首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
Wei  Liang  Zhang  Jian-shui  Ji  Sheng-feng  Xu  Hao  Zhao  Zhao-hua  Zhang  Li  Pang  Long  Zhang  Jun-feng  Yang  Peng-bo  Ma  Hai 《Neurochemical research》2019,44(9):2182-2189

Tripartite motif 32 (TRIM32) is a member of TRIM family that plays a potential role in neural regeneration. However, the biological function of TRIM32 in cerebral ischemia reperfusion injury has not been investigated. In the present study, we evaluated the expression level of TRIM32 in hippocampal neurons following oxygen–glucose deprivation/reperfusion (OGD/R). The results showed that TRIM32 expression was significantly elevated in hippocampal neurons subjected to OGD/R as compared to the neurons cultured in the normoxia condition. To further evaluate the role of TRIM32, hippocampal neurons were transfected with TRIM32 small interfering RNA (si-TRIM32) to knock down TRIM32. We found that knockdown of TRIM32 improved cell viability of OGD/R-stimulated hippocampal neurons. Generation of reactive oxygen species was decreased, while contents of superoxide dismutase and glutathione peroxidase were increased after si-TRIM32 transfection. Knockdown of TRIM32 suppressed cell apoptosis, as proved by the increased bcl-2 expression along with decreased bax expression and caspase-3 activity. We also found that TRIM32 knockdown enhanced OGD/R-induced activation of Nrf2 signaling pathway in hippocampal neurons. Furthermore, siRNA-Nrf2 was transfected to knock down Nrf2. SiRNA-Nrf2 transfection reversed the protective effects of TRIM32 knockdown on neurons. These data suggested that knockdown of TRIM32 protected hippocampal neurons from OGD/R-induced oxidative injury through activating Nrf2 signaling pathway.

  相似文献   

4.
β-Glucan from Saccharomyces cerevisiae has been described to be effective antioxidants, but the specific antioxidation mechanism of β-glucan is unclear. The objectives of this research were to determine whether the β-glucan from Saccharomyces cerevisiae could regulate oxidative stress through the Dectin-1/Nrf2/HO-1 signaling pathway in lipopolysaccharides (LPS)-stimulated RAW264.7 cells. In this study, we examined the effects of β-glucan on the enzyme activity or production of oxidative stress indicators in LPS-stimulated RAW264.7 cells by biochemical analysis and the protein expression of key factors of Dectin-1/Nrf2/HO-1 signaling pathway by immunofluorescence and western blot. The biochemical analysis results showed that β-glucan increased the LPS-induced downregulation of enzyme activity of intracellular heme oxygenase (HO), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) while decreasing the production of reactive oxygen species (ROS) and malondialdehyde (MDA). Furthermore, immunofluorescence results showed that β-glucan can activate the nuclear factor erythroid 2-related factor 2 (Nrf2). The antioxidant mechanism study indicated that β-glucan activated dendritic-cell-associated C-type lectin 1 (Dectin-1) receptors mediated Nrf2/HO-1 signaling pathway, thereby downregulating the production of ROS and thus produced the antioxidant effects in LPS-stimulated RAW 264.7 cells. In conclusion, these results indicate that β-glucan potently alleviated oxidative stress via Dectin-1/Nrf2/HO-1 in LPS-stimulated RAW 264.7 cells.  相似文献   

5.
6.
Mercury is a potent environmental contaminant that exerts toxic effect on various vital organs in the human body. Recently, we isolated glycoprotein from Zanthoxylum piperitum DC (ZPDC), which has antioxidant and anticancer effects. In the present study, we determined the preventive effects of ZPDC glycoprotein on hepatic damage induced by mercury chloride (HgCl2). We evaluated the activities of lactate dehydrogenase (LDH), alanine aminotransferase (ALT), antioxidant enzymes [superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx)], extracellular signal‐regulated kinase (ERK)1/2, p38 mitogen‐activated protein kinase (MAPK), cyclo‐oxygenase (COX‐2), inducible nitric oxide synthetase (iNOS), and activator protein (AP‐1) and the quantitative expressions of nuclear factor E2‐related factor (Nrf2), heme oxygenase (HO‐1), metallothionein (MT) and reduced glutathione (GSH) in mercury‐chloride‐exposed (50 μM and 10 mg/kg body weight) primary cultured hepatocytes and ICR mice, using biochemical assays, radioactivity and immunoblot analysis. The results demonstrated that ZPDC glycoprotein decreased the levels of LDH, ALT, HO‐1 and MT, whereas it increased the activities of hepatic antioxidant enzymes (SOD, CAT and GPx) and reduced GSH in mercury‐chloride‐exposed primary cultured hepatocytes. Also, it suppressed arachidonic acid release and expression of ERK, p38 MAPK, COX‐2, iNOS, AP‐1 and Nrf‐2 in primary cultured hepatocytes and ICR mice exposed to mercury chloride. Collectively, ZPDC glycoprotein may have potential applications to prevent hepatotoxicity induced by mercury chloride. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

7.
Cyclo(His-Pro), or histidyl-proline diketopiperazine, is an endogenous cyclic dipeptide that is ubiquitously distributed in tissues and body fluids of both man and animals. This cyclic dipeptide is not only structurally related to thyrotropin-releasing hormone (TRH, pGlu-His-ProNH2), but it can also arise from TRH by the action of the enzyme pyroglutamate amino-peptidase (pGlu-peptidase). The data on the distribution of TRH, cyclo(His-Pro), and pGlu-peptidase under normal and abnormal conditions are summarized and potential relationships analyzed. We conclude that all of the cyclo(His-Pro) cannot be derived from TRH. Two additional sources of cyclo(His-Pro) are suggested. It is proposed that 29,247 molecular weight TRH prohormone, prepro TRH, which contains 5 copies of TRH sequence, can be processed to yield cyclo(His-Pro). Thus, both TRH and cyclo(His-Pro) share a common precursor, prepro[TRH/Cyclo(His-Pro)].  相似文献   

8.
The distribution of cyclo(His-Pro), thyrotropin-releasing hormone and pyroglutamate aminopeptidase activity was examined in the CSF of human and a number of other mammalian species. Cyclo(His-Pro)-like immunoreactivity was present in the CSF of all species examined, and was immunologically and chromatographically identical with the authentic cyclo(His-Pro). Cyclo(His-Pro) concentration in CSF had no significant correlation with CSF TRH or pyroglutamate aminopeptidase.  相似文献   

9.
Solar ultraviolet (UV) radiation‐induced reactive oxidative species is mainly responsible for the development of photoageing. Rosmarinic acid was one of the main bioactive components detected in Thymus vulgaris (TV) we extracted. In this study, UVB‐induced skin damages have been shown to be ameliorated by treatment with TV in hairless mice (HR‐1) skin, demonstrated by decreased matrix metalloproteinases (MMPs) and increased collagen production. However, the underlying molecular mechanism on which TV acted was unclear. We examined the photoprotective effects of TV against UVB and elucidated the molecular mechanism in normal human dermal fibroblasts. Thymus vulgaris remarkably prevented the UVB‐induced reactive oxygen species and lactate dehydrogenase. Dose‐dependent increase in glutathione, NAD(P)H: quinone oxidoreductase1 and heme oxygenase‐1, by TV was confirmed by increased nuclear accumulation of Nrf2. Furthermore, 5‐Methoxyindole‐2‐carboxylic acid was introduced as a specific inhibitor of dihydrolipoyl dehydrogenase (DLD). We demonstrated that Nrf2 expression was regulated by DLD, which was a tricarboxylic acid cycle‐associated protein that decreased after UVB exposure. Besides, TV significantly diminished UVB induced phosphorylation of mitogen activated protein kinases pathway, containing extracellular signal‐regulated kinase, Jun N‐terminal kinase and p38, which consequently reduced phosphorylated c‐fos and c‐jun. Our results suggest that TV is a potential botanical agent for use against UV radiation‐induced oxidative stress mediated skin damages.  相似文献   

10.
The in vivo effect of the known herbicide, paraquat, on both hepatic oxidative stress and heme metabolism was studied. A marked increase in lipid peroxidation and a decrease in reduced glutathione (GSH) content were observed 1 h after paraquat administration. The activity of liver antioxidant enzymes, superoxide dismutase, catalase and glutathione peroxidase was decreased 3 h after paraquat injection. Heme oxygenase-1 induction started 9 h after treatment, peaking at 15 h. delta-aminolevulinic acid synthase induction occurred once heme oxygenase had been enhanced, reaching its maximum (1.5-fold of control) at 16 h. delta-aminolevulinic acid dehydratase activity was 40% inhibited at 3 h showing a profile similar to that of GSH, while porphobilinogenase activity was not modified along the whole period of the assay. Administration of alpha-tocopherol (35 mmol/kg body weight) 2 h before paraquat treatment entirely prevented the increase in thiobarbituric acid reactive substances (TBARS) content, the decrease in GSH levels as well as heme oxygenase-1 and delta-aminolevulinic acid synthase induction. This study shows that oxidative stress produced by paraquat leads to an increase in delta-aminolevulinic acid synthase and heme oxygenase-1 activities, indicating that the herbicide affects both heme biosynthesis and degradation.  相似文献   

11.
The aim of this study was to explore the mechanisms of brain damage induced by the combined treatment of mice with 1,2‐dichloroethane (1,2‐DCE) and ethanol. Mice were divided into control group; 1,2‐DCE‐intoxicated group; ethanol‐treated group; and low‐, medium‐, and high‐dose combined treatment groups. Histological observations along with brain organ coefficients and water content were used to measure the brain damage directly and indirectly. The levels of nonprotein sulfhydryls, malondialdehyde (MDA), and superoxide dismutase activity were used as parameters to evaluate oxidative stress in the brain. Protein and messenger RNA (mRNA) levels of cytochrome P450 2E1 (CYP2E1), zonula occludens‐1 (occludin and zo‐1), aquaporin‐4 (AQP4), nuclear factor erythroid 2‐related factor 2 (Nrf2), heme oxygenase (HO)‐1, and the γ‐glutamyl cysteine synthetase catalytic and modulatory subunits (γ‐GCSc, GR, and γ‐GCSm) in the brain were examined by Western blot analysis and quantitative polymerase chain reaction analysis, respectively. Effects of the combined treatment of 1,2‐DCE and ethanol were evaluated by analysis of variance with a factorial design. The results suggested that combined exposure to ethanol and 1,2‐DCE synergistically increased CYP2E1 protein and mRNA levels, accelerated the metabolism of ethanol and 1,2‐DCE in the brain tissue, induced high production of reactive oxygen species (ROS), and increased MDA levels, thereby damaging the blood‐brain barrier and causing obvious pathological changes in brain tissue. However, the increased level of ROS activated the Nrf2 signal transduction pathway, promoting the expression of HO‐1 and glutathione‐related antioxidant enzymes in the brain to protect the cells from oxidative damage.  相似文献   

12.
During the progression of osteoarthritis, dysregulation of extracellular matrix (ECM) anabolism, abnormal generation of reactive oxygen species, and proteolytic enzymes have been shown to accelerate the degradation process of cartilage. The purpose of the current study was to investigate the functional role of bromodomain‐containing protein 4 (BRD4) in hydrogen peroxide (H2O2)–stimulated chondrocyte injury and delineate the underlying molecular mechanisms. We observed that the expression BRD4 was markedly elevated in rat chondrocytes after H2O2 stimulation. Additionally, inhibition of BRD4 using small interfering RNA or JQ1 (a selective potent chemical inhibitor) led to repression of H2O2‐induced oxidative stress, as revealed by a decrease in the reactive oxygen species production accompanied by a decreased malondialdehyde content, along with increased activities of antioxidant markers superoxide dismutase, catalase, and glutathione peroxidase on exposure of chondrocytes to H2O2. Meanwhile, depletion of BRD4 led to repress the oxidative stress–induced apoptosis of chondrocytes triggered by H2O2 accompanied by an increase in the expression of anti‐apoptotic Bcl‐2 and a decrease in the expression of pro‐apoptotic Bax and caspase 3 as well as attenuated caspase 3 activity. Moreover, knockdown of BRD4 or treatment with JQ1 markedly attenuated ECM deposition, reflected in a marked upregulation of proteoglycans collagen type II and aggrecan as well as downregulation of ECM–degrading enzymes matrix metalloproteinase 13 and A disintegrin and metalloproteinase with thrombospondin motifs 5 (ADAMTS‐5). More importantly, inhibition of BRD4‐activated NF‐E2–related factor 2 (Nrf2)–heme oxygenase‐1 signaling. Mechanistically, the protective effect of BRD4 inhibition on H2O2‐stimulated apoptosis and cartilage matrix degeneration was markedly abrogated by Nrf2 depletion. Altogether, we concluded that the protective effect of BRD4 inhibition against oxidative stress–mediated apoptosis and cartilage matrix degeneration occurred through Nrf2–heme oxygenase‐1 signaling, implying that BRD4 inhibition may be a more effective therapeutic strategy against osteoarthritis.  相似文献   

13.
Cytochrome P4502E1 (CYP2E1), glutathione-S-transferase A4-4 (GSTA4-4), and inducible nitric oxide synthase (iNOS) are implicated in maneb- and paraquat-induced toxicity leading to various pathological conditions. The study aimed to investigate the role of CYP2E1 in maneb- and paraquat-induced oxidative stress in rat polymorphonuclear leukocytes (PMNs) and its crosstalk with iNOS-mediated nitrosative stress and GSTA4-4-linked protective effect, if any and their consequent links with the nuclear factor erythoid 2-related factor 2 (Nrf2) activation and heme oxygenase-1 (HO-1) expression. Rats were treated with/without maneb and/or paraquat for 1, 2, and 3 weeks along with vehicle controls. Subsets of rats were also treated with diallyl sulfide (DAS) or aminoguanidine (AG) along with the respective controls. Maneb and paraquat augmented the reactive oxygen species (ROS), lipid peroxidation (LPO) and 4-hydroxy nonenal (4-HNE) contents, and superoxide dismutase (SOD) activity in the PMNs. However, maneb and paraquat attenuated the reduced glutathione (GSH) level and the expression/activity of total GST and GST-pi. Maneb and paraquat increased the expression/activity of CYP2E1, GSTA4-4, iNOS, Nrf2 and HO-1, and nitrite content. CYP2E1 inhibitor, DAS noticeably alleviated maneb- and paraquat-induced ROS, LPO, 4-HNE, SOD, Nrf2 and HO-1, GST, GSH, and GST-pi while iNOS, nitrite content and GSTA4-4 levels were unchanged. Conversely, AG, an iNOS inhibitor, attenuated maneb- and paraquat-directed changes in nitrite, LPO, iNOS but it did not alter ROS, GSH, SOD, GST, GST-pi, Nrf2, HO-1, CYP2E1, and GSTA4-4. The results demonstrate that CYP2E1 induces iNOS-independent free radical generation and subsequently modulates the Nrf2-dependent HO-1 and 4-HNE-mediated GST expression in maneb- and paraquat-treated PMNs.  相似文献   

14.
15.
Acute liver failure (ALF) is an inflammation-mediated hepatocyte death process associated with ferroptosis. Avicularin (AL), a Chinese herbal medicine, exerts anti-inflammatory and antioxidative effects. However, the protective effect of AL and the mechanism on ALF have not been reported. Our in vivo results suggest that AL significantly alleviated lipopolysaccharide (LPS)/D-galactosamine (D-GalN)-induced hepatic pathological injury, liver enzymes, inflammatory cytokines, reactive oxygen species and iron levels and increased the antioxidant enzyme activities (malondialdehyde and glutathione). Our further in vitro experiments demonstrated that AL suppressed inflammatory response in LPS-stimulated RAW 264.7 cells via blocking the toll-like receptor 4 (TLR4)/myeloid differentiation protein-88 (MyD88)/nuclear factor kappa B (NF-κB) pathway. Moreover, AL attenuated ferroptosis in D-GalN-induced HepG2 cells by activating the nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase 1 (HO-1)/glutathione peroxidase 4 (GPX4) pathway. Therefore, AL can alleviate inflammatory response and ferroptosis in LPS/D-GalN-induced ALF, and its protective effects are associated with blocking TLR4/MyD88/NF-κB pathway and activating Nrf2/HO-1/GPX4 pathway. Moreover, AL is a promising therapeutic option for ALF and should be clinically explored.  相似文献   

16.
The distribution of cyclo (His-Pro)-like immunoreactivity in frog skins from seven frog species was examined. The chromatographic elution profile of cyclo (His-Pro)-like immunoreactivity in amphibian skins measured by radioimmunoassay corresponded precisely to that of [3H-Pro]-cyclo (His-Pro) after DEAE-Cellulose, Sephadex G-25 and high-pressure liquid chromatography. The concentrations of cyclo (His-Pro) in frog skins were much higher than the concentrations of TRH previously observed in skin and the concentrations of cyclo (His-Pro) in both brain and gastrointestinal tract.  相似文献   

17.
Histidyl-proline diketopiperazine [cyclo(His-Pro)] has recently been shown to inhibit prolactin (PRL) secretion in vitro and in vivo. This peptide is well known as a metabolite of thyrotropin-releasing hormone (TRH), which is one of the endogenous secretagogues of PRL. In this study, we investigated the effect of cyclo (His-Pro) on the cytosolic Ca2+ concentration [[Ca2+]i) in cultured lactotrophs by using a lactotroph-enriched fraction separated from female rat pituicytes by centrifugal elutriation. TRH (10 nM) induced a rapid rise in [Ca2+]i in the lactotrophs, followed by a plateau phase of prolonged increase in [Ca2+]i. In contrast, the addition of 100 microM of cyclo (His-Pro) caused no changes in the basal level or the TRH-induced plateau response of [Ca2+]i. Although pretreatment with cyclo (His-Pro) tended to decrease the biphasic increase in [Ca2+]i induced by TRH, the inhibitory effect was not statistically significant. These results demonstrated that cyclo (His-Pro) has no effect on [Ca2+]i in lactotrophs, and does not affect the TRH-induced increase in [Ca2+]i, indicating that the inhibition of PRL secretion by cyclo (His-Pro) may be primarily mediated by other intracellular messengers such as cyclic nucleotides and secondarily involved in other inhibitory systems including that of dopamine.  相似文献   

18.
The selective depletion of senescent cells (SCs) by small molecules, termed senolytic agents, is a promising therapeutic approach for treating age‐related diseases and chemotherapy‐ and radiotherapy‐induced side effects. Piperlongumine (PL) was recently identified as a novel senolytic agent. However, its mechanism of action and molecular targets in SCs was unknown and thus was investigated. Specifically, we used a PL‐based chemical probe to pull‐down PL‐binding proteins from live cells and then mass spectrometry‐based proteomic analysis to identify potential molecular targets of PL in SCs. One prominent target was oxidation resistance 1 (OXR1), an important antioxidant protein that regulates the expression of a variety of antioxidant enzymes. We found that OXR1 was upregulated in senescent human WI38 fibroblasts. PL bound to OXR1 directly and induced its degradation through the ubiquitin‐proteasome system in an SC‐specific manner. The knockdown of OXR1 expression by RNA interference significantly increased the production of reactive oxygen species in SCs in conjunction with the downregulation of antioxidant enzymes such as heme oxygenase 1, glutathione peroxidase 2, and catalase, but these effects were much less significant when OXR1 was knocked down in non‐SCs. More importantly, knocking down OXR1 selectively induced apoptosis in SCs and sensitized the cells to oxidative stress caused by hydrogen peroxide. These findings provide new insights into the mechanism by which SCs are highly resistant to oxidative stress and suggest that OXR1 is a novel senolytic target that can be further exploited for the development of new senolytic agents.  相似文献   

19.
The aim of our study was to examine in detail the impact of NF-E2-related factor (Nrf2) activation on endothelial cell function with focus on redox homeostasis and the endothelial nitric oxide synthase (eNOS) system. We administered 2-cyano-3,12-dioxooleana-1,9-dien-28-oic imidazolide (CDDO-IM), a known activator of Nrf2, to primary human umbilical vein endothelial cells. Activation of Nrf2 by CDDO-IM increased the amount of bioavailable nitric oxide (NO), a major contributor to vascular homeostasis, in naive and stressed cells. Concomitantly, intracellular reactive oxygen species were dose-and time-dependently reduced. In apparent contrast to elevated NO levels, eNOS protein expression was transiently decreased in an Nrf2-dependent manner. Employing pharmacological inhibitors as well as a small interfering RNA approach, we identified de novo protein synthesis of heme oxygenase 1 (HO-1) and its enzymatic activity as cause for the observed reduction of eNOS. We hypothesize that under redox stress, when the availability of tetrahydrobiopterin, a pivotal stoichiometric cofactor for eNOS, is limited, activation of Nrf2 leads (a) to transient reduction of eNOS protein levels and (b) to an antioxidant defense in human umbilical vein endothelial cells. Both activities ensure that a stoichiometric ratio of eNOS and tetrahydrobiopterin is sustained and that the risk of eNOS uncoupling is reduced. Our study is the first to provide a causal link between Nrf2 activation and eNOS expression and NO levels, respectively.  相似文献   

20.
Potential mechanism(s) underlying the fasting-associated rise in hypothalamic cyclo(His-Pro) content was explored by examining the effects of 24-hour fasting on: (i) cyclo(His-Pro) synthesis from TRH, (ii) cyclo(His-Pro) metabolism, and (iii) cyclo (His-Pro) secretion by hypothalamic tissue in vitro. The data presented here show that none of these three variables were altered due to fasting. Two additional potential changes that could cause cyclo(His-Pro) elevations during fasting are suggested. These include an in vivo decrease in hypothalamic cyclo(His-Pro) secretion that may not be apparent in vitro, and/or an increase in the synthesis of cyclo(His-Pro) from a precursor(s) other than TRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号