects of stress. Twenty-four-hour blood pressure recordings showed that there were no differences in blood pressure and heart rate with the treatments. Pulse interval standard deviation was greatly increased in the pyridostigmine/stress group compared with stress or pyridostigmine groups (11.0 +/- 1.4, 5.0 +/- 0.9, and 7.5 +/- 0.9 ms, respectively). Spectral analysis showed two distinct components for pulse interval variability (low and high frequency). Variability in the low-frequency range was greatly enhanced in the pyridostigmine/stress group, seen as a doubling of the power (9.5 +/- 1.7, 3.3 +/- 0.9, and 5.0 +/- 0.6 ms for pyridostigmine/stress, stress and pyridostigmine groups, respectively). Baroreflex sensitivity was also increased in the pyridostigmine/stress group (3.6 +/- 0.5 compared with 1.8 +/- 0.3 and 1.7 +/- 0.5 ms/mmHg in the stress and pyridostigmine groups, respectively). There was no difference in blood pressure variability or its spectral components. Results demonstrate that there are potent interactions between a mild stressor and cholinesterase inhibition seen as an accentuation of low-frequency variability in pulse interval time series, probably associated with baroreflex input and autonomic drive.  相似文献   

14.
We compared the cardiac inotropic, lusitropic, and chronotropic responses to the Na(+) channel enhancer LY-368052 in conscious dogs before and after development of congestive heart failure (CHF). We also examined the effect of LY-368052 on baroreflex sensitivity and the efferent neural mechanisms of the bradycardic response in heart failure. Dogs were chronically instrumented, and heart failure was induced by right ventricular pacing at 240 beats/min for 3-4 wk. LY-368052 dose-dependently increased left ventricular contractile performance before and after the development of CHF to a similar extent. The inotropic effect of LY-368052 in heart failure was not altered by either ganglionic or beta-adrenergic receptor blockade. LY-368052 improved cardiac relaxation and induced bradycardia in dogs with heart failure but not in normal dogs. The negative chronotropic effect of LY-368052 was eliminated by ganglionic blockade but not beta-adrenergic blockade, suggesting that the bradycardia was mediated by the autonomic nervous system via enhanced parasympathetic tone. Baroreflex sensitivity was assessed as the pulse interval-mean arterial pressure slope in response to temporary pharmacological (nitroglycerin or phenylephrine) and mechanical (brief occlusion of inferior vena cava) alterations of arterial pressure in conscious dogs before and after development of heart failure. Baroreflex sensitivity was significantly depressed in heart failure and restored completely by acute treatment with LY-368052. Thus the Na(+) channel enhancer LY-368052 maintains its beta-receptor-independent inotropic effect in chronic CHF and specifically improves ventricular relaxation and depressed baroreflex function.  相似文献   

15.
Dynamic cardiac baroreflex responses are frequently investigated by analyzing the spontaneous reciprocal changes in arterial pressure and heart rate (HR). However, whether the spontaneous baroreflex-induced changes in HR translate into changes in cardiac output (CO) is unknown. In addition, this linkage between changes in HR and changes in CO may be different in subjects with heart failure (HF). We examined these questions using conscious dogs before and after pacing-induced HF. Spontaneous baroreflex sensitivity in the control of HR and CO was evaluated as the slopes of the linear relationships between HR or CO and left ventricular systolic pressure (LVSP) during spontaneous sequences of greater or equal to three consecutive beats when HR or CO changed inversely versus pressure. Furthermore, the translation of baroreflex HR responses into CO responses (HR-CO translation) was examined by computing the overlap between HR and CO sequences. In normal resting conditions, 44.0 +/- 4.4% of HR sequences overlapped with CO sequences, suggesting that only around half of the baroreflex HR responses cause CO responses. In HF, HR-LVSP, CO-LVSP, and the HR-CO translation significantly decreased compared with the normal condition (-2.29 +/- 0.5 vs. -5.78 +/- 0.7 beats.min(-1).mmHg(-1); -70.95 +/- 11.8 vs. -229.89 +/- 29.6 ml.min(-1).mmHg(-1); and 19.66 +/- 4.9 vs. 44.0 +/- 4.4%, respectively). We conclude that spontaneous baroreflex HR responses do not always cause changes in CO. In addition, HF significantly decreases HR-LVSP, CO-LVSP, and HR-CO translation.  相似文献   

16.
The application of modern methods of mathematical processing of non-stationary quasi-periodic data to the analysis of heart-rate variability is considered. Methods for the assessment of new parameters in non-linear variability analysis are described in detail. Mathematical models of heart rhythm are developed with the presence of various noise processes taken into account. A model of the state of the cardiovascular system based on the analysis of heart-rate variability has been developed. A theoretical estimate of the sensitivity of heart-rate variability indices to changes in the state of the cardiovascular system has been obtained for model data. Clinical studies of the parameters of heart-rate variability included in the analysis have been performed within the framework of cardiological screening for coronary heart disease.  相似文献   

17.
Exercise training (EX) has become an important modality capable of enhancing the quality of life and survival of patients with chronic heart failure (CHF). Although 4 wk of EX in animals with CHF evoked a reduction in renal sympathetic nerve activity and ANG II plasma levels and an enhancement in baroreflex sensitivity at rest (Liu JL, Irvine S, Reid IA, Patel KP, Zucker IH, Circulation 102: 1854-1862, 2000; Liu JL, Kulakofsky J, Zucker IH, J Appl Physiol 92: 2403-2408, 2002), it is unclear whether these phenomena are causally related. CHF was induced in rabbits by ventricular pacing (360-380 beats/min) for 3 wk. CHF rabbits were EX for 4 wk at 15-18 m/min, 6 days/wk, 30-40 min/day. Three groups of rabbits were studied: CHF (with no EX), CHF-EX, and CHF-EX + ANG II infusion [in which ANG II levels were kept at or near levels observed in CHF (non-EX) rabbits by subcutaneous osmotic minipump infusion]. EX prevented the increase in plasma ANG II levels shown in CHF rabbits. CHF and CHF-EX + ANG II infusion rabbits had significantly depressed baroreflex sensitivity slopes (P < 0.01 for sodium nitroprusside and P < 0.001 for phenylephrine) and higher baseline renal sympathetic nerve activities than CHF-EX animals. EX downregulated mRNA and protein expression of ANG II type 1 receptors in the rostral ventrolateral medulla in CHF rabbits. This was prevented by ANG II infusion. These data are consistent with the view that the reduction in sympathetic nerve activity and the improvement in baroreflex function in CHF after EX are due to the concomitant reduction in ANG II and angiotensin receptors in the central nervous system.  相似文献   

18.
We have previously shown that spontaneous baroreflex-induced changes in heart rate (HR) do not always translate into changes in cardiac output (CO) at rest. We have also shown that heart failure (HF) decreases this linkage between changes in HR and CO. Whether dynamic exercise and muscle metaboreflex activation (via imposed reductions in hindlimb blood flow) further alter this translation in normal and HF conditions is unknown. We examined these questions using conscious, chronically instrumented dogs before and after pacing-induced HF during mild and moderate dynamic exercise with and without muscle metaboreflex activation. We measured left ventricular systolic pressure (LVSP), CO, and HR and analyzed the spontaneous HR-LVSP and CO-LVSP relationships. In normal animals, mild exercise significantly decreased HR-LVSP (-3.08 +/- 0.5 vs. -5.14 +/- 0.6 beats.min(-1).mmHg(-1); P < 0.05) and CO-LVSP (-134.74 +/- 24.5 vs. -208.6 +/- 22.2 ml.min(-1).mmHg(-1); P < 0.05). Moderate exercise further decreased both and, in addition, significantly reduced HR-CO translation (25.9 +/- 2.8% vs. 52.3 +/- 4.2%; P < 0.05). Muscle metaboreflex activation at both workloads decreased HR-LVSP, whereas it had no significant effect on CO-LVSP and the HR-CO translation. HF significantly decreased HR-LVSP, CO-LVSP, and the HR-CO translation in all situations. We conclude that spontaneous baroreflex HR responses do not always cause changes in CO during exercise. Moreover, muscle metaboreflex activation during mild and moderate dynamic exercise reduces this coupling. In addition, in HF the HR-CO translation also significantly decreases during both workloads and decreases even further with muscle metaboreflex activation.  相似文献   

19.
20.
Patients with postural tachycardia syndrome (POTS) have excessive tachycardia without hypotension during orthostasis as well as exercise. We tested the hypothesis that excessive tachycardia during exercise in POTS is not related to abnormal baroreflex control of heart rate (HR). Patients (n = 13) and healthy controls (n = 10) performed graded cycle exercise at 25, 50, and 75 W in both supine and upright positions while arterial pressure (arterial catheter) and HR (ECG) were measured. Baroreflex sensitivity of HR was assessed by bolus intravenous infusion of phenylephrine at each workload. In both positions, HR was higher in the patients than the controls during exercise. Supine baroreflex sensitivity (HR/systolic pressure) in POTS patients was -1.3 +/- 0.1 beats.min(-1).mmHg(-1) at rest and decreased to -0.6 +/- 0.1 beats.min(-1).mmHg(-1) during 75-W exercise, neither significantly different from the controls (P > 0.6). In the upright position, baroreflex sensitivity in POTS patients at rest (-1.4 +/- 0.1 beats.min(-1).mmHg(-1)) was higher than the controls (-1.0 +/- 0.1 beats.min(-1).mmHg(-1)) (P < 0.05), and it decreased to -0.1 +/- 0.04 beats.min(-1).mmHg(-1) during 75-W exercise, lower than the controls (-0.3 +/- 0.09 beats.min(-1).mmHg(-1)) (P < 0.05). The reduced arterial baroreflex sensitivity of HR during upright exercise was accompanied by greater fluctuations in systolic and pulse pressure in the patients than in the controls with 56 and 90% higher coefficient of variations, respectively (P < 0.01). However, when baroreflex control of HR was corrected for differences in HR, it was similar between the patients and controls during upright exercise. These results suggest that the tachycardia during exercise in POTS was not due to abnormal baroreflex control of HR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号