首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have compared the two-dimensional gel profiles of Triton models of normal rat kidney (NRK) cells and their Kirsten viral transformant, 442. Several protein differences were detected. The models of the transformed line lacked five acidic polypeptides and possessed a much higher intermediate filament to actin ratio. Scanning microscopy reveals significant ultrastructural differences in these models, with the NRK line exhibiting a much more filamentous structure. In addition, nuclease treatment of NRK models causes a dramatic change in their scanning image while the 442 models are unaffected. Nuclease treated models lack microfilaments and appear to contain only intermediate filaments, although actin is still a prominent protein constituent.  相似文献   

2.
Tropomyosin in peripheral ruffles of cultured rat kidney cells   总被引:2,自引:0,他引:2  
Tropomyosin distribution has been studied in two normal lines and one transformed line of rat kidney cells during the early phases of substrate attachment and growth. One non-motile normal line, which spreads rapidly after attachment, immediately begins to assemble prominent stress fibers that contain tropomyosin. It displays small peripheral ruffles that are not noticeably stained with anti-tropomyosin. The other normal line is motile and produces large ruffles that are brightly stained with anti-tropomyosin. Large numbers of tropomyosin-positive stress fibers assemble only after the cells stop moving and lose the peripheral ruffles. The transformed line does not assemble stress fibers but does contain large numbers of actin filament bundles in ruffles on the cell surface that are stained with anti-tropomyosin. These observations indicate that cytoskeletal tropomyosin is not restricted in distribution to stress fibers, and may undergo re-organization along with actin during the transition from motile to non-motile behavior.  相似文献   

3.
Cultured rat cells contain five isoforms of tropomyosin (Matsumura, F., Yamashiro-Matsumura, S., and Lin, J.J.-C. (1983) J. Biol. Chem. 258, 6636-6644). To explore the roles of the multiple tropomyosin isoforms in the microfilament organization of cultured cells, we have examined effects of tropomyosins on the bundling activity of the 55-kDa protein recently purified from HeLa cells (Yamashiro-Matsumura, S., and Matsumura, F. (1985) J. Biol. Chem. 260, 5087-5097). Maximum bundling of F-actin was observed at a molar ratio of 55-kDa protein to actin higher than 1:8. None of the isoforms of cultured rat cell tropomyosin significantly altered the F-actin-bundling activity of 55-kDa protein at this ratio, whereas skeletal muscle tropomyosin inhibited the bundling activity to about 50%. Also, cultured cell tropomyosins did not inhibit binding of 55-kDa protein to actin, whereas skeletal muscle tropomyosin inhibited it by 50%. The effect of 55-kDa protein on the binding of tropomyosin to actin varied with the isoform type of tropomyosin. Most (80%) of the tropomyosins with low Mr values (Mr 32,400 or 32,000) were caused to dissociate from actin by 55-kDa protein, but only 20% of tropomyosins with high Mr values (Mr 40,000 or 36,500) was dissociated from actin in these conditions. Immunofluorescence has shown that, while tropomyosin was localized in stress fibers, 55-kDa protein was found in microspikes as well as stress fibers, both of which are known to contain bundles of microfilaments. Therefore, we suggest that 55-kDa protein together with the multiple tropomyosin isoforms may regulate the formation of two types of actin-filament bundles, bundles containing tropomyosin and those without tropomyosin.  相似文献   

4.
To determine if a living cell is necessary for the incorporation of actin, alpha-actinin, and tropomyosin into the cytoskeleton, we have exposed cell models to fluorescently labeled contractile proteins. In this in vitro system, lissamine rhodamine-labeled actin bound to attachment plaques, ruffles, cleavage furrows and stress fibers, and the binding could not be blocked by prior exposure to unlabeled actin. Fluorescently labeled alpha-actinin also bound to ruffles, attachment plaques, cleavage furrows, and stress fibers. The periodicity of fluorescent alpha-actinin along stress fibers was wider in gerbil fibroma cells than it was in PtK2 cells. The fluorescent alpha-actinin binding in cell models could not be blocked by the prior addition of unlabeled alpha-actinin suggesting that alpha-actinin was binding to itself. While there was only slight binding of fluorescent tropomyosin to the cytoskeleton of interphase cells, there was stronger binding in furrow regions of models of dividing cells. The binding of fluorescently labeled tropomyosin could be blocked by prior exposure of the cell models to unlabeled tropomyosin. If unlabeled actin was permitted to polymerize in the stress fibers in cell models, fluorescently labeled tropomyosin stained the fibers. In contrast to the labeled contractile proteins, fluorescently labeled ovalbumin and BSA did not stain any elements of the cytoskeleton. Our results are discussed in terms of the structure and assembly of stress fibers and cleavage furrows.  相似文献   

5.
Using a newly developed method for microfilament isolation (Matsumura, F., Yamashiro-Matsumura, S. and Lin, J. J.-C. (1983) J. Biol. Chem. 258, 6636-6644), we have analyzed protein composition of microfilaments in "normal" and transformed rat tissue culture cells. They include REF-52 (an established rat embryo cell line) cells, REF-52 transformed by DNA viruses (SV40 or adenovirus type 5), normal rat kidney cells, and normal rat kidney cells transformed by RNA viruses (Kirsten or Rous sarcoma virus). Microfilaments from normal rat culture cells contain three major tropomyosins (apparent Mr = 40,000, 36,500, and 32,400) and two relatively minor tropomyosins (apparent Mr = 35,000 and 32,000). In transformed cells the levels of one or two of the major tropomyosins (Mr = 40,000 and 36,500) are decreased and the levels of one or both of the minor tropomyosins (Mr = 35,000 and 32,000) are increased. These changes in tropomyosin patterns were also observed in temperature shift experiments with rat-1 cells transformed with a Rous sarcoma virus mutant, temperature-sensitive for transformation. Cell-free translation of whole cell mRNA generated similar tropomyosin patterns on two-dimensional gels, suggesting that changes in the pattern of tropomyosin expression were largely effected at the level of RNA rather than by post-translational modification. Such changes in the tropomyosin composition of microfilaments were consistently found to accompany the various morphological alterations associated with transformation. We suggest that alterations in the pattern of tropomyosin expression are involved in, or cause, rearrangement of stress fibers and that this may be responsible (in part) for morphological transformation.  相似文献   

6.
Microfilaments were isolated from cultured mammalian cells, utilizing procedures similar to those for isolation of "native" thin filaments from muscle. Isolated microfilaments from rat embryo, baby hamster kidney (BHK- 21), and Swiss mouse 3T3 cells appeared structurally similar to muscle thin filaments, exhibiting long, 6 nm Diam profiles with a beaded, helical substructure. An arrowhead pattern was observed after reaction of isolated microfilaments with rabbit skeletal muscle myosin subfragment 1. Under appropriate conditions, isolated microfilaments will aggregate into a form that resembles microfilament bundles seen in situ cultured cells. Isolated microfilaments represent a complex of proteins including actin. Some of these components have been tentatively identified, based on coelectrophoresis with purified proteins, as myosin, tropomyosin, and a high molecular weight actin-binding protein. The tropomyosin components of isolated microfilaments were unexpected; polypeptides comigrated on SDS-polyacrylamide gels with both muscle and nonmuscle types of tropomyosin. In order to identify more specifically these subunits, we isolated and partially characterized tropomyosin from three cell types. BHK-21 cell tropomyosin was similar to other nonmuscle tropomyosins, as judged by several criteria. However, tropomyosin isolated from rate embryo and 3T3 cells contained subunits that comigrated with both skeletal muscle and nonmuscle types of myosin, whereas the BHK cell protein consistently contained a minor muscle-like subunit. The array of tropomyosin subunits present in a cell culture was reflected in the polypeptide chain pattern seen on SDS-polyacrylamide gels of microfilaments isolated from that culture. These studies provide a starting point for correlating changes in the ultrastructural organization of microfilaments with alterations in their protein composition.  相似文献   

7.
The amount of actin and total protein per cell in normal rat kidney (NRK) cells in culture is initially high in very low density cultures, but rapidly decreases as the cells come into contact in higher density cultures. In a viral transformant of NRK (442), the level of actin and total protein does not change significantly from low to high density cultures. NRK cells, which are flattened against the substrate, have prominent bundles of actinlike microfilaments in the basal cytoplasm adjacent to the substrate. 442 cells, which adhere poorly and are more spherical in shape, lack well-organized basal microfilament bundles, but may display microfilament bundles in cytoplasmic processes extending from the cell body. The percentage of insoluble actin is less than 20% in both cell lines, and 442 cells consistently contain smaller amounts than NRK cells.  相似文献   

8.
Flow cytometry and staining with 7-nitrobenz-2-oxa-1,3-diazole-phallacidin were used to investigate organization of the actin cytoskeleton in rat embryo cells at different stages of normal and adenovirus E1A-induced cell cycles. In uninfected cells in G0-G1 and S phases, actin was predominantly in the form of stress fibers. In G2, this organization changed to peripheral rings of thin filaments, while during mitosis, actin had a diffuse distribution. Infection of quiescent rat cells by adenovirus caused them to enter the cell cycle and replicate DNA and also caused disruption of stress fibers. Rapid disappearance of stress fibers and the appearance of peripheral rings of actin filaments began from 13 h after infection and closely followed synthesis of the E1A proteins. Infected cells began S phase at about 24 h after infection, and cells in G2 and mitosis were seen from 30 to 50 h. Thus, disruption of the actin cytoskeleton is an early effect of E1A and not an indirect consequence of the entry of infected cells into the cell cycle.  相似文献   

9.
We have developed a new method for the rapid isolation of tropomyosin-containing microfilaments from cultured cells using anti-tropomyosin monoclonal antibodies. Anti-tropomyosin monoclonal antibodies induce the bundle formation of microfilaments, which can be easily collected by low speed centrifugation. Electron microscopic studies of the isolated microfilaments show periodic localization of tropomyosin along the microfilaments of nonmuscle cells with a 33-34 nm repeat. Furthermore, the isolated microfilaments have the ability to activate the Mg2+-ATPase activity of skeletal muscle myosin to almost the same extent as skeletal muscle F-actin (filamentous actin). This microfilament isolation method is applicable to a variety of cell types, including REF-52 cells (an established rat embryo line), L6 myoblasts, 3T3 fibroblasts, Chinese hamster ovary cells, baby hamster kidney (BHK-21) cells, mouse neuroblastoma cells, gerbil fibroma cells, and chicken embryo fibroblasts. Sodium dodecyl sulfate-polyacrylamide gel analysis shows that, in addition to actin, microfilaments isolated from REF-52 cells contain five species of tropomyosin with apparent Mr = 40,000, 36,500, 35,000, 32,400, and 32,000, alpha-actinin, and as yet unknown proteins with apparent Mr = 83,000 and 37,000. The molar ratio of total tropomyosin (dimer) to actin in the isolated microfilaments is 1:8. The patterns of these multiple forms of tropomyosin were found to change when REF-52 cells were transformed with SV40 or adenovirus type 5.  相似文献   

10.
Granulosa cell differentiation in vitro in response to gonadotropins is characterized by major changes in cell shape, cell aggregation, and the organization of microfilaments. These changes are associated with enhanced steroidogenesis in maturing granulosa-lutein cells. Since nonmuscle tropomyosin isoforms were implicated in stabilizing actin filaments, we studied the organization and expression of tropomyosin in differentiating primary cultures of rat granulosa cells and during ovarian folliculogenesis and luteinization. In unstimulated primary granulosa cell cultures tropomyosin was found mainly along stress fibers. In differentiating cells tropomyosin staining was diffuse with sometimes a subcortical organization. The changes in tropomyosin organization were accompanied by a pronounced decrease in the synthesis, translation in vitro, and mRNA levels of all the rat nonmuscle tropomyosin isoforms, with a greater reduction in the higher molecular weight isoforms than in the smaller isoforms. Similar results were obtained whether cells were stimulated to differentiate with gonadotropins, with cAMP, by culturing cells on an extracellular matrix, or by treatment with cytochalasin B. The effect of cytochalasin B was reversible; upon removal of the drug tropomyosin synthesis increased to near control levels, while that of proteins associated with luteinization decreased drastically. RNA isolated from ovaries with follicles at the preantral, preovulatory stage and from corpora lutea contained decreased tropomyosin mRNA levels during ovarian luteinization when the level of RNA for a key steroidogenic enzyme, cytochrome P-450 cholesterol side chain cleavage (P-450 scc), increased. The results suggest a physiological relevance for the low level of tropomyosin expression in the mechanisms which bring about the morphological and biochemical development and maturation of granulosa cells.  相似文献   

11.
《The Journal of cell biology》1990,111(6):2475-2485
Villin, a Ca2(+)-regulated F-actin bundling, severing, capping, and nucleating protein, is a major component of the core of microvilli of the intestinal brush border. Its actin binding properties, tissue specificity, and expression during cell differentiation suggest that it might be involved in the organization of the microfilaments in intestinal epithelial cells to form a brush border. Recently, Friederich et al., (Friederich, E., C. Huet, M. Arpin, and D. Louvard. 1989. Cell. 59:461-475) showed that villin expression in transiently transfected fibroblasts resulted in the loss of stress fibers and the appearance of large cell surface microvilli on some cells. Here, we describe the effect of villin microinjection into cells that normally lack this protein, which has allowed us to examine the immediate and long-term effects of introducing different concentrations of villin on microfilament organization and function. Microinjected cells rapidly lost their stress fibers and the actin was reorganized into abundant villin containing cortical structures, including microspikes and, in about half the cells, large surface microvilli. This change in actin organization persisted in cells for at least 24 h, during which time they had gone through two or three cell divisions. Microinjection of villin core, that lacks the bundling activity of villin but retains all the Ca2(+)-dependent properties, disrupted the stress fiber system and had no effect on cell surface morphology. Thus, the Ca2(+)-dependent activities of villin are responsible for stress fiber disruption, and the generation of cell surface structures is a consequence of its bundling activity. Microinjection of villin led to the reorganization of myosin, tropomyosin, and alpha-actinin, proteins normally associated with stress fibers, whereas both fimbrin and ezrin, which are also components of microvillar core filaments, were readily recruited into the induced surface structures. Vinculin was also redistributed from its normal location in focal adhesions. Despite these changes in the actin cytoskeleton, cells were able to divide and undergo cytokinesis, move, spread on a substratum, and ruffle. Thus, we show that a single microfilament-associated protein can reorganize the entire microfilament structure of a cell, without interfering with general microfilament-based functions like cytokinesis, cell locomotion, and membrane ruffling.  相似文献   

12.
Skeletal muscle F-actin and smooth muscle tropomyosin separately labeled with the fluorescent reporter group 5-iodoacetamidofluorescein (5-IAF) were further purified to yield G-actin fully competent to polymerize and tropomyosin able to bind specifically to F-actin. The two fluorescent proteins (dye content of 0.4–0.5 moles/mole of protein) were microinjected into tissue culture cells and their intracellular distribution was followed by TV image intensification. Fluorescent actin is found in the stress fibers and in the lamellopodia and ruffling edges of the cells. In addition a general cytoplasmic fluorescence is observed as well as fluorescent patches, which could be actin paracrystals. In contrast tropomyosin is not incorporated into ruffles although it is clearly seen along the stress fibers and gives rise to general cytoplasmic fluorescence. Control experiments using fluorescent serum albumin show no specific visualization of either stress fibers or ruffles. The specificity of the incorporation of the fluorescently labeled contractile proteins into the microfilament structures is further documented by the preparation of detergent resistant cytoskeletons which retain actin and tropomyosin in the appropriate structures but are devoid of fluorescent serum albumin. In addition the distribution of the contractile proteins in the living cells is affected by the microfilament specific drugs phalloidin and cytochalasin B (CB). The results obtained on live cells are in excellent agreement with conclusions drawn from immunofluorescence microscopical observations on fixed cells. In addition they directly prove the rather obvious point that contractile proteins are constantly rearranged in tissue culture cells.  相似文献   

13.
Differentiation of 3T3-F442A cells was accompanied by changes in cell morphology, decreased synthesis and assembly of actin and fibronectin. The network of microfilament stress fibers detected with NBD-phallacidin was altered during adipose conversion of 3T3-F442A cells. Parallel to this, the disappearance of fibrillar bundles of extracellular matrix fibronectin was observed by immunofluorescence staining. The pericellular fibronectin content, detected by immunoblotting, strongly diminished during the differentiation process. An altered rate of biosynthesis of both proteins was also measured by [35S]-methionine pulse-labeling and immunoprecipitation. A 4-5-fold decrease in cellular fibronectin synthesis was observed in adipocytes compared to control preadipocytes. Conversely, non-differentiating 3T3-C2 control cells did not reorganize either the cytoskeletal architecture or the extracellular matrix fibronectin in the resting state. These results suggest that the decreased rate of biosynthesis of cell-associated fibronectin is correlated with that of actin. Moreover, both events can essentially be ascribed to differentiation.  相似文献   

14.
Nuclear actin - which is immunologically distinct from cytoplasmic actin - has been documented in a number of differentiated cell types, and cardiac isoforms of troponin I (cTnI) and troponin T (cTnT) have been detected in association with nuclei of adult human cardiac myocytes. It is not known whether these and related proteins are present in undifferentiated stem cells, or when they appear in cardiomyogenic cells following differentiation. We first tested the hypothesis that nuclear actin and cardiac isoforms of troponin C (cTnC) and tropomyosin (cTm) are present along with cTnI and cTnT in nuclei of isolated, neonatal rat cardiomyocytes in culture. We also tested the hypothesis that of these five proteins, only actin is present in nuclei of multipotent, bone marrow-derived mesenchymal stem cells (BM-MSCs) from adult rats in culture, but that cTnC, cTnI, cTnT and cTm appear early and uniquely following cardiomyogenic differentiation. Here we show that nuclear actin is present within nuclei of both ventricular cardiomyocytes and undifferentiated, multipotent BM-MSCs. We furthermore show that cTnC, cTnI, cTnT and cTm are not only present in myofilaments of ventricular cardiomyocytes in culture but are also within their nuclei; significantly, these four proteins appear between days 3 and 5 in both myofilaments and nuclei of BM-MSCs treated to differentiate into cardiomyogenic cells. These observations indicate that cardiac troponin and tropomyosin could have important cellular function(s) beyond Ca(2+)-regulation of contraction. While the roles of nuclear-associated actin, troponin subunits and tropomyosin in cardiomyocytes are not known, we anticipate that the BM-MSC culture system described here will be useful for elucidating their function(s), which likely involve cardiac-specific, Ca(2+)-dependent signaling in the nucleus.  相似文献   

15.
16.
In the present study, we investigated structural and functional aspects of stress fibers in a cell type in situ, i.e., the sinus endothelium of the human spleen. In this cell type, stress fibers extend underneath the basal plasma membrane and are arranged parallel to the cellular long axis. Ultrastructurally, the stress fibers were found to be composed of thin actin-like filaments (5-8 nm) and thick myosin-like filaments (10-15 nm X 300 nm). Actin filaments displayed changes in polarity (determined by S-1-myosin subfragment decoration), which may allow a sliding filament mechanism. At their plasmalemmal attachment sites, actin filaments exhibited uniform polarity with the S-1-arrowhead complexes pointing away from the plasma membrane. Fluorescence microscopy showed that the stress fibers have a high affinity for phalloidin and antibodies to actin, myosin, tropomyosin, and alpha-actinin. Vinculin was confined to the cytoplasmic aspect of the plasmalemmal termination sites of stress fibers, while laminin, fibronectin, and collagens were located at the extracellular aspect of these stress fiber-membrane associations. Western blot analysis revealed polypeptide bands that contained actin, myosin, and alpha-actinin to be major components of isolated cells. Exposure of permeabilized cells to MgATP results in prominent changes in cellular shape caused by stress fiber contraction. It is concluded that the stress fibers in situ anchored to cell-to-extracellular matrix contacts can create tension that might allow the endothelium to resist the fluid shear forces of blood flow.  相似文献   

17.
Several non-muscle tropomyosins have been reported to lack the ability to polymerize in a head-to-tail manner [Dabrowska, R. et al. (1983) J. Muscle Res. Cell Motil. 1, 83-92; C?té, G.P. (1983) Mol. Cell. Biochem. 57, 127-146]. Unlike rabbit skeletal muscle tropomyosin, these proteins could therefore not protect the F-actin microfilaments neither from disassembly or from cross-linking by the other actin-associating factors. However, we have provided evidence that, in vitro, pig platelet tropomyosin, although shorter in molecular length, exhibits the same properties as the muscle protein: it self-associates and forms a 1:6 complex with platelet filamentous actin under physiological conditions [Prulière et al. (1984) J. Muscle Res. Cell Motil. 6, 126]. In this paper, we examine the effects of several other actin-binding proteins on the microfilaments saturated with this non-muscle tropomyosin. Since contractile proteins often vary with the cell type and may require different conditions for their interactions, we have developed a procedure which allows the parallel purification of actin-binding protein (ABP), vinculin, alpha-actinin, gelsolin as well as actin and tropomyosin from the same batch of cells. Thus, using an homogeneous system, we show by viscometry, sedimentation and densitometry, and by electron microscopy, that pig platelet tropomyosin can protect the structure of the microfilaments from the action of the modulating factors to the same extent as rabbit skeletal muscle alpha-tropomyosin. Our data suggest that interaction of ABP, vinculin or alpha-actinin can occur only with the ends of the filaments when F-actin is saturated with tropomyosin, while cross-linking takes place by interactions with sites localized along the entire length of F-actin in the absence of tropomyosin. Moreover, the presence of tropomyosin on F-actin leads to the total inhibition of gelsolin severing activity, although it did not prevent the binding of gelsolin to the F-actin--tropomyosin complex. This suggests that pig platelet as well as skeletal muscle tropomyosins have the ability to increase the strength of the interaction between actin monomers within the filament. This also suggests that the binding sites of gelsolin along the filaments are not localized in the groove of the F-actin helix.  相似文献   

18.
Antisera to vertebrate actin and actin-binding proteins were used to characterize the cytoskeleton of adult Schistosoma mansoni. Actin, alpha-actinin and tropomyosin immunoreactivities were detected in the cytoplasm of the apical tegument. Antiserum to alpha-actinin bound to the tegumental spines and this protein may be involved in cross-linking of spine actin filaments. Actin, alpha-actinin and tropomyosin antisera bound to the musculature. Strongest immunoreactivity was seen in the parenchyma. Antisera to actin, alpha-actinin, tropomyosin and spectrin bound to parenchyma cells including those of the tubercles, suggesting that these proteins are located in muscle cell bodies. The distribution of cytoskeletal proteins is discussed in relation to tegumental repair processes.  相似文献   

19.
Microtubules and actin filaments are two of the major components of the cytoskeleton. There is accumulating evidence for interaction between the two networks. Both the alpha- and beta-subunits of tubulin exist as numerous isotypes, some of which have been highly conserved in evolution. In an effort to better understand the functional significance of tubulin isotypes, we used a double immunofluorescence labeling technique to investigate the interactions between the tubulin beta-isotypes and the actin stress fiber network in cultured rat kidney mesangial cells, smooth-muscle-like cells from the renal glomerulus. Removal of the soluble cytoplasmic and nucleoplasmic proteins by detergent extraction caused the microtubule network to disappear while the stress fiber network was still present. In these extracted cells, the betaI- and betaII-tubulin isotypes were no longer present in the cytoplasm while the betaIV-isotype co-localized with actin stress fibers. Co-localization between betaIV-tubulin and actin stress fibers was also observed when the microtubule network was disrupted by the anti-tubulin drug colchicine and also by microinjection of the betaIV-tubulin antibody. Our results suggest that the betaIV isotype of tubulin may be involved in interactions between microtubules and actin.  相似文献   

20.
Nonmuscle caldesmon purified from cultured rat cells shows a molecular weight of 83,000 on SDS gels, Stokes radius of 60.5 A, and sedimentation coefficient (S20,w) of 3.5 in the presence of reducing agents. These values give a native molecular weight of 87,000 and a frictional ratio of 2.04, suggesting that the molecule is a monomeric, asymmetric protein. In the absence of reducing agents, the protein is self-associated, through disulfide bonds, into oligomers with a molecular weight of 230,000 on SDS gels. These S-S oligomers appear to be responsible for the actin-bundling activity of nonmuscle caldesmon in the absence of reducing agents. Actin binding is saturated at a molar ratio of one 83-kD protein to six actins with an apparent binding constant of 5 X 10(6) M-1. Because of 83-kD nonmuscle caldesmon and tropomyosin are colocalized in stress fibers of cultured cells, we have examined effects of 83-kD protein on the actin binding of cultured cell tropomyosin. Of five isoforms of cultured rat cell tropomyosin, tropomyosin isoforms with high molecular weight values (40,000 and 36,500) show higher affinity to actin than do tropomyosin isoforms with low molecular weight values (32,400 and 32,000) (Matsumura, F., and S. Yamashiro-Matsumura. 1986. J. Biol. Chem. 260:13851-13859). At physiological concentration of KCl (100 mM), 83-kD nonmuscle caldesmon stimulates binding of low molecular weight tropomyosins to actin and increases the apparent binding constant (Ka from 4.4 X 10(5) to 1.5 X 10(6) M-1. In contrast, 83-kD protein has slight stimulation of actin binding of high molecular weight tropomyosins because high molecular weight tropomyosins bind to actin strongly in this condition. As the binding of 83-kD protein to actin is regulated by calcium/calmodulin, 83-kD protein regulates the binding of low molecular weight tropomyosins to actin in a calcium/calmodulin-dependent way. Using monoclonal antibodies to visualize nonmuscle caldesmon along microfilaments or actin filaments reconstituted with purified 83-kD protein, we demonstrate that 83-kD nonmuscle caldesmon is localized periodically along microfilaments or actin filaments with similar periodicity (36 +/- 4 nm) as tropomyosin. These results suggest that 83-kD protein plays an important role in the organization of microfilaments, as well as the control of the motility, through the regulation of the binding of tropomyosin to actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号