首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous attempts to clone the Escherichia coli polA+ gene onto a high copy number plasmid were unsuccessful. The apparent lethality of unregulated overproduction of DNA polymerase I can be eliminated by cutting at a BglII site 100 nucleotides upstream from the ATG start codon of the polA gene. This permitted the construction of plasmid pMP5 which contains both the coding sequence for DNA polymerase I and the lambda pL promoter for conditional control of polA gene expression. BglII cutting only damages but does not eliminate the polA promoter activity; the BglII site thus lies within the polA promoter region. Leakiness of the damaged polA promoter results in overproduction of DNA polymerase I even under conditions where pL is fully repressed. This overproduction is inhibitory of cell growth, as reflected in both growth rate and in the frequency of appearance of mutant plasmids which are nonproducers of DNA polymerase I. Transformation of plasmid pMP5 into E. coli N4830 yields strain ATL100 which under inducing conditions provides 138-fold amplification of DNA polymerase I. Optimization of growth and expression conditions are presented together with an optimized rapid polymerase purification scheme. In addition to providing a convenient source for preparation of DNA polymerase I, this work serves as the basis for a future detailed molecular genetic analysis of the polA gene product.  相似文献   

2.
The repair response of Escherichia coli to hydrogen peroxide has been examined in mutants which show increased sensitivity to this agent. Four mutants were found to show increased in vivo sensitivity to hydrogen peroxide compared with wild type. These mutants, in order of increasing sensitivity, were recA, polC, xthA, and polA. The polA mutants were the most sensitive, implying that DNA polymerase I is required for any repair of hydrogen peroxide damage. Measurement of repair synthesis after hydrogen peroxide treatment demonstrated normal levels for recA mutants, a small amount for xthA mutants, and none for polA mutants. This is consistent with exonuclease III being required for part of the repair synthesis seen, while DNA polymerase I is strictly required for all repair synthesis. Sedimentation analysis of cellular DNA after hydrogen peroxide treatment showed that reformation was absent in xthA, polA, and polC(Ts) strains but normal in a recA cell line. By use of a lambda phage carrying a recA-lacZ fusion, we found hydrogen peroxide does not induce the recA promoter. Our findings indicate two pathways of repair for hydrogen peroxide-induced DNA damage. One of these pathways would utilize exonuclease III, DNA polymerase III, and DNA polymerase I, while the other would be DNA polymerase I dependent. The RecA protein seems to have little or no direct function in either repair pathway.  相似文献   

3.
Haemophilus influenzae was found to produce a DNA polymerase that was similar to polymerase I of Escherichia coli. E. coli polA mutants were used as backgrounds for the selection of H. influenzae polA suppressor genes. Six different H. influenzae fragments were isolated that could suppress E. coli polA mutations. None of the suppressors appeared to encode the H. influenzae equivalent of the E. coli polA gene. One type of clone, represented by pGW41, caused a polymerase I activity to appear in a suppressed polA1 mutant. Plasmids from the pGW41 class contained two genes (pol-2 and pol-3) that were both required for polA suppression. Mutated nonsuppressing derivatives of the pGW41 class were used to create H. influenzae mutants that were deficient in polymerase I.  相似文献   

4.
The Streptococcus pneumoniae polA+ gene was introduced into Escherichia coli on the recombinant plasmid pSM31, which is based on the pSC101 replicon. Extracts of E. coli polA5 mutants containing pSM31 showed DNA polymerase activity, indicating that the pneumococcal DNA polymerase I was expressed in the heterospecific host. Complete complementation of the E. coli polA5 mutation by the pneumococcal polA+ gene was detected in excision repair of DNA damage.  相似文献   

5.
Three different mutations were introduced in the polA gene of Streptococcus pneumoniae by chromosomal transformation. One mutant gene encodes a truncated protein that possesses 5' to 3' exonuclease but has lost polymerase activity. This mutation does not affect cell viability. Other mutated forms of polA that encode proteins with only polymerase activity or with no enzymatic activity could not substitute for the wild-type polA gene in the chromosome unless the 5' to 3' exonuclease domain was encoded elsewhere in the chromosome. Thus, it appears that the 5' to 3' exonuclease activity of the DNA polymerase I is essential for cell viability in S. pneumoniae. Absence of the polymerase domain of DNA polymerase I slightly diminished the ability of S. pneumoniae to repair DNA lesions after ultraviolet irradiation. However, the polymerase domain of the pneumococcal DNA polymerase I gave almost complete complementation of the polA5 mutation in Escherichia coli with respect to resistance to ultraviolet irradiation.  相似文献   

6.
We report the nucleotide sequence of 3.2 kilobase pair region of the Escherichia coli polA gene, comprising the coding region for DNA polymerase I with about 400 base pairs of flanking sequence. The amino acid sequence for DNA polymerase I derived from our DNA sequence is largely consistent with previous protein chemical data. In the following paper, Brown et al. (Brown, W. E., Stump, K. H., and Kelley, W. S. (1982) J. Biol. Chem. 257, 1965-1972) present additional protein chemistry experiments that further confirm our sequence. Mild proteolysis of DNA polymerase I is known to produce two enzymatically active fragments (Brutlag, D., Atkinson, M. R., Setlow, P., and Kornberg, A. (1969) Biochem. Biophys. Res. Commun. 37, 982-989; Klenow, H., and Henningsen, I. (1970) Proc. Natl. Acad. Sci. U. S. A. 74, 5632-5636). We have located the site of this cleavage between residues 323 and 324 of the 928 amino acid polymerase molecule. By sequence comparison of the polA1 and wild type alleles, we have identified the polA1 mutation as a change from Trp (TGG) to amber (TAG) at residue 342.  相似文献   

7.
An Escherichia coli mutant (polA1), defective in deoxyribonucleic acid (DNA) polymerase I, (EC 2.7.7.7) is unable to maintain colicinogenic factor E1 (ColE1), whereas several sex factor plasmids are maintained normally in this strain. polA1 mutant strains containing these sex factor plasmids do not exhibit a readily detectable plasmid-induced polymerase activity. A series of E. coli mutants that are temperature sensitive for ColE1 maintenance, but able to maintain other plasmids, were isolated and shown to fall into two phenotypic groups. Mutants in one group are defective specifically in ColE1 maintenance at 43 C, but exhibit normal DNA polymerase I activity. Mutations in the second group map in the polA gene of E. coli, and bacteria carrying these mutations are sensitive to methylmethanesulfonate (MMS). Revertants that were selected either for MMS resistance or the ability to maintain ColE1 were normal for both properties. The DNA polymerase I enzyme of two of these mutants shows a pronounced temperature sensitivity when compared to the wild-type enzyme. An examination of the role of DNA polymerase I in ColE1 maintenance indicates that it is essential for normal replication of the plasmid. In addition, the presence of a functional DNA polymerase I in both the donor and recipient cell is required for the ColV-promoted conjugal transfer of ColE1 and establishment of the plasmid in the recipient cell.  相似文献   

8.
The plasmid R6K has been introduced into a number of Escherichia coli polymerase deficient (pol) mutants. In polCts mutants transferred to the nonpermissive temperature to inactivate polymerase III, R6K replicates but the replication products have a density in dye-CsCl gradients intermediate between supercoiled and linear forms. This aberrant replication requires normal cellular levels of polymerase I since it does not occur in polA polCts mutants. Normal R6K replication and maintenance occur in a polA polB polC+ host, however, we cannot tell from our experiments wheather polymerase I or III replicates R6K in polA+ polC+ host. Polymerase II, the polB gene product, has no detectable role in R6K replication.  相似文献   

9.
We have isolated a strain of Escherichia coli K-12 carrying a mutation, polA12, that results in the synthesis of a temperature-sensitive deoxyribonucleic acid (DNA) polymerase I. The double mutants polA12 recA56 and polA12 recB21, constructed at 30 C, are inviable at 42 C. About 90% of the cells of both double mutants die after 2 hr of incubation at 42 C. Both double mutants filament at 42 C and show a dependence on high cell density for growth at 30 C. In polA12 recB21 cells at 42 C, DNA and protein synthesis gradually stop in parallel. In polA12 recA56 cells, DNA synthesis continues for at least 1 hr at 42 C, and there is extensive DNA degradation. The results suggest that the primary lesion in these double mutants is not in DNA replication per se.  相似文献   

10.
The Escherichia coli structural gene for DNA polymerase I was inserted into Salmonella typhimurium chromosome by conjugal transfer. The genetic analysis of P1-mediated transduction of obtained hybrid showed that polA gene is located in it between metE and rha loci and is cotransduced with metE (about 50%) and rha (12%). The phenotypic properties of polA1 hybrid E. coliXS. typhimurium concerning UV-MMS-NG and gamma-ray sensitivity are similar to the polA1 mutants of E. coli.  相似文献   

11.
We examined the effects of mutations in the polA (encoding DNA polymerase I) and polB (DNA polymerase II) genes on inducible and constitutive stable DNA replication (iSDR and cSDR, respectively), the two alternative DNA replication systems of Escherichia coli. The polA25::miniTn10spc mutation severely inactivated cSDR, whereas polA1 mutants exhibited a significant extent of cSDR. cSDR required both the polymerase and 5'-->3' exonuclease activities of DNA polymerase I. A similar requirement for both activities was found in replication of the pBR322 plasmid in vivo. DNA polymerase II was required neither for cSDR nor for iSDR. In addition, we found that the lethal combination of an rnhA (RNase HI) and a polA mutation could be suppressed by the lexA(Def) mutation.  相似文献   

12.
Y. Cao  T. Kogoma 《Genetics》1995,139(4):1483-1494
The mechanism of recA polA lethality in Escherichia coli has been studied. Complementation tests have indicated that both the 5' -> 3' exonuclease and the polymerization activities of DNA polymerase I are essential for viability in the absence of RecA protein, whereas the viability and DNA replication of DNA polymerase I-defective cells depend on the recombinase activity of RecA. An alkaline sucrose gradient sedimentation analysis has indicated that RecA has only a minor role in Okazaki fragment processing. Double-strand break repair is proposed for the major role of RecA in the absence of DNA polymerase I. The lexA(Def)::Tn5 mutation has previously been shown to suppress the temperature-sensitive growth of recA200(Ts) polA25::spc mutants. The lexA(Def) mutation can alleviate impaired DNA synthesis in the recA200(Ts) polA25::spc mutant cells at the restrictive temperature. recF(+) is essential for this suppression pathway. recJ and recQ mutations have minor but significant adverse effects on the suppression. The recA200(Ts) allele in the recA200(Ts) polA25::spc lexA(Def) mutant can be replaced by δrecA, indicating that the lexA(Def)-induced suppression is RecA independent. lexA(Def) reduces the sensitivity of δrecA polA25::spc cells to UV damage by ~10(4)-fold. lexA(Def) also restores P1 transduction proficiency to the δrecA polA25::spc mutant to a level that is 7.3% of the recA(+) wild type. These results suggest that lexA(Def) activates a RecA-independent, RecF-dependent recombination repair pathway that suppresses the defect in DNA replication in recA polA double mutants.  相似文献   

13.
Deoxyribonucleic acid (DNA) from bacteriophage T7 has been used to monitor the capacity of gently lysed extracts of Escherichia coli to perform repair resynthesis after ultraviolet (UV) irradiation. Purified DNA damaged by up to 100 J of UV radiation per m2 was treated with an endonuclease from Micrococcus luteus that introduces single-strand breaks in irradiated DNA. This DNA was then used as a substrate to study repair resynthesis by extracts of E. coli. It was found that incubation with the extract and exogenous nucleoside triphosphates under suitable assay conditions resulted in removal of all pyrimidine dimers and restoration of the substrate DNA to its original molecular weight. Repair resynthesis, detected as nonconservative, UV-stimulated DNA synthesis, was directly proportional tothe number of pyrimidine dimers introduced by radiation. The repair mode described here appears to require DNA polymerase I since it does no occur at the restrictive temperature in polA12 mutants, which contain a thermolabile polymerase. The addition of purified DNA polymerase I to extracts made from a polA mutant restores the ability to complete repair at the restrictive temperature.  相似文献   

14.
Using strains of Escherichia coli K-12 that are deleted for the polA gene, we have reexamined the role of DNA polymerase I (encoded by polA) in postreplication repair after UV irradiation. The polA deletion (in contrast to the polA1 mutation) made uvrA cells very sensitive to UV radiation; the UV radiation sensitivity of a uvrA delta polA strain was about the same as that of a uvrA recF strain, a strain known to be grossly deficient in postreplication repair. The delta polA mutation interacted synergistically with a recF mutation in UV radiation sensitization, suggesting that the polA gene functions in pathways of postreplication repair that are largely independent of the recF gene. When compared to a uvrA strain, a uvrA delta polA strain was deficient in the repair of DNA daughter strand gaps, but not as deficient as a uvrA recF strain. Introduction of the delta polA mutation into uvrA recF cells made them deficient in the repair of DNA double-strand breaks after UV irradiation. The UV radiation sensitivity of a uvrA polA546(Ts) strain (defective in the 5'----3' exonuclease of DNA polymerase I) determined at the restrictive temperature was very close to that of a uvrA delta polA strain. These results suggest a major role for the 5'----3' exonuclease activity of DNA polymerase I in postreplication repair, in the repair of both DNA daughter strand gaps and double-strand breaks.  相似文献   

15.
E. coli strains bearing the recA441 mutation and various mutations in the polA gene resulting in enzymatically well-defined deficiencies of DNA polymerase I have been constructed. It was found that the recA441 strains bearing either the polA1 or polA12 mutation causing deficiency of the polymerase activity of pol I are unable to grow at 42 degrees C on minimal medium supplemented with adenine, i.e., when the SOS response is continuously induced in strains bearing the recA441 mutation. Under these conditions the inhibition of DNA synthesis is followed in recA441 polA12 by DNA degradation and loss of cell viability. A similar lethal effect is observed with the recA730 polA12 mutant. The recA441 strain bearing the polA107 mutation resulting in the deficiency of the 5'-3' exonuclease activity of pol I shows normal growth under conditions of continuous SOS response. We postulate that constitutive expression of the SOS response leads to an altered requirement for the polymerase activity of pol I.  相似文献   

16.
The responses of Escherichia coli to X rays and hydrogen peroxide were examined in mutants which are deficient in one or more DNA repair genes. Mutant cells deficient in either exonuclease III (xthA) or endonuclease IV (nfo) had normal resistance to X rays, but an xthA-nfo double mutant showed a sensitivity increased over that of either parental strain. A DNA polymerase I mutant (polA) was more sensitive than the xthA-nfo mutant. Cells bearing mutations in all of the polA, xthA, and nfo genes were more sensitive to X rays than polA and xthA-nfo mutants. Similar repair responses were obtained by exposing these mutant cells to hydrogen peroxide, with the exception of the xthA mutant, which was hypersensitive to this agent. The DNA polymerase III mutant (polC(Ts)) was slightly more sensitive to the agents than the wild-type strain at the restrictive temperature. The sensitivity of the polC-xthA-nfo mutant to X rays and hydrogen peroxide was greater than that of polC but almost the same as that of the xthA-nfo mutant. From these results it appears that there are at least four repair pathways, the DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase I-, exonuclease III/endonuclease IV and DNA polymerase III-, and exonuclease III/endonuclease IV-dependent pathways, for the repair of oxidative DNA damages in E. coli.  相似文献   

17.
J B Sweasy  M Chen    L A Loeb 《Journal of bacteriology》1995,177(10):2923-2925
We previously demonstrated that mammalian DNA polymerase beta can substitute for DNA polymerase I of Escherichia coli in DNA replication and in base excision repair. We have now obtained genetic evidence suggesting that DNA polymerase beta can substitute for E. coli DNA polymerase I in the initiation of replication of a plasmid containing a pMB1 origin of DNA replication. Specifically, we demonstrate that a plasmid with a pMB1 origin of replication can be maintained in an E. coli polA mutant in the presence of mammalian DNA polymerase beta. Our results suggest that mammalian DNA polymerase beta can substitute for E. coli DNA polymerase I by initiating DNA replication of this plasmid from the 3' OH terminus of the RNA-DNA hybrid at the origin of replication.  相似文献   

18.
19.
A mutant of Escherichia coli which is more resistant to shortwave UV light than its wild-type parent strain and which can synthesise DNA polymerase I constitutively has been further analysed. It carries two mutational alleles which are located about 1.5 min apart and cotransducible by P1 with the argH locus. The two mutational alleles have been segregated and their analysis shows that one of them is responsible for UV hyper-resistance whereas the other mutation confers UV sensitivity. Recombinant plasmids carrying various sections of the polA regulatory region, linked to a galK gene, were introduced into the mutant strains. Analysis of galactokinase shows that the enzyme activity in the UV hyper-resistant mutant is increased. The results suggest that the synthesis of DNA polymerase I in E. coli is inducible.  相似文献   

20.
I Seif  G Khoury    R Dhar 《Nucleic acids research》1980,8(10):2225-2240
We have adapted a rapid sequencing technique from the enzymatic nick-translation method of Maat and Smith. The Forward-Backward procedure employs both synthetic and 3' to 5' exonucleolytic activities of E. coli DNA polymerase I to achieve greater reliability, especially in reading stretches of the same nucleotide. The technique has been employed to determine sequence alterations in four early SV40 temperature-sensitive (tsA) point mutants and five early SV40 viable deletion mutants. The nucleotide sequence of these mutants provides an insight into their biological properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号