首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hemophilia A, a life-threatening bleeding disorder, is caused by deficiency of factor VIII (FVIII). Replacement therapy using rFVIII is the first line therapy for hemophilia A. However, 15-30% of patients develop neutralizing antibody, mainly against the C2, A3 and A2 domains. It has been reported that PS-FVIII complex reduced total and neutralizing anti-rFVIII antibody titers in hemophilia A murine models. Here, we developed FVIII-containing cochleate cylinders, utilizing PS-Ca(2+) interactions and characterized these particles for optimal in vivo properties using biophysical and biochemical techniques. Approximately 75% of the protein was associated with cochleate cylinders. Sandwich ELISA, acrylamide quenching and enzymatic digestion studies established that rFVIII was shielded from the bulk aqueous phase by the lipidic structures, possibly leading to improved in vivo stability. Freeze-thawing and rate-limiting diffusion studies revealed that small cochleate cylinders with a particle size of 500 nm or less could be generated. The release kinetics and in vivo experiments suggested that there is slow and sustained release of FVIII from the complex upon systemic exposure. In vivo studies using tail clip method indicated that FVIII-cochleate complex is effective and protects hemophilic mice from bleeding. Based on these studies, we speculate that the molecular interaction between FVIII and PS may provide a basis for the design of novel FVIII lipidic structures for delivery applications.  相似文献   

2.
In vivo, clotting Factor VIII (FVIII) circulates in plasma bound to von Willebrand factor (vWF), and the vWF:FVIII complex prevents binding of FVIII to phosphatidylserine (PS). Activation of FVIII by thrombin releases FVIII from vWF, and subsequently FVIII binds to PS exposed on activated platelets and forms the tenase complex together with clotting Factor IX. In vitro, during serum free production of recombinant FVIII (rFVIII), production cells also expose PS, and since vWF is not present to hinder interaction of secreted rFVIII with PS, rFVIII is partly associated with the cell membrane of the production cells. Recently, we showed that as much as 90% of secreted rFVIII is bound to transiently transfected production cells during serum free conditions. In this study, we investigated the effect of including vWF in the serum free medium, and demonstrate that addition of vWF results in release of active membrane bound rFVIII to the culture medium. Moreover, the attachment of rFVIII to cell membranes of un-transfected HEK293 cells was studied in the presence of compounds that competes for interactions between rFVIII and PS. Competitive assays between iodinated rFVIII (125I-rFVIII) and annexin V or ortho-phospho-l-serine (OPLS) demonstrated that annexin V and OPLS were able to reduce the membrane bound fraction of rFVIII by 70% and 30%, respectively. Finally, adding OPLS to CHO cells stably expressing FVIII increased the yield by 50%. Using this new knowledge, the recovery of rFVIII could be increased considerably during serum free production of this therapeutic protein.  相似文献   

3.
Anti-factor VIII (FVIII) inhibitory IgG may arise as alloantibodies to therapeutic FVIII in patients with congenital hemophilia A, or as autoantibodies to endogenous FVIII in individuals with acquired hemophilia. We have described FVIII-hydrolyzing IgG both in hemophilia A patients with anti-FVIII IgG and in acquired hemophilia patients. Here, we compared the properties of proteolytic auto- and allo-antibodies. Rates of FVIII hydrolysis differed significantly between the two groups of antibodies. Proline-phenylalanine-arginine-methylcoumarinamide was a surrogate substrate for FVIII-hydrolyzing autoantibodies. Our data suggest that populations of proteolytic anti-FVIII IgG in acquired hemophilia patients are different from that of inhibitor-positive hemophilia A patients.  相似文献   

4.

Aims

Hemophilia A (HA) is a severe, congenital bleeding disorder caused by the deficiency of clotting factor VIII (FVIII). For years, traditional laboratory animals have been used to study HA and its therapies, although animal models may not entirely mirror the human pathophysiology. Human induced pluripotent stem cells (iPSCs) can undergo unlimited self-renewal and differentiate into all cell types. This study aims to generate hemophilia A (HA) patient-specific iPSCs that differentiate into disease-affected hepatocyte cells. These hepatocytes are potentially useful for in vitro disease modeling and provide an applicable cell source for autologous cell therapy after genetic correction.

Main methods

In this study, we mainly generated iPSCs from urine collected from HA patients with integration-free episomal vectors PEP4-EO2S-ET2K containing human genes OCT4, SOX2, SV40LT and KLF4, and differentiated these iPSCs into hepatocyte-like cells. We further identified the genetic phenotype of the FVIII genes and the FVIII activity in the patient-specific iPSC derived hepatic cells.

Key findings

HA patient-specific iPSCs (HA-iPSCs) exhibited typical pluripotent properties evident by immunostaining, in vitro assays and in vivo assays. Importantly, we showed that HA-iPSCs could differentiate into functional hepatocyte-like cells and the HA-iPSC-derived hepatocytes failed to produce FVIII, but otherwise functioned normally, recapitulating the phenotype of HA disease in vitro.

Significance

HA-iPSCs, particular those generated from the urine using a non-viral approach, provide an efficient way for modeling HA in vitro. Furthermore, HA-iPSCs and their derivatives serve as an invaluable cell source that can be used for gene and cell therapy in regenerative medicine.  相似文献   

5.
The murine monoclonal antibodies ESH2, ESH4, ESH5, and ESH8 specifically bind and inhibit the procoagulant activity of human coagulation factor VIII (FVIII). They are frequently used as a model of inhibitors which are raised against injected FVIII in about 25% of hemophiliacs as a serious side effect of substitution therapy. However, binding kinetics of the interaction of these antibodies with FVIII and their influence on FVIII activity (inhibition) have not yet been examined systematically. For this, we examined association and dissociation of protein:antibody interaction using surface plasmon resonance (SPR) and determined their ability to inhibit the FVIII activity in a one‐stage and a two‐stage assay. SPR‐analysis revealed that the equilibrium dissociation constants (KD) of ESH8 and ESH4 are low and in a similar range (ESH8: KD(ESH8) = 0.542 nM; ESH4: KD(ESH4) = 0.761 nM). A 5.7 times higher KD than for ESH4 was observed for ESH2 (4.33 nM), whereas ESH5 showed the highest KD of 28.8 nM. In accordance with the lowest KD, ESH8, and ESH4 reduced FVIII activity of normal human plasma almost completely in a one‐stage clot inhibition assay (ESH8: 91.9%; ESH4: 90.1%). However, ESH8 inhibited FVIII activity more efficiently as only 1.0 µg/ml ESH8 was sufficient to obtain maximum inhibition compared to up to 600 µg/ml of ESH4. Despite its attenuated KD, ESH2 inhibits FVIII:C still efficiently, reducing 61.3% of FVIII activity at a concentration of 9 µg/ml in the one‐stage clotting assay. However, a discrepancy of inhibitory efficiency was found depending on the method used to measure FVIII activity. These effects seem to be mainly caused by differences of activation time of FVIII during both FVIII activity assays. The systematic assessment of these results should support FVIII interaction studies, and can provide data to rationally test peptides/mimotopes to remove or neutralize inhibitors of FVIII activity. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

6.
Factor VIII (FVIII) functions as a co-factor in the blood coagulation cascade for the proteolytic activation of factor X by factor IXa. Deficiency of FVIII causes hemophilia A, the most commonly inherited bleeding disorder. This review highlights current knowledge on selected aspects of FVIII in which both the scientist and the clinician should be interested.  相似文献   

7.

Background

Point mutations resulting in reduced factor VIII (FVIII) binding to von Willebrand factor (VWF) are an important cause of mild/moderate hemophilia A. Treatment includes desmopressin infusion, which concomitantly increases VWF and FVIII plasma levels, apparently from storage pools containing both proteins. The source of these VWF/FVIII co-storage pools and the mechanism of granule biogenesis are not fully understood.

Methodology/Principal Findings

We studied intracellular trafficking of FVIII variants implicated in mild/moderate hemophilia A together with VWF in HEK293 cells and primary endothelial cells. The role of VWF binding was addressed using FVIII variants displaying reduced VWF interaction. Binding studies using purified FVIII proteins revealed moderate (Arg2150His, Del2201, Pro2300Ser) to severe (Tyr1680Phe, Ser2119Tyr) VWF binding defects. Expression studies in HEK293 cells and primary endothelial cells revealed that all FVIII variants were present within VWF-containing organelles. Quantitative studies showed that the relative amount of FVIII storage was independent of various mutations. Substantial amounts of FVIII variants are co-stored in VWF-containing storage organelles, presumably by virtue of their ability to interact with VWF at low pH.

Conclusions

Our data suggest that the potential of FVIII co-storage with VWF is not affected in mild/moderate hemophilia A caused by reduced FVIII/VWF interaction in the circulation. These data support the hypothesis that Weibel-Palade bodies comprise the desmopressin-releasable FVIII storage pool in vivo.  相似文献   

8.
Hemophilia A is one of the major inherited bleeding disorders caused by a deficiency or abnormality in coagulation factor VIII (FVIII). Hemophiliacs have been treated with whole plasma or purified FVIII concentrates. The risk of transmitting blood-borne viruses and the cost of highly purified FVIII are the major factors that restrict prophylaxis in hemophilia therapy. One of the challenges created by the biotechnology revolution is the development of methods for the economical production of highly purified proteins in large scales. Recent developments indicate that manipulating milk composition using transgenesis has focused mainly on the mammary gland as a bioreactor to produce pharmaceuticals. In the present study, a hybrid gene containing bovine -lactalbumin and human FVIII cDNA was constructed for microinjection into the pronuclei of newly fertilized mouse eggs. The LA-hFVIII hybrid gene was confirmed to be successfully integrated and stably germ-line transmitted in 12 (seven females/five males) lines. Western-blot analysis of milk samples obtained from eight of the transgenic founders and F1 offspring indicated that the recombinant hFVIII was secreted into the milk of the transgenic mice. The concentrations of rFVIII ranged from 7.0 to 50.2g/ml, over 35–200-fold higher than that in normal human plasma. Up to 13.4U/ml of rFVIII was detected in an assay in which rFVIII restored normal clotting activity to FVIII-deficient human plasma.  相似文献   

9.
During the production by mammalian cells of recombinant factor VIII from which the B domain was deleted (rFVIII), proteolytic cleavages in the C-terminal part of the heavy chain were observed (Kjalke et al., 1995). By radioactive pulse labelling it was investigated whether the cleavages took place inside the cells during protein synthesis or after release in the medium. The rFVIII-producing CHO (Chinese hamster ovary) cells were cultured in the presence of 35S-methionine and then the cell lysate and the conditioned media were immunoprecipitated and analyzed by electrophoresis. By pulse labelling and chasing for various time periods, it was shown that the cleavages only took place after secretion of the protein from the cells. Adding cell lysate to uncleaved rFVIII caused cleavage of the heavy chain, as seen by loss of binding to a monoclonal antibody specific for intact rFVIII, indicating that the cleavage was performed by proteinase(s) released from the lysed cells. By incubating intact rFVIII with the multicatalytic proteinase (proteasome) present in cytoplasm and nucleus of eukaryotic cells, loss of binding to the monoclonal antibody was observed. This indicates that the multicatalytic proteinase, released from lysed rFVIII producing cells, could be responsible for the cleavage of rFVIII. Among several protease inhibitors tested, only bacitracin was found to diminish the extent of cleavage. Phosphatidylserine also protected rFVIII against cleavage, probably by binding to rFVIII. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Gene- or cell-based therapies aimed at creating delivery systems for coagulation factor VIII (FVIII) protein have emerged as promising options for hemophilia A treatment. However, several issues remain to be addressed regarding the efficacies and adverse events of these new classes of therapies. To improve an existing cell-based therapy involving the subcutaneous transplantation of FVIII-transduced blood outgrowth endothelial cells (BOECs), we employed a novel cell-sheet technology that allows individual dispersed cells to form a thin and contiguous monolayer without traditional bioabsorbable scaffold matrices. Compared to the traditional methodology, our cell-sheet approach resulted in longer-term and 3–5-fold higher expression of FVIII (up to 11% of normal) in recipient hemophilia A mice that lacked a FVIII humoral immune response due to transient immunosuppression with cyclophosphamide. Histological studies revealed that the transplanted BOEC sheets were structured as flat clusters, supporting the long-term expression of therapeutic FVIII in plasma from an ectopic subcutaneous space. Our novel tissue-engineering approach using genetically modified BOEC sheets could aid in development of cell-based therapy that will allow safe and effective in vivo delivery of functional FVIII protein in patients with hemophilia A.  相似文献   

11.
Viral vectors have been used for hemophilia A gene therapy. However, due to its large size, full-length Factor VIII (FVIII) cDNA has not been successfully delivered using conventional viral vectors. Moreover, viral vectors may pose safety risks, e.g., adverse immunological reactions or virus-mediated cytotoxicity. Here, we took advantages of the non-viral vector gene delivery system based on piggyBac DNA transposon to transfer the full-length FVIII cDNA, for the purpose of treating hemophilia A. We tested the efficiency of this new vector system in human 293T cells and iPS cells, and confirmed the expression of the full-length FVIII in culture media using activity-sensitive coagulation assays. Hydrodynamic injection of the piggyBac vectors into hemophilia A mice temporally treated with an immunosuppressant resulted in stable production of circulating FVIII for over 300 days without development of anti-FVIII antibodies. Furthermore, tail-clip assay revealed significant improvement of blood coagulation time in the treated mice.piggyBac transposon vectors can facilitate the long-term expression of therapeutic transgenes in vitro and in vivo. This novel gene transfer strategy should provide safe and efficient delivery of FVIII.  相似文献   

12.
Hemophilia A is an X-linked congenital bleeding disorder caused by Factor VIII deficiency. Different mutations including point mutations, deletions, insertions and inversions have been reported in the FVIII gene, which cause hemophilia A. In the current study, with the use of conformational sensitive gel electrophoresis (CSGE) analysis, we report a novel 1-nt deletion in the A6 sequence at codons 1328-1330 (4040-4045 nt delA) occurring in exon 14 of the FVIII gene in a seven-year-old Iranian boy with severe hemophilia A. This mutation that causes frameshift and premature stop-codon at 1331 has not previously been reported in the F8 Hemophilia A Mutation, Structure, Test and Resource Site (HAMSTeRS) database.  相似文献   

13.
Administration of recombinant factor VIII (FVIII), an important co-factor in blood clotting cascade, elicits unwanted anti-FVIII antibodies in hemophilia A (HA) patients. Previously, FVIII associated with phosphatidylserine (PS) showed significant reduction in the anti-FVIII antibody response in HA mice. The reduction in the immune response to FVIII-PS could be due either to a failure of the immune system to recognize the antigen (i.e. immunological ignorance) or to an active induction of an antigen-specific nonresponsiveness (i.e. immunological tolerance). If it were a result of tolerance, one would predict that pre-exposure to FVIII-PS would render the mice hypo-responsive to a subsequent FVIII challenge. Here, we have demonstrated that naive HA mice that were pretreated with FVIII-PS showed a significantly reduced FVIII immune response to further challenge with native FVIII and that this decreased responsiveness could be adoptively transferred to other mice. An increase in number of FoxP3-expressing CD4+ regulatory T-cells (Treg) was observed for the FVIII-PS-immunized group as compared with animals that received FVIII alone, suggesting the involvement of Treg in PS-mediated hypo-responsiveness. The PS-mediated reduction in antibody response was reversed by the co-administration of function-blocking anti-TGF-β antibody with FVIII-PS. The decreased response to FVIII induced by FVIII-PS was determined to be antigen-specific because the immune response to another non-cross-reactive antigen (ovalbumin) was not altered. These results are consistent with the notion that FVIII-PS is tolerogenic and suggest that immunization with this tolerogenic form of the protein could be a useful treatment option to minimize immunogenicity of FVIII and other protein-based therapeutics.  相似文献   

14.
BACKGROUND: The development of anti-factor VIII (FVIII) antibodies (inhibitors) is a critical concern when considering gene therapy as a potential treatment modality for hemophilia A. We used a hemophilia A mouse model bred on different genetic backgrounds to explore genetically controlled differences in the immune response to FVIII gene therapy. METHODS: C57BL/6 FVIII knockout (C57-FVIIIKO) mice were bred with normal BALB/c (BAL) mice, to generate a recombinant congenic BAL-FVIIIKO model of hemophilia A. Early generation adenoviral (Ad) vectors containing the canine FVIII B-domain-deleted transgene under the control of either the CMV promoter or a tissue-restricted (TR) promoter were administered to C57-FVIIIKO, C57xBAL(F1)-FVIIIKO crosses, and BAL-FVIIIKO mice. FVIII expression, inhibitor development, inflammation, and vector-mediated toxicity were assessed. RESULTS: In response to administration of Ad-CMV-cFVIII, C57-FVIIIKO mice attain 3-fold higher levels of FVIII expression than BAL-FVIIIKO. All strains injected with Ad-CMV-FVIII displayed FVIII expression lasting only 2 weeks, with associated inhibitor development. C57-FVIII-KO mice that received Ad-TR-FVIII expressed FVIII for 12 months post-injection, whereas FVIII expression was limited to 1 week in C57xBAL(F1)-FVIIIKO and BAL-FVIIIKO mice. This loss of expression was associated with anti-FVIII inhibitor development. BAL-FVIIIKO mice showed increased hepatotoxicity with alanine aminotransferase levels reaching 4-fold higher levels than C57-FVIIIKO mice. However, C57-FVIIIKO mice initiate a more rapid and effective cell-mediated clearance of virally transduced cells than BAL-FVIIIKO, as evidenced by real-time PCR analysis of transduced tissues. Overall, strain-dependent differences in the immune response to FVIII gene delivery were only noted in the adaptive response, and not in the innate response. CONCLUSIONS: Our results indicate that the genetic background of the murine model of hemophilia A influences FVIII expression levels, the development of anti-FVIII inhibitors, clearance of transduced cells, and the severity of vector-mediated hepatotoxicity.  相似文献   

15.
Severe hemophilia A (HA) is an inherited bleeding disorder characterized by <1% of residual factor VIII (FVIII) clotting activity. The disease affects several mammals including dogs, and, like humans, is associated with high morbidity and mortality. In gene therapy using adeno-associated viral (AAV) vectors, the canine model has been one of the best predictors of the therapeutic dose tested in clinical trials for hemophilia B (factor IX deficiency) and other genetic diseases, such as congenital blindness. Here we report our experience with liver gene therapy with AAV-FVIII in two outbred, privately owned dogs with severe HA that resulted in sustained expression of 1–2% of normal FVIII levels and prevented 90% of expected bleeding episodes. A Thr62Met mutation in the F8 gene was identified in one dog. These data recapitulate the improvement of the disease phenotype in research animals, and in humans, with AAV liver gene therapy for hemophilia B. Our experience is a novel example of the benefits of a relevant preclinical canine model to facilitate both translational studies in humans and improved welfare of privately owned dogs.  相似文献   

16.
Factor VIII (FVIII) is an essential component in blood coagulation, a deficiency of which causes the serious bleeding disorder hemophilia A. Recently, with the development of purification level and recombinant techniques, protein replacement treatment to hemophiliacs is relatively safe and can prolong their life expectancy. However, because of the possibility of unknown contaminants in plasma-derived FVIII and recombinant FVIII, and high cost for hemophiliacs to use these products, gene therapy for hemophilia A is an attractive alternative to protein replacement therapy. Thus far, the adeno-associated virus (AAV) is a promising vector for gene therapy. Further improvement of the virus for clinical application depends on better understanding of the molecular structure and fate of the vector genome. It is likely that hemophilia will be the first genetic disease to be cured by somatic cell gene therapy.  相似文献   

17.
18.
Recombinant factor VIII is one of the most complex mammalian proteins and a biotechnology venture required for the treatment of hemophilia A. The complexity of the protein, post-translational modifications and limitations of expression elements make the production of active recombinant FVIII a challenge. Here we report the production of biologically active Factor VIII in two different cell lines, CHO and HepG2, by transient transfection. Two expression vectors based on the CMV promoter were used: one harboring CMV Intron A (InA) and the other without it. To bypass difficulties in secretion, we also studied the influence of co-expression of the human splice isoform of the XBP1 gene. We report the production of recombinant FVIII possessing bioengineered FVIII heavy and light chains, linked by a minimal B domain. In our study, HepG2, a human hepatocyte cell line, expressed Factor VIII ten-fold more than a CHO cell line, and in HepG2 cells, the expression of XBP1 improved Factor VIII activity. For CHO cells, expression was improved by the presence of InA, but no further improvement was noted with XBP1 co-expression. These data suggest that the minimal B domain rFVIII preserves Factor VIII biological activity and that different expression elements can be used to improve its production.  相似文献   

19.
20.
The RNA chaperone protein Hfq is required for the function of all small RNAs (sRNAs) that regulate mRNA stability or translation by limited base pairing in Escherichia coli. While there have been numerous in vitro studies to characterize Hfq activity and the importance of specific residues, there has been only limited characterization of Hfq mutants in vivo. Here, we use a set of reporters as well as co-immunoprecipitation to examine 14 Hfq mutants expressed from the E. coli chromosome. The majority of the proximal face residues, as expected, were important for the function of sRNAs. The failure of sRNAs to regulate target mRNAs in these mutants can be explained by reduced sRNA accumulation. Two of the proximal mutants, D9A and F39A, acted differently from the others in that they had mixed effects on different sRNA/mRNA pairs and, in the case of F39A, showed differential sRNA accumulation. Mutations of charged residues at the rim of Hfq interfered with positive regulation and gave mixed effects for negative regulation. Some, but not all, sRNAs accumulated to lower levels in rim mutants, suggesting qualitative differences in how individual sRNAs are affected by Hfq. The distal face mutants were expected to disrupt binding of ARN motifs found in mRNAs. They were more defective for positive regulation than negative regulation at low mRNA expression, but the defects could be suppressed by higher levels of mRNA expression. We discuss the implications of these observations for Hfq binding to RNA and mechanisms of action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号