首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
A modification of the ‘cold plaque’ screening technique (Hodge et al., Plant Journal1992, 2, 257–260) was used to screen a cDNA library constructed from drought‐stressed leaf tissue of the desiccation tolerant (‘resurrection’) grass Sporobolus stapfianus. This technique allowed a large number of clones representing genes expressed at low abundance to be isolated. An examination of expression profiles revealed that several of these genes are induced in desiccation‐tolerant tissue experiencing severe drought stress. Further characterization indicated that the gene products encoded include an eIF1 protein translation initiation factor and a glycine‐ and proline‐rich protein which have not previously been associated with drought stress. In addition, genes encoding a serine/threonine phosphatase type 2C, a tonoplast‐intrinsic protein (TIP) and an early light‐inducible protein (ELIP) were isolated. A number of these genes are expressed differentially in desiccation‐tolerant and desiccation‐sensitive tissues, suggesting that they may be associated with the desiccation tolerance response of S. stapfianus. The results indicate that there may be unique gene regulation processes occurring during induction of desiccation tolerance in resurrection plants which allow different drought‐responsive genes to be selectively expressed at successive levels of water loss.  相似文献   

4.
In our experimental conditions detached leaves of the resurrection plant Boea hygroscopica survived equilibration to 65–80% RH (Relative Humidity), but not to very low RH (close to 0%). The first aim of our research was to determine whether sensitivity to equilibration to very low RH depends on the rate of the drying process or on the very low final MC (Moisture Content) attained. The second aim of our research was to determine ABA content of leaves exposed to the two drying processes: a first step towards understanding whether ABA is involved in the tolerance mechanism of Boea hygroscopica.Detached leaves were equilibrated either to 1.4 or to 60–70% RH or to various temporal combinations of these two RH. ABA content was monitored during drying. Dehydrated leaves were imbibed in liquid water either directly or after a slow rehydration at 98% RH. Tolerance was assessed after 48 h imbibition in liquid water.The low final MC attained (about 3%) and not the rate of drying was responsible of the sensitivity of leaves equilibrated to 1.4% RH. Slow rehydration attained better recovery, but it was not able to allow full resurrection thus suggesting that a plain biophysical liquid-crystalline to gel phase transition of the membrane lipid bilayer could not fully account for the lethal damage of the very low MC.The conclusions relative to the first part of our research was of primary importance in interpreting results concerning ABA variations during the two drying treatments. ABA showed a very similar transient increase when excised leaves were dried at either 1.4% RH (sensitive leaves) or at 60–70% RH (tolerant leaves). However we cannot exclude that the transient increase of the hormone is a necessary component of the desiccation tolerance mechanisms in detached leaves of Boea hygroscopica: the extremely low MC reached by equilibration to 1.4% RH may impair the mechanism itself.  相似文献   

5.
* Craterostigma plantagineum can lose up to 96% of its water content but fully recover within hours after rehydration. The callus tissue of the plant becomes desiccation tolerant upon pre-incubation with abscisic acid (ABA). In callus and vegetative organs, ABA addition and water depletion induce a set of dehydration-responsive genes. * Previously, activation tagging led to the isolation of Craterostigma desiccation tolerant (CDT-1), a dehydration-related ABA-inducible gene which renders callus desiccation tolerant without ABA pre-treatment. This gene belongs to a family of retroelements, members of which are inducible by dehydration. * Craterostigma plantagineum transformation with mutated versions of CDT-1 indicated that protein is not required for the induction of callus desiccation tolerance. Northern analysis and protoplast transfection indicated that CDT-1 directs the synthesis of a double-stranded 21-bp short interfering RNA (siRNA), which opens the metabolic pathway for desiccation tolerance. * Via transposition, these retroelements have progressively increased the capacity of the species to synthesize siRNA and thus recover after dehydration. This may be a case of evolution towards the acquisition of a new trait, stimulated by the environment acting directly on intra-genomic DNA replication.  相似文献   

6.
Translationally controlled tumor protein (TCTP), also termed P23 in human, belongs to a family of calcium- and tubulin-binding proteins, and it is generally regarded as a growth-regulating protein. Recently, Arabidopsis TCTP (AtTCTP) has been reported to function as an important growth regulator in plants. On the other hand, plant TCTP has been suggested to be involved in abiotic stress signaling such as aluminum, salt, and water deficit by a number of microarray or proteomic analyses. In this study, the biological functions of AtTCTP were investigated by using transgenic Arabidopsis plants overexpressing AtTCTP. Interestingly, AtTCTP overexpression enhanced drought tolerance in plants. The expression analysis showed that AtTCTP was expressed in guard cells as well as in actively growing tissues. Physiological studies of the overexpression lines showed increased ABA- and calcium-induced stomatal closure ratios and faster stomatal closing responses to ABA. Furthermore, in vitro protein-protein interaction analysis confirmed the interaction between AtTCTP and microtubules, and microtubule cosedimentation assays revealed that the microtubule binding of AtTCTP increased after calcium treatment. These results demonstrate that the overexpression of AtTCTP confers drought tolerance to plants by rapid ABA-mediated stomatal closure via the interaction with microtubules in which calcium binding enhances the interaction. Collectively, the present results suggest that the plant TCTP has molecular properties similar to animal TCTPs, such as tubulin- and calcium-binding, and that it functions in ABA-mediated stomatal movement, in addition to regulating the growth of plants.  相似文献   

7.
There are several hypotheses that explain stomatal behavior. These include the concept of osmoregulation mediated by potassium and its counterions malate and chlorine and the more recent starch–sugar hypothesis. We have previously reported that the activity of the sucrose cleavage enzyme, vacuolar invertase (VIN), is significantly higher in guard cells than in other leaf epidermal cells and its activity is correlated with stomatal aperture. Here, we examined whether VIN indeed controls stomatal movement under normal and drought conditions by transforming Arabidopsis with a tobacco vacuolar invertase inhibitor homolog (Nt-inhh) under the control of an abscisic acid-sensitive and guard cell-specific promoter (AtRab18). The data obtained showed that guard cells of transgenic Arabidopsis plants had lower VIN activity, stomatal aperture and conductance than that of wild-type plants. Moreover, the transgenic plants also displayed higher drought tolerance than wild-type plants. The data indicate that VIN is a promising target for manipulating stomatal function to increase drought tolerance.  相似文献   

8.
茉莉酸甲酯对花生幼苗生长和抗旱性的影响   总被引:12,自引:0,他引:12  
经过茉莉酸甲酯处理的花生幼苗,在形态、解剖和生理上都发生变化,其中以125mg/L处理最显著。处理后的植株幼苗矮化,叶小而厚,叶片贮水细胞大、蒸腾减弱、内源脱落酸和脯氨酸含量增多、过氧化物酶活性加大。由于水分的丧失减少,叶片水分的贮存增加,从而提高幼苗的抗旱性。  相似文献   

9.
10.
11.
The effect of exogenous abscisic acid and cAMP on synthesis of soluble proteins in wheat caryopses in drought has been studied. Both compounds affected the formation of the polypeptides whose synthesis was stimulated by dehydration: they increased the incorporation of the label into polypeptides of 13, 15, and 26 kD and decreased the incorporation of the label into polypeptides of 14, 64, and 77 kD. Abscisic acid and cAMP increased the level of the incorporation of [14C]leucine into the low-molecular-weight polypeptides of 12, 17, and 19 kD whose synthesis was suppressed by drought. These data suggest that the cyclic adenylate signal system is probably involved in the effect of abscisic acid on protein synthesis in drought.  相似文献   

12.
13.
14.
15.
16.
* BACKGROUND AND AIMS: The ability of partial dehydration and abscisic acid pretreatments to increase desiccation tolerance in the cyanobacterial lichen Peltigera polydactylon was tested. * METHODS: Net photosynthesis and respiration were measured using infrared gas analysis during a drying and rehydration cycle. At the same time, the efficiency of photosystem two was measured using chlorophyll fluorescence, and the concentrations of chlorophyll a were spectrophotometrically assayed. Heat production was also measured during a shorter drying and rehydration cycle using differential dark microcalorimetry. * KEY RESULTS: Pretreating lichens by dehydrating them to a relative water content of approx. 0.65 for 3 d, followed by storing thalli hydrated for 1 d in the light, significantly improved their ability to recover net photosynthesis during rehydration after desiccation for 15 but not 30 d. Abscisic acid pretreatment could substitute for partial dehydration. The improved rates of photosynthesis during the rehydration of pretreated material were not accompanied by preservation of photosystem two activity or chlorophyll a concentrations compared with untreated lichens. Partial dehydration and ABA pretreatments appeared to have little direct effect on the desiccation tolerance of the mycobiont, because the bursts of respiration and heat production that occurred during rehydration were similar in control and pretreated lichens. * CONCLUSIONS: Results indicate that the photobiont of P. polydactylon possesses inducible tolerance mechanisms that reduce desiccation-induced damage to carbon fixation, and will therefore improve the supply of carbohydrates to the whole thallus following stress. In this lichen, ABA is involved in signal transduction pathways that increase tolerance of the photobiont.  相似文献   

17.
18.
Water deficit is a major environmental threat affecting crop yields worldwide. In this study, a drought stress‐sensitive mutant drought sensitive 8 (ds8) was identified in rice (Oryza sativa L.). The DS8 gene was cloned using a map‐based approach. Further analysis revealed that DS8 encoded a Nck‐associated protein 1 (NAP1)‐like protein, a component of the SCAR/WAVE complex, which played a vital role in actin filament nucleation activity. The mutant exhibited changes in leaf cuticle development. Functional analysis revealed that the mutation of DS8 increased stomatal density and impaired stomatal closure activity. The distorted actin filaments in the mutant led to a defect in abscisic acid (ABA)‐mediated stomatal closure and increased ABA accumulation. All these resulted in excessive water loss in ds8 leaves. Notably, antisense transgenic lines also exhibited increased drought sensitivity, along with impaired stomatal closure and elevated ABA levels. These findings suggest that DS8 affects drought sensitivity by influencing actin filament activity.  相似文献   

19.
Changes in the concentrations of free amino acids and specific organic acids were analysed during the induction of drought stress in Brassica napus . Most of the amino acids showed a characteristic linear increase with the induction of drought stress in Brassica leaves, increasing an average of 5.9-fold over control levels, followed by a reduction in concentration upon rehydration of the plants. Pyruvate concentrations doubled after 4 days of drought stress whereas 2-oxoglutarate concentrations remained relatively constant. The activities of two of the enzymes involved in amino acid biosynthesis, alanine aminotransferase (EC 2.6.1.2) and aspartate aminotransferase (EC 2.6.1.1), were also measured. Neither enzyme showed any increase in activity, except when the plants were rehydrated. This suggests that the increase in both alanine and aspartate levels results from the increase in their precursors pyruvate and glutamate and may not require increased enzyme activity. The effect of drought stress upon changes in protein synthesis was analysed by sodium dodecyl sulfate polyacrylamide gel electrophoresis. We found that there was an overall decrease in protein synthesis with the induction of drought stress, followed by a resumption of synthesis upon rehydration. In addition, the synthesis of a number of specific polypeptides was found to decrease upon water loss in the leaves.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号