首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nectin-1 is an adhesion protein implicated in the organization of adherens junctions and tight junctions in epithelial cells. Previous studies in our laboratory demonstrated that nectin-1 accumulation was significantly decreased in Chlamydia trachomatis-infected HeLa cells. In the present study, Western blot analyses indicated that nectin-1 down-regulation was C. trachomatis concentration-dependent. The half-life of nectin-1 was also greatly diminished in C. trachomatis-infected cells compared to that observed in mock-infected cells, indicating that nectin-1 was likely down-regulated post-translationally. The chlamydia-secreted protease CPAF is known to degrade several important host proteins; CPAF expression within infected cells correlated with the time-dependent cleavage of nectin-1. Notably, CPAF proteolytic activity is inhibited by lactacystin but not by the proteosome inhibitor MG132. In vivo inhibition experiments demonstrated that nectin-1 down-regulation was blocked by lactacystin exposure. In contrast, MG132 had no effect. Finally, cell-free cleavage assays demonstrated that functional recombinant GST-CPAF(wt) protein degrades nectin-1. This degradation was blocked by lactacystin, as previously observed in vivo. Collectively, these results indicate that nectin-1 is degraded by CPAF in C. trachomatis-infected cells, a novel strategy that chlamydiae may use to aid their dissemination.  相似文献   

2.
3.
4.
Chlamydiae are obligate intracellular bacteria that propagate in a cytosolic vacuole. Recent work has shown that growth of Chlamydia induces the fragmentation of the Golgi apparatus (GA) into ministacks, which facilitates the acquisition of host lipids into the growing inclusion. GA fragmentation results from infection-associated cleavage of the integral GA protein, golgin-84. Golgin-84-cleavage, GA fragmentation and growth of Chlamydia trachomatis can be blocked by the peptide inhibitor WEHD-fmk. Here we identify the bacterial protease chlamydial protease-like activity factor (CPAF) as the factor mediating cleavage of golgin-84 and as the target of WEHD-fmk-inhibition. WEHD-fmk blocked cleavage of golgin-84 as well as cleavage of known CPAF targets during infection with C. trachomatis and C. pneumoniae. The same effect was seen when active CPAF was expressed in non-infected cells and in a cell-free system. Ectopic expression of active CPAF in non-infected cells was sufficient for GA fragmentation. GA fragmentation required the small GTPases Rab6 and Rab11 downstream of CPAF-activity. These results define CPAF as the first protein that is essential for replication of Chlamydia. We suggest that this role makes CPAF a potential anti-infective therapeutic target.  相似文献   

5.
Chlamydia trachomatis has evolved a profound anti-apoptotic activity that may aid in chlamydial evasion of host defense. The C. trachomatis anti-apoptotic activity has been correlated with blockade of mitochondrial cytochrome c release, inhibition of Bax and Bak activation, and degradation of BH3-only proteins. This study presents evidence that a chlamydia-secreted protease factor designated CPAF is both necessary and sufficient for degrading the BH3-only proteins. When the C. trachomatis-infected cell cytosolic extracts were fractionated by column chromatography, both the CPAF protein and activity elution peaks overlapped with the BH3-only protein degradation activity peak. Depletion of CPAF with a CPAF-specific antibody removed the BH3-only protein degradation activity from the infected cell cytosolic extracts, whereas depletion with control antibodies failed to do so. Notably, recombinant CPAF expressed in bacteria was able to degrade the BH3-only proteins, whereas CPAF mutants similarly prepared from bacteria failed to do so. Finally, bacterium-expressed CPAF also degraded the human BH3-only protein Pumaalpha purified from bacteria. These results demonstrate that CPAF contributes to the chlamydial anti-apoptotic activity by degrading the pro-apoptotic BH3-only Bcl-2 subfamily members.  相似文献   

6.
Evidence has accumulated showing that pharmacological inhibition of proteasome activity can both induce and prevent neuronal apoptosis. We tested the hypothesis that these paradoxical effects of proteasome inhibitors depend on the degree of reduced proteasome activity and investigated underlying mechanisms. Murine cortical cell cultures exposed to 0.1 microM MG132 underwent widespread neuronal apoptosis and showed partial inhibition of proteasome activity down to 30-50%. Interestingly, administration of 1-10 microM MG132 almost completely blocked proteasome activity but resulted in reduced neuronal apoptosis. Similar results were produced in cortical cultures exposed to other proteasome inhibitors, proteasome inhibitor I and lactacystin. Administration of 0.1 microM MG132 led to activation of a mitochondria-dependent apoptotic signaling cascade involving cytochrome c, caspase-9, caspase-3 and degradation of tau protein; such activation was markedly reduced with 10 microM MG132. High doses of MG132 prevented the degradation of inhibitor of apoptosis proteins (IAPs) cIAP and X chromosome-linked IAP, suggesting that complete blockade of proteasome activity interferes with progression of apoptosis. In support of this, addition of high doses of proteasome inhibitors attenuated apoptosis of cortical neurons deprived of serum. Taken together, the present results indicate that inhibition of proteasome activity can induce or prevent neuronal cell apoptosis through regulation of mitochondria-mediated apoptotic pathways and IAPs.  相似文献   

7.
Inducible nitric-oxide synthase (iNOS) is responsible for nitric oxide (NO) synthesis from l-arginine in response to inflammatory mediators. To determine the degradation pathway of iNOS, human epithelial kidney HEK293 cells with stable expression of human iNOS were incubated in the presence of various degradation pathway inhibitors. Treatment with the proteasomal inhibitors lactacystin, MG132, and N-acetyl-l-leucinyl-l-leucinyl-l-norleucinal resulted in the accumulation of iNOS, indicating that these inhibitors blocked its degradation. Moreover, proteasomal inhibition blocked iNOS degradation in a dose- and time-dependent manner as well as when NO synthesis was inhibited by N(omega)-nitro-l-arginine methyl ester. Furthermore, proteasomal inhibition blocked the degradation of an iNOS splice variant that lacked the capacity to dimerize and of an iNOS mutant that lacks l-arginine binding ability, suggesting that iNOS is targeted by proteasomes, notwithstanding its capacity to produce NO, dimerize, or bind the substrate. In contrast to proteasomal inhibitors, the calpain inhibitor calpastatin and the lysosomal inhibitors trans-epoxysuccinyl-l-leucylamido-4-guanidino butane, leupeptin, pepstatin-A, chloroquine, and NH(4)Cl did not lead to significant accumulation of iNOS. Interestingly, when cytokines were used to induce iNOS in RT4 human epithelial cells, the effect of proteasomal inhibition was dichotomous. Lactacystin added prior to cytokine stimulation prevented iNOS induction by blocking the degradation of the NF-kappaB inhibitor IkappaB-alpha, thus preventing activation of NF-kappaB. In contrast, lactacystin added 48 h after iNOS induction led to the accumulation of iNOS. Similarly, in murine macrophage cell line RAW 264.7, lactacystin blocked iNOS degradation when added 48 h after iNOS induction by lipopolysaccharide. These data identify the proteasome as the primary degradation pathway for iNOS.  相似文献   

8.
Calpain 10 is ubiquitously expressed and is one of four mitochondrial matrix proteases. We determined that over-expression or knock-down of mitochondrial calpain 10 results in cell death, demonstrating that mitochondrial calpain 10 is required for viability. Thus, we studied calpain 10 degradation in isolated mitochondrial matrix, mitochondria and in renal proximal tubular cells (RPTC) under control and toxic conditions. Using isolated renal cortical mitochondria and mitochondrial matrix, calpain 10 underwent rapid degradation at 37°C that was blocked with Lon inhibitors but not by calpain or proteasome inhibitors. While exogenous Ca(2+) addition, Ca(2+) chelation or exogenous ATP addition had no effect on calpain 10 degradation, the oxidants tert-butyl hydroperoxide (TBHP) or H(2)O(2) increased the rate of degradation. Using RPTC, mitochondrial and cytosolic calpain 10 increased in the presence of MG132 (Lon/proteasome inhibitor) but only cytosolic calpain 10 increased in the presence of epoxomicin (proteasome inhibitor). Furthermore, TBHP and H(2)O(2) oxidized mitochondrial calpain 10, decreased mitochondrial, but not cytosolic calpain 10, and pretreatment with MG132 blocked TBHP-induced degradation of calpain 10. In summary, mitochondrial calpain 10 is selectively degraded by Lon protease under basal conditions and is enhanced under and oxidizing conditions, while cytosolic calpain 10 is degraded by the proteasome.  相似文献   

9.
10.
Following cell surface receptor binding and membrane fusion, human immunodeficiency virus (HIV) virion cores are released in the cytoplasm. Incoming viral proteins represent potential targets for cytosolic proteases. We show that treatment of target cells with the proteasome inhibitors MG132 and lactacystin increased the efficiency of HIV infection. Proteasome inhibitors were active at the early steps of the viral cycle. Incoming p24Gag proteins accumulated in the cytosol, and larger amounts of proviral DNA were synthesized. In vitro, purified 20S proteasome degraded HIV virion components. Thus, degradation of incoming viral proteins by the proteasome represents an early intracellular defense against infection.  相似文献   

11.
Cleavage-dependent activation of a chlamydia-secreted protease   总被引:3,自引:0,他引:3  
  相似文献   

12.
Adipose differentiation-related protein (ADRP) is localized to lipid droplets in most mammalian cells. ADRP, proposed to regulate fatty acid mobilization and lipid droplet formation, is linked to lipid accumulation in foam cells of human atherosclerotic lesions. In this report, we show that ADRP protein accumulates in Chinese hamster ovary fibroblastic cells cultured in the presence of oleic acid but is destabilized when fatty acid sources are removed from culture serum. The latter effect was blocked by the proteasome inhibitor MG132, whereas inhibitors of other proteolytic processes were ineffective. Pulse-chase experiments confirmed that ADRP degradation is inhibited by MG132. Conditions that stimulate ADRP degradation also promoted the covalent modification of ADRP by ubiquitin, whereas the addition of oleic acid to culture media, which promotes triacylglycerol deposition, blunted the appearance of ubiquitinated-ADRP. Treatment with MG132 increased the levels of ADRP associated with lipid droplets, as well as throughout the cytosol. Finally, we demonstrate that the disappearance of ADRP protein after the onset of perilipin expression during adipocyte differentiation is due to degradation by proteasomes Thus, proteolytic degradation of ADRP mediated through the ubiquitin/proteasome pathway appears to be a major mode for the post-translational regulation of ADRP.  相似文献   

13.
14.
Reactive oxygen and nitrogen species have emerged as predominant effectors of neurodegeneration. We demonstrated that expression of the fully active G93A Cu,Zn superoxide dismutase mutant in neuroblastoma cells is associated with an increased level of oxidatively modified proteins, in terms of carbonylated residues. A parallel increase in proteasome activity was detected and this was mandatory in order to assure cell viability. In fact, proteasome inhibition by lactacystin or MG132 resulted in programmed cell death. Nitrosative stress was not involved in the oxidative unbalance, as a decrease in neuronal nitric oxide production and down-regulation of neuronal nitric oxide synthase (nNOS) level were detected. The nNOS down-regulation was correlated to increased proteolytic degradation by proteasome, because comparable levels of nNOS were detected in G93A and parental cells upon treatment with lactacystin. The altered rate of proteolysis observed in G93A cells was specific for nNOS as Cu,Zn superoxide dismutase (Cu,Zn SOD) degradation by proteasome was influenced neither by its mutation nor by increased proteasome activity. Treatment with the antioxidant 5,5'-dimethyl-1-pyrroline N-oxide resulted in inhibition of protein oxidation and decrease in proteasome activity to the basal levels. Overall these results confirm the pro-oxidant activity of G93A Cu,Zn SOD mutant and, at the same time, suggest a cross-talk between reactive oxygen and nitrogen species via the proteasome pathway.  相似文献   

15.
Confinement of the obligate intracellular bacterium Chlamydia trachomatis to a membrane-bound vacuole, termed an inclusion, within infected epithelial cells neither prevents secretion of chlamydial antigens into the host cytosol nor protects chlamydiae from innate immune detection. However, the details leading to chlamydial antigen presentation are not clear. By immunoelectron microscopy of infected endometrial epithelial cells and in isolated cell secretory compartments, chlamydial major outer membrane protein (MOMP), lipopolysaccharide (LPS) and the inclusion membrane protein A (IncA) were localized to the endoplasmic reticulum (ER) and co-localized with multiple ER markers, but not with markers of the endosomes, lysosomes, Golgi nor mitochondria. Chlamydial LPS was also co-localized with CD1d in the ER. Since the chlamydial antigens, contained in everted inclusion membrane vesicles, were found within the host cell ER, these data raise additional implications for antigen processing by infected uterine epithelial cells for classical and non-classical T cell antigen presentation.  相似文献   

16.
Preproparathyroid hormone (prepro-PTH) is one of the proteins abundantly synthesized by parathyroid chief cells; yet under normal growth conditions, little or no prepro-PTH can be detected in these cells. Although this may be attributed to effective cotranslational translocation and proteolytic processing, proteasome-mediated degradation of PTH precursors may be important in the regulation of the levels of these precursors and hence PTH secretion. The effects of N-acetyl-Leu-Leu-norleucinal, N-acetyl-Leu-Leu-methional, carbobenzoxy-Leu-Leu-leucinal (MG132), benzyloxycarbonyl-Ile-Glu(t-butyl)-Ala-leucinal (proteasome inhibitor I), and lactacystin on the biosynthesis and secretion of PTH were examined in dispersed bovine parathyroid cells. We demonstrate that treatment of these cells with proteasome inhibitors caused the accumulation of prepro-PTH and pro-PTH. Compared with mock-treated cells, the processing of pro-PTH to PTH was delayed, and the secretion of intact PTH decreased in proteasome inhibitor-treated cells. Relieving the inhibition of the proteasome by chasing MG132-treated cells in medium without the inhibitor led to the rapid disappearance of the accumulated prepro-PTH, and the rate of PTH secretion was restored to levels comparable to those in mock-treated cells. Furthermore, overexpression of the Hsp70 family of molecular chaperones was observed in proteasome inhibitor-treated cells, and we show that PTH/PTH precursors interact with these molecular chaperones. These data suggest the involvement of parathyroid cell proteasomes in the quality control of PTH biosynthesis.  相似文献   

17.
Previous studies have shown that inhibiting the activity of the proteasome leads to the accumulation of damaged or unfolded proteins within the cell. In this study, we report that proteasome inhibitors, lactacystin and carbobenzoxy-l-leucyl-l-leucyl-l-leucinal (MG132), induced the accumulation of ubiquitinated proteins as well as a dose- and time-dependent increase in the relative levels of heat shock protein (HSP)30 and HSP70 and their respective mRNAs in Xenopus laevis A6 kidney epithelial cells. In A6 cells recovering from MG132 exposure, HSP30 and HSP70 levels were still elevated after 24 h but decreased substantially after 48 h. The activation of heat shock factor 1 (HSF1) may be involved in MG132-induced hsp gene expression in A6 cells since KNK437, a HSF1 inhibitor, repressed the accumulation of HSP30 and HSP70. Exposing A6 cells to simultaneous MG132 and mild heat shock enhanced the accumulation of HSP30 and HSP70 to a much greater extent than with each stressor alone. Immunocytochemical studies determined that HSP30 was localized primarily in the cytoplasm of lactacystin- or MG132-treated cells. In some cells treated with higher concentrations of MG132 or lactacystin, we observed in the cortical cytoplasm (1) relatively large HSP30 staining structures, (2) colocalization of actin and HSP30, and (3) cytoplasmic areas that were devoid of HSP30. Lastly, MG132 treatment of A6 cells conferred a state of thermotolerance such that they were able to survive a subsequent thermal challenge.  相似文献   

18.
GABARAPL1 belongs to the small family of GABARAP proteins (including GABARAP, GABARAPL1 and GABARAPL2/GATE-16), one of the two subfamilies of the yeast Atg8 orthologue. GABARAPL1 is involved in the intracellular transport of receptors, via an interaction with tubulin and GABA(A) or kappa opioid receptors, and also participates in autophagy and cell proliferation. In the present study, we identify the HSP90 protein as a novel interaction partner for GABARAPL1 using GST pull-down, mass spectrometry and coimmunoprecipitation experiments. GABARAPL1 and HSP90 partially colocalize in MCF-7 breast cancer cells overexpressed Dsred-GABARAPL1 and in rat brain. Moreover, treatment of MCF-7 cells overexpressed FLAG-GABARAPL1-6HIS with the HSP90 inhibitor 17-AAG promotes the GABARAPL1 degradation, a process that is blocked by proteasome inhibitors such as MG132, bortezomib and lactacystin. Accordingly, we demonstrate that HSP90 interacts and protects GABARAPL1 from its degradation by the proteasome.  相似文献   

19.
Cardozo C  Wu X  Pan M  Wang H  Fisher EA 《Biochemistry》2002,41(31):10105-10114
In the human hepatic cell line, HepG2, apolipoprotein B100 (apoB100) degradation is increased by inhibiting lipid transfer mediated by the microsomal triglyceride transfer protein (MTP) and is predominantly accomplished by the ubiquitin-proteasome pathway. In the current study, we determined whether this degradative pathway was restricted to HepG2 cells or was of more general importance in hepatic apoB100 metabolism. Rat hepatoma McArdle RH7777 cells (McA), compared to HepG2 cells, secrete a large fraction of apoB100 associated with VLDL particles, as does the normal mammalian liver. In McA cells studied under basal conditions, the proteasome inhibitor lactacystin (LAC) increased apoB100 recovery, indicating that the role of the proteasome in apoB100 metabolism is not restricted to HepG2 cells. When apoB100 lipidation was blocked by an inhibitor of MTP (MTPI), recovery of cellular apoB100 was markedly reduced, but LAC was only partially ( approximately 50%) effective in reversing the induced degradation. This partial effectiveness of LAC may have represented either (1) incomplete inhibition by LAC of its preferred target, the chymotrypsin-like activity of the proteasome, (2) the presence of an apoB100 proteolytic activity of the proteasome resistant to LAC, or (3) a nonproteasomal proteolytic pathway of apoB100 degradation. By studying immunoisolated proteasomes and McA cells treated with LAC and/or MTPI and a variety of protease inhibitors, we determined that the proteasomal component of apoB100 degradation was entirely attributable to the chymotrypsin-like catalytic activity, but only accounted for part of apoB100 degradation induced by MTPI. The nonproteasomal apoB100 degradative pathway was nonlysosomal and resistant to E64d, DTT, and peptide aldehydes such as MG132 or ALLN but was partially sensitive to the serine protease inhibitor APMSF. Furthermore, when the protein trafficking inhibitor, brefeldin A, was used to block endoplasmic reticulum (ER) to Golgi transport in MTPI-treated McA cells, degradative activity resistant to LAC was increased, suggesting that the nonproteasomal pathway is associated with the ER.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号