首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The expression of cathepsins K, L, B, X and W was studied by quantitative RT-PCR in normal and inflamed gastric mucosa (antrum, corpus, cardia). Cathepsins B, L, K and X were expressed ubiquitously. In contrast, cathepsin W was expressed at very low levels. Infection by Helicobacter pylori caused a significant induction of cathepsin X (p<0.008), whereas the other cathepsins were not or only locally affected by H. pylori infection or reflux disease. Immunohistochemistry revealed specific expression of cathepsin X (macrophages), cathepsin K (parietal cells) and cathepsin W (lymphocytes), whereas cathepsins B and L were predominantly expressed in epithelial cells.  相似文献   

2.
Biosynthesis of lysosomal cathepsins B and H in cultured rat hepatocytes   总被引:1,自引:0,他引:1  
The biosynthesis of lysosomal cysteine proteases, cathepsins B and H, was investigated by using pulse-chase experiments in vivo in primary cultures of rat hepatocytes. Cathepsins B and H were isolated from either total cell extracts or culture medium labeled with [35S]methionine by immunoprecipitation and analyzed for their molecular forms. Within 60 min of chase, cellular proforms of cathepsins B of 39 kDa and H of 41 kDa were converted to single-chain form cathepsins B of 29 kDa and H of 28 kDa, respectively, and persisted as these forms even after 12-h chase periods. The proforms of cathepsins B and H derived from pulse-labeling experiments showed complete susceptibility to endoglycosidase H treatment, indicating that these proenzymes bear high-mannose-type oligosaccharides at the stage of initial events of biosynthesis. In the presence of tunicamycin, unglycosylated proenzymes of cathepsins B of 35 kDa and H of 34 kDa were found to be secreted into the extracellular medium without undergoing proteolytic processing. Furthermore, in the presence of swainsonine, a potent inhibitor of Golgi mannosidase II, considerable amounts of the proenzymes were secreted and accumulated in the medium during chasing periods. These results suggest that the oligosaccharide moiety of these enzymes would be necessary for the intracellular sorting mechanism. In monensin-treated cells, the conversion of intracellular proenzymes to mature enzymes was significantly inhibited and the proenzymes were secreted into the medium. In the presence of chloroquine or ammonium chloride, proteolytic processing of the proenzymes was completely prevented and the enhanced secretion of proenzymes was observed. These results suggest that in the presence of lysosomotropic amines the intracellular sorting of proenzymes might not occur properly during biosynthesis.  相似文献   

3.
BACKGROUND INFORMATION: Chronic inflammation and tissue remodelling result from an imbalance between proteolytic enzymes and their inhibitors in the lungs in favour of proteolysis. While many studies have examined serine proteases (e.g. cathepsin G and neutrophil elastase) and matrix metalloproteases, little is known about the role of papain-like CPs (cysteine proteases). The present study focuses on the thiol-dependent cathepsins (CPs) and their specific cystatin-like inhibitors [CPIs (CP inhibitors)] in human inflammatory BALFs (BAL fluids, where BAL stands for broncho-alveolar lavage). RESULTS: Cathepsins B, K and S found were mostly zymogens, whereas cathepsins H and L were predominantly in their mature forms. Little immunoreactive cystatin C was found and the high- and low-molecular-mass ('weight') kininogens were extensively degraded. The BALF procathepsins B and L could be activated autocatalytically, indicating that alveolar fluid pro-CPs are reservoirs of mature enzymes. Hydrolysis patterns of 7-amino-4-methylcoumarin-derived peptide substrates showed that extracellular alveolar CPs remain proteolytically active, and that cathepsins B and L are the most abundant thiol-dependent endoproteases. The CP/CPI balance was significantly tipped in favour of cathepsins (3- or 5-fold), as confirmed by the extensive CP-dependent degradation of exogenous kininogens by BALFs. CONCLUSIONS: Although their importance for inflammation remains to be clarified, the presence of active cathepsins L, K and S suggests that they contribute to the extracellular breakdown of the extracellular matrix.  相似文献   

4.
To examine the correlation of localization of prorenin, renin, and cathepsins B, H, and L, immunocytochemistry was applied to rat renal tissue, using a sequence-specific anti-body (anti-prorenin) that recognizes the COOH terminus of the rat renin prosegment. In serial semi-thin sections, immunodeposits for prorenin, renin, and cathepsins B, H, and L were localized in the same juxtaglomerular (JG) cells. Immunodeposits for renin were detected throughout the cytoplasm of the cells, whereas those for prorenin were detected in the perinuclear region. Immunoreactivity for cathepsin B was stronger than that for cathepsins H and L. By electron microscopy, prorenin was localized in small (immature) granules but not in large mature granules, whereas renin was localized mainly in mature granules. In serial thin sections, prorenin, renin, and cathepsin B were colocalized in the same immature granules containing heterogeneously dense material (intermediate granules). By double immunostaining, co-localization of renin with cathepsins B, H, or L was demonstrated in mature granules. The results suggest the possibility that processing of prorenin to renin occurs in immature granules of rat JG cells, and cathepsin B detected in JG cells may be a major candidate for the maturation of renin.  相似文献   

5.
The concentrations of cathepsins B and H in various tissues and peripheral blood cells of rats were determined by means of sensitive immunoassays. The minimum detectable amounts of cathepsins B and H were 30 pg and 20 pg/assay, respectively, and the presence of endogenous thiol proteinase inhibitors did not interfere with the immunoassays. Cathepsin B was found at high levels in the kidney, vagina, spleen, and adrenal gland, and cathepsin H at high levels in the kidney, vagina, liver, lung, and spleen. Low levels of cathepsins B and H were present in the heart, skeletal muscle, and testis. The ratios of cathepsins B and H in various organs were different: the brain and adrenal gland contained much higher levels of cathepsin B than of cathepsin H, whereas the lung and liver contained higher levels of cathepsin H than of cathepsin B. In several organs such as the kidney, spleen, liver, and lungs, the level of cathepsins B plus H was much higher than that of thiol proteinase inhibitors (TPI-alpha + TPI-beta), whereas in tissues containing large amounts of TPI-alpha, such as the skin, esophagus and stomach, the level of inhibitors was higher than that of cathepsins B plus H. Of the peripheral blood cells tested, macrophages had the highest contents of cathepsins B and H, and so their level of cathepsins B plus H was much higher than that of TPI-alpha plus TPI-beta, whereas lymphocytes and neutrophils contained comparable amounts of proteinases and inhibitors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
Activation of the Fas/Fas ligand (FasL) system in the lungs results in a form of injury characterized by alveolar epithelial apoptosis and neutrophilic inflammation. Studies in vitro show that Fas activation induces apoptosis in alveolar epithelial cells and cytokine production in alveolar macrophages. The main goal of this study was to determine the contribution of alveolar macrophages to Fas-induced lung inflammation in mice, by depleting alveolar macrophages using clodronate-containing liposomes. Liposomes containing clodronate or PBS were instilled by intratracheal instillation. After 24 h, the mice received intratracheal instillations of the Fas-activating monoclonal antibody Jo2 or an isotype control antibody and were studied 18 h later. The Jo2 MAb induced increases in bronchoalveolar lavage fluid (BALF) total neutrophils, lung caspase-3 activity, and BALF total protein and worsened histological lung injury in the macrophage-depleted mice. Studies in vitro showed that Fas activation induced the release of the cytokine KC in a mouse lung epithelial cell line, MLE-12. These results suggest that the lung inflammatory response to Fas activation is not primarily dependent on resident alveolar macrophages and may instead depend on cytokine release by alveolar epithelial cells.  相似文献   

7.
Endosomal and lysosomal fractions of human monocytes/macrophages prepared from buffy coats were analyzed for activities of cathepsins B, L and S, and expression of cathepsin proteins along with major histocompatibility complex class I and class II molecules under control and immunomodulatory conditions. While the total activity of cathepsins B, L, and S together remained unchanged in lysates of control cells during culture for 72 h, the subcellular distribution of cathepsin activities underwent a shift from a predominantly endosomal localization in freshly isolated cells to a lysosomal pattern after 72 h of culture. Interferon-gamma treatment for 72 h resulted in an upregulation of both major histocompatibility complex proteins and cathepsins with differential changes in cathepsin B, L and S activities in endosomes versus lysosomes. These changes suggest a remodeling of the endocytic machinery and imply different functions of cathepsins B, L and S during monocyte differentiation.  相似文献   

8.
We have demonstrated that bronchoalveolar lavage fluid from chronic obstructive pulmonary disease patients contains higher levels of interferon-gamma compared with controls. Interferon-gamma is a potent inducer of various cathepsins and matrix metalloproteases. Therefore, we postulated that interferon-gamma could induce protease expression by macrophages in acute and chronic lung disease. Chronic obstructive pulmonary disease patients had greater levels of cathepsin S and matrix metalloprotease-12 in their bronchoalveolar lavage fluid. Macrophages incubated with chronic obstructive pulmonary disease bronchoalveolar lavage fluid exhibited increased expression of cathepsin S and matrix metalloprotease-12, which was inhibited by the addition of interferon-gamma-neutralizing immunoglobulin. Human secretory leukocyte protease inhibitor is an 11.7-kDa cationic non-glycosylated antiprotease synthesized and secreted by cells at the site of inflammation. We have demonstrated that secretory leukocyte protease inhibitor can inhibit interferon-gamma-induced cathepsin S production by macrophages. Pretreatment of macrophages with secretory leukocyte protease inhibitor inhibited interferon-gamma-induced inhibitor kappaB beta degradation and activation of nuclear factor kappaB. Secretory leukocyte protease inhibitor may prove to be therapeutically important as a potential inhibitor of protease expression in chronic obstructive pulmonary disease.  相似文献   

9.
K Hara  E Kominami  N Katunuma 《FEBS letters》1988,231(1):229-231
The effects of various proteinase inhibitors on the processing of lysosomal cathepsins B, H and L were investigated in cultured rat peritoneal macrophages. The processing of newly synthesized pro-cathepsins B, H and L to the mature single-chain enzymes was sensitive to a metal chelator,1,10-phenanthroline, and a synthetic metalloendopeptidase substrate, Z-Gly-Leu-NH2, and insensitive to inhibitors of serine proteinases, aspartic proteinases and cysteine proteinases. Inhibitors of cysteine proteinases, E-64-d and leupeptin, inhibited the processing of the single-chain forms of cathepsins B, H and L to the two-chain forms. These results suggest that (a) metal endopeptidase(s) is (are) involved in the propeptide processing of cathepsin B, H and L, and that proteolytic cleavages of the mature single-chain cathepsins are accomplished by cysteine proteinases in lysosomes.  相似文献   

10.
Exosomes are nano‐sized vesicles that are secreted into the extracellular environment. These vesicles contain various biological effector molecules that can regulate intracellular signaling pathways in recipient cells. The aim of this study was to examine a correlation between exosomal cathepsin B activity and the receptor for advanced glycation end‐products (RAGE). Type 1 alveolar epithelial (R3/1) cells were treated with or without hydrogen peroxide and exosomes isolated from the cell conditioned media were characterized by NanoSight analysis. Lipidomic and proteomic analysis showed exosomes released from R3/1 cells exposed to oxidative stress induced by hydrogen peroxide or vehicle differ in their lipid and protein content, respectively. Cathepsin B activity was detected in exosomes isolated from hydrogen peroxide treated cells. The mRNA and protein expression of RAGE increased in cultured R3/1 cells treated with exosomes containing active cathepsin B while depletion of exosomal cathepsin B attenuated RAGE mRNA and protein expression. These results suggest exosomal cathepsin B regulates RAGE in type 1 alveolar cells under conditions of oxidative stress. J. Cell. Biochem. 119: 599–606, 2018. © 2017 Wiley Periodicals, Inc.  相似文献   

11.
Immunohistochemical localization of cathepsins B, D and L in the osteoclasts of rat alveolar and femoral bones was investigated by using the avidin-biotin-peroxidase complex method for semithin, 1-m-thick cryosections. Extracellular immunoreactivity for cathepsins B and L was clearly demonstrated along the bone resorption lacunae; the intensity of the extracellular immunoreactivity of cathepsin L was stronger than that of cathepsin B. However, the intracellular immunoreactivity of both cathepsins was weak compared with that of cathepsin D. The intracellular immunoreactivity of cathespin D in the osteoclasts was clearly observed in the granules and/or vacuoles, but extracellular cathepsin D immunoreactivity was either negligible or not detected along the resorption lacunae. In the adjacent sections stained with anti-cathepsin L or D, extensive extracellular deposition of cathepsin L was found along the bone resorption lacunae, with or without osteoclasts, although the intracellular reactivity of cathepsin L was weak. This is the first morphological study in which cathepsins B and L have been demonstrated to be produced in the osteoclasts and extensively secreted into resorption lacunae, and in which cathepsin D was found to be present in the cells but scantily secreted into the lacunae. These findings suggest that cathepsins B and L directly and effectively participate in the degradation of the bone matrix.  相似文献   

12.
dsRNA is an important pathogen-associated molecular pattern that is primarily recognized by cytosolic pattern-recognition receptors of the innate-immune system during virus infection. This recognition results in the activation of inflammasome-associated caspase-1 and apoptosis of infected cells. In this study, we used high-throughput proteomics to identify secretome, the global pattern of secreted proteins, in human primary macrophages that had been activated through the cytoplasmic dsRNA-recognition pathway. The secretome analysis revealed cytoplasmic dsRNA-recognition pathway-induced secretion of several exosome-associated proteins, as well as basal and dsRNA-activated secretion of lysosomal protease cathepsins and cysteine protease inhibitors (cystatins). Inflammasome activation was almost completely abolished by cathepsin inhibitors in response to dsRNA stimulation, as well as encephalomyocarditis virus and vesicular stomatitis virus infections. Interestingly, Western blot analysis showed that the mature form of cathepsin D, but not cathepsin B, was secreted simultaneously with IL-18 and inflammasome components ASC and caspase-1 in cytoplasmic dsRNA-stimulated cells. Furthermore, small interfering RNA-mediated silencing experiments confirmed that cathepsin D has a role in inflammasome activation. Caspase-1 activation was followed by proteolytic processing of caspase-3, indicating that inflammasome activation precedes apoptosis in macrophages that had recognized cytoplasmic RNA. Like inflammasome activation, apoptosis triggered by dsRNA stimulation and virus infection was effectively blocked by cathepsin inhibition. In conclusion, our results emphasize the importance of cathepsins in the innate immune response to virus infection.  相似文献   

13.
Functional activity of the bronchoalveolar lavage fluid (BALF) phagocytes was studied in 33 and 16 patients with fibro-cavernous and infiltrative pulmonary tuberculosis (FCPT and IPT, respectively). Complex examination of BALF, alveolar macrophages and neutrophils sedimented from BALF has shown interrelationship between functional activity of the cells and the form of pulmonary tuberculosis. Higher neopterin content and activity of elastase mainly secreted into BALF by activated alveolar macrophages and neutrophils, respectively, reflect higher secretory activity of both types of cells in FCPT. In FCPT this is combined with higher bactericidal activity of neutrophils, which significantly correlates with their adenosine deaminase (ADA) activity. Comparison of changes of the biochemical parameters studied in BALF (neopterin, elastase, ADA and its isoenzymes, 2-deoxy-ADA) and bactericidal activity of the sedimented cells obviously reflects different sides of BALF phagocytes functioning. Taking into consideration modern concepts on the mechanisms of regulation of phagocyte cells one may suggest the existence of differences in intercellular interactions in various forms of pulmonary tuberculosis.  相似文献   

14.
S Yokota  K Kato 《Histochemistry》1988,89(5):499-504
The heterogeneity of lysosomes was studied by analyzing the immunostaining behavior of cathepsins B and H in rat kidney proximal tubule cells. Rat kidneys were fixed by perfusion and embedded in Lowicryl K4M. A protein A-gold technique was applied to serial sections and a double labeling technique to conventional sections. By analyzing the immunostaining behavior of cathepsins B and H in the same lysosomes which were cut into separate sections, four types of lysosomes were found: Type 1 positive for both proteinases; type 2 strongly positive for cathepsin B, but weakly or negative for cathepsin H; type 3 strongly positive for cathepsin H, but weakly or negative for cathepsin B; and type 4 negative for both proteinases. The double labeling by two different sizes of the protein A-gold probes showed these four types of lysosomes. The results indicate that there exists the lysosomal heterogeneity of the proteinase content in the kidney proximal tubule cells.  相似文献   

15.
Cathepsin H is a unique member of the cysteine cathepsins that acts primarily as an aminopeptidase. Like other cysteine cathepsins, it is synthesized as an inactive precursor and activated by proteolytic removal of its propeptide. Here we demonstrate that, in human cells, the processing of the propeptide is an autocatalytic, multistep process proceeding from an inactive 41kDa pro-form, through a 30kDa intermediate form, to the 28kDa mature form. Tyr87P and Gly90P were identified as the two major endopeptidase cleavage sites, converting the 30kDa form into the mature 28kDa form. The level of processing differs significantly in different human cell lines. In monocyte-derived macrophages U937 and prostate cancer cells PC-3, the 28kDa form is predominant, whereas in osteoblasts HOS the processing from the 30kDa form to the 28kDa form is significantly lower. The aminopeptidase activity of the enzyme and its subcellular localization are independent of the product, however the 30kDa form was not secreted in HOS cells. The activity of the resulting cathepsin H in U937 cells was significantly lower than that in HOS cells, presumably due to the high levels of endogenous cysteine protease inhibitor cystatin F present specifically in this cell line. These results provide an insight into the dependence of human cathepsin H processing and regulation on cell type.  相似文献   

16.
Summary The heterogeneity of lysosomes was studied by analyzing the immunostaining behavior of cathepsins B and H in rat kidney proximal tubule cells. Rat kidneys were fixed by perfusion and embedded in Lowicryl K4M. A protein A-gold technique was applied to serial sections and a double labeling technique to conventional sections. By analyzing the immunostaining behavior of cathepsins B and H in the same lysosomes which were cut into separate sections, four types of lysosomes were found: Type 1 positive for both proteinases; type 2 strongly positive for cathepsin B, but weakly or negative for cathepsin H; type 3 strongly positive for cathepsin H, but weakly or negative for cathepsin B; and type 4 negative for both proteinases. The double labeling by two different sizes of the protein A-gold probes showed these four types of lysosomes. The results indicate that there exists the lysosomal heterogeneity of the proteinase content in the kidney proximal tubule cells.  相似文献   

17.
The resistance of secreted cysteine cathepsins to peroxide inactivation was evaluated using as model THP-1 cells. Differentiated cells released mostly cathepsin B, but also cathepsins H, K, and L, with a maximum of endopeptidase activity at day 6. Addition of non-cytotoxic concentrations of H(2)O(2) did not affect mRNA expression levels and activity of cathepsins, while the catalase activity remained also unchanged, consistently with RT-PCR analysis. Conversely inhibition of extracellular catalase led to a striking inactivation of secreted cysteine cathepsins by H(2)O(2). This report suggests that catalase may participate in the protection of extracellular cysteine proteases against peroxidation.  相似文献   

18.
19.
Our previous studies have shown an association between Helicobacter pylori infection, the strong up-regulation of cathepsin X (CTSX, also called cathepsin Z/P), and the development of gastric cancer. In the present study, we analyzed primary and conventional gastric epithelial cell lines to establish an optimal in vitro mouse model system for the examination of H. pylori-induced overexpression of Ctsx in a functional way. Gastric epithelial cells were isolated from stomachs of wild-type C57BL6/N and Ctsx−/− mice and compared with the gastric cancer cell line CLS103. Indirect co-cultures of epithelial cells and macrophages were infected with H. pylori strain SS1 and analyzed for the expression of cathepsins, cytokines, and adhesion factors. Cellular interactions, migration capability, and adherence of H. pylori were assessed using time-lapse video microscopy and colony-forming assays. Isolated primary cells from wild-type and transgenic mice revealed qualities and expression profiles similar to those of corresponding tissue samples. Adherence of H. pylori was significantly higher in primary compared with commercially cells. Thus, induction of cathepsins, cytokines, and adhesion proteins was detected solely in primary cells and co-cultured macrophages. Microarray and migration experiments indicated that Ctsx is involved in B/T-cell proliferation/migration and adhesion of macrophages. Primary epithelial cells from stomach of Ctsx−/− mice represent an excellent model of H. pylori gastritis to elaborate the special functions of Ctsx in regulating the immune response to H. pylori.  相似文献   

20.
The cathepsins B, H and L, lysosomal cysteine proteinases, play a major role in intracellular protein degradation. These proteinase activities and expressions were examined in a Ca2+ regulated epidermal culture system which consists of two morphological cell types: undifferentiated cells grown in low Ca2+ (0.1 mM concentration) and differentiated cells grown in high Ca2+ (1.8 mM concentration), respectively. Cathepsin B and L activities of the differentiated cells showed a several-fold increase compared to that of the undifferentiated cells. In addition, by using CM-cellulose column chromatography, cathepsin B and L were separated and the level of cathepsin L activity increased significantly. Cathepsin B, L and H were also detected by using an immunoblotting procedure in which their bands were expressed after differentiation was induced by the increasing calcium concentration. Cathepsin L activity and immunostaining intensity reached a maximum at 1 or 2 days of differentiation. In contrast, cystatin alpha (an endogenous inhibitor of cysteine-dependent cathepsins) appeared in the final stage of differentiation. These results indicate that the expression of epidermal cathepsins and their endogenous inhibitor are involved in part of the program of cell differentiation and the terminal differentiation process in cultured rat keratinocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号