首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Becker TW  Carrayol E  Hirel B 《Planta》2000,211(6):800-806
 Mesophyll cells (MCs) and bundle-sheath cells (BSCs) of leaves of the C4 plant maize (Zea mays L.) were separated by cellulase digestion to determine the relative proportion of the glutamine synthetase (GS; EC 6.3.1.2) or the NADH-glutamate dehydrogenase (GDH; EC 1.4.1.2) isoforms in each cell type. The degree of cross-contamination between our MC and BSC preparations was checked by the analysis of marker proteins in each fraction. Nitrate reductase (EC 1.6.6.1) proteins (110 kDa) were found only in the MC fraction. In contrast, ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1) proteins (160 kDa) were almost exclusively present in the BSC fraction. These results are consistent with the known intercellular distribution of nitrate reductase and Fd-GOGAT proteins in maize leaves and show that the cross-contamination between our MC and BSC fractions was very low. Proteins corresponding to cytosolic GS (GS-1) or plastidic GS (GS-2) were found in both the MC and BSC fractions. While equal levels of GS-1 (40 kDa) and GS-2 (44 kDa) polypeptides were present in the BSC fraction, the GS-1 protein level in the MC fraction was 1.8-fold higher than the GS-2 protein pool. Following separation of the GS isoforms by anion-exchange chromatography of MC or BSC soluble protein extracts, the relative GS-1 activity in the MC fraction was found to be higher than the relative GS-2 activity. In the BSC fraction, the relative GS-1 activity was very similar to the relative GS-2 activity. Two isoforms of GDH with apparent molecular weights of 41 kDa and 42 kDa, respectively, were detected in the BSC fraction of maize leaves. Both GDH isoenzymes appear to be absent from the MC fraction. In the BSCs, the level of the 42-kDa GDH isoform was 1.7-fold higher than the level of the 41-kDa GDH isoform. A possible role for GS-1 and GDH co-acting in the synthesis of glutamine for the transport of nitrogen is discussed. Received: 25 January 2000 / Accepted: 30 March 2000  相似文献   

3.
GLU1 encodes the major ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) in Arabidopsis thaliana (ecotype Columbia). With the aim of providing clues on the role of Fd-GOGAT, we analyzed the expression of Fd-GOGAT in tobacco (Nicotiana tabacum L. cv. Xanthi). The 5′ flanking element of GLU1 directed the expression of the uidA reporter gene in the palisade and spongy parenchyma of mesophyll, in the phloem cells of vascular tissue and in the roots of tobacco. White light, red light or sucrose induced GUS expression in the dark-grown seedlings in a pattern similar to the GLU1 mRNA accumulation in Arabidopsis. The levels of GLU2 mRNA encoding the second Fd-GOGAT and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) were not affected by light. Both in the light and in darkness, 15NH4+ was incorporated into [5−15N]glutamine and [2−15N]glutamate by glutamine synthetase (GS, EC 6.3.1.2) and Fd-GOGAT in leaf disks of transgenic tobacco expressing antisense Fd-GOGAT mRNA and in wild-type tobacco. In the light, low level of Fd-glutamate synthase limited the [2−15N]glutamate synthesis in transgenic leaf disks. The efficient dark labeling of [2−15N]glutamate in the antisense transgenic tobacco leaves indicates that the remaining Fd-GOGAT (15–20% of the wild-type activity) was not the main limiting factor in the dark ammonium assimilation. The antisense tobacco under high CO2 contained glutamine, glutamate, asparagine and aspartate as the bulk of the nitrogen carriers in leaves (62.5%), roots (69.9%) and phloem exudates (53.2%). The levels of glutamate, asparagine and aspartate in the transgenic phloem exudates were similar to the wild-type levels while the glutamine level increased. The proportion of these amino acids remained unchanged in the roots of the transgenic plants. Expression of GLU1 in mesophyll cells implies that Fd-GOGAT assimilates photorespiratory and primary ammonium. GLU1 expression in vascular cells indicates that Fd-GOGAT provides amino acids for nitrogen translocation. The nucleotide sequence data of the GLU1 gene reported in the present study is available from GenBank with the following accession number: AY189525  相似文献   

4.
Glutamate (Glu) metabolism and amino acid translocation were investigated in the young and old leaves of tobacco (Nicotiana tabacum L. cv Xanthi) using [15N]ammonium and [2-15N]Glu tracers. Regardless of leaf age, [15N]ammonium assimilation occurred via glutamine synthetase (GS; EC 6.1.1.3) and Glu synthase (ferredoxin [Fd]-GOGAT; EC 1.4.7.1; NADH-GOGAT; EC 1.4.1.14), both in the light and darkness, and it did not depend on Glu dehydrogenase (GDH; EC 1.4.1.2). The [15N]ammonium and ammonium accumulation patterns support the role of GDH in the deamination of [2-15N]Glu to provide 2-oxoglutarate and [15N]ammonium. In the dark, excess [15N]ammonium was incorporated into asparagine that served as an additional detoxification molecule. The constant Glu levels in the phloem sap suggested that Glu was continuously synthesized and supplied into the phloem regardless of leaf age. Further study using transgenic tobacco lines, harboring the promoter of the GLU1 gene (encoding Arabidopsis [Arabidopsis thaliana] Fd-GOGAT) fused to a GUS reporter gene, revealed that the expression of Fd-GOGAT remained higher in young leaves compared to old leaves, and higher in the veins compared to the mesophyll. Confocal laser-scanning microscopy localized the Fd-GOGAT protein to the phloem companion cells-sieve element complex in the leaf veins. The results are consistent with a role of Fd-GOGAT in supplying Glu for the synthesis and transport of amino acids. Taken together, the data provide evidence that the GS-GOGAT pathway and GDH play distinct roles in the source-sink nitrogen cycle of tobacco leaves.  相似文献   

5.
6.
The cellular localization of the enzymes involved in primary nitrogen assimilation was investigated following separation of mesophyll protoplasts and bundle-sheath cells of maize (Zea mays L.) leaves. Determination of the enzymatic activities in the two types of cell revealed that nitrate and nitrite reductase are principally located in the mesophyll cells whereas glutamine synthetase (GS) and ferredoxin-dependent glutamate synthase (Fd-GOGAT) are present in both tissues with a preferential location in the bundle-sheath strands. In order to confirm the results obtained by this conventional biochemical method we have used an in-situ immunofluorescence technique to unambiguously localize GS and Fd-GOGAT at the cellular level. Thin-sectioned maize leaves treated with specific GS and Fd-GOGAT antisera followed by conjugation with fluorescein-isothiocyanate-labelled sheep anti-rabbit immunoglobulins clearly show that GS is equally distributed within the leaf whereas Fd-GOGAT is mostly present in the chloroplasts of the bundle-sheath cells. The cellular localization of nitrate reductase, nitrite reductase, GS-2 and Fd-GOGAT in maize leaf cell types strongly indicates that primary nitrogen assimilation functions in the mesophyll cells while photorespiratory nitrogen recycling is restricted to the bundle-sheath cells.  相似文献   

7.
8.
Ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) was purified to electrophoretic homogeneity from leaves of tobacco (Nicotiana tabacum L.). The holoenzyme is a monomeric flavoprotein with a molecular weight of 164 kDa. Polyclonal rabbit antibodies against the purified enzyme were used to isolate a 450-bp Fd-GOGAT cDNA clone (C16) from a tobacco gt11 expression library. A longer Fd-GOGAT cDNA clone (C35) encoding about 70% of the amino acids of tobacco Fd-GOGAT was isolated from a tobacco gt10 cDNA library using C16 as the probe. The amino-acid sequence of the protein encoded by the Fd-GOGAT cDNA clone C35 was delineated. It is very likely that Fd-GOGAT is encoded by two genes in the amphidiploid genome of tobacco while only a single Fd-GOGAT gene appears to be present in the diploid genome of Nicotiana sylvestris. Two Fd-GOGAT isoenzymes could be distinguished in extracts of tobacco leaf protein. In contrast, a single Fd-GOGAT protein species was detected in leaves of Nicotiana sylvestris speg. et Comes. In tobacco leaves, the 6-kb Fd-GOGAT mRNA is about 50-fold less abundant than chloroplastic glutamine synthetase (EC 6.3.1.2) mRNA. Both Fd-GOGAT mRNA and Fd-GOGAT protein accumulated during greening of etiolated tobacco leaves, and a concomitant increase in Fd-GOGAT activity was observed. These results indicate that tobacco Fd-GOGAT gene expression is light-inducible. Levels of Fd-GOGAT mRNA in tobacco organs other than leaves were below the detection limit of our Northern-blot analysis. Polypeptides of Fd-GOGAT were present in tobacco leaves and, to a lesser extent, in pistils and anthers, but not in corollas, stems and roots. These results support organ specificity in tobacco Fd-GOGAT gene expression.Abbreviations bp base pairs - Fd-GOGAT ferredoxin-dependent glutamate synthase - GS glutamine synthetase - PAGE polyacrylamide gel electrophoresis - SDS sodium dodecyl sulfate The authors wish to thank Juan Luis Gómez Pinchetti (Marine Plant Biotechnology Laboratory) for his assistance during the experiments. This study was supported by grants received from SAREC (Swedish Agency for Research Cooperation with Developing Countries), Carl Tryggers Fund for Scientific Research (K. Haglund), SJFR (Swedish Council for Forestry and Agricultural Research) (M. Björk, M. Pedersén), CITYT Spain (SAB 89-0091 and MAR 91-1237, M. Pedersén) and CICYT Spain (Z. Ramazanov, invited professor of Ministerio de Educatión y Ciencia, Spain). The planning of this cooperation was facilitated by COST-48.  相似文献   

9.
Ferrario-Méry  S.  Suzuki  A.  Kunz  C.  Valadier  M.H.  Roux  Y.  Hirel  B.  Foyer  C.H. 《Plant and Soil》2000,221(1):67-79
Tobacco (Nicotiana tabacum) plants expressing a partial ferredoxin-dependent glutamine-2-oxoglutarate aminotransferase (Fd-GOGAT) cDNA in the antisense orientation under the control of the 35S promoter, were used to study the metabolism of amino acids, 2-oxoglutarate and ammonium following the transition from CO2 enrichment (where photorespiration is inhibited) to air (where photorespiration is a major process of ammonium production in leaves). The leaves of the lowest Fd-GOGAT expressors accumulated more foliar glutamine (Gln) and α-ketoglutarate (α-KG) than the untransformed controls in both growth conditions. Photorespiration-dependent increases in foliar ammonium, glutamine, α-KG and total amino acids were proportional to the decreases in foliar Fd-GOGAT activity. No change in endoprotease activity was observed following transfer to air in the Fd-GOGAT transformants or the untransformed controls which has similar activities over a broad range of pH values. We conclude that several pathways of amino acid biosynthesis are modified when NH3 + and Gln accumulate in leaves. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
11.
12.
Both NADH-dependent glutamate synthase (NADH-GOGAT, EC 1.4.1.14) and ferredoxin-dependent glutamate synthase (Fd-GOGAT, EC 1.4.7.1) activities were present in the endosperm, embryo, pedicel and pericarp of maize ( Zea mays L. var. W64A × A619) kernels. The endosperm contained the highest proportions of each activity on a per tissue basis. In the endosperm, NADH-GOGAT and Fd-GOGAT activities increased 12- and 2.5-fold, respectively, during early zein accumulation. NADH-GOGAT and Fd-GOGAT activities were expressed in the upper, middle and lower portions of the endosperm in a manner that paralleled but preceded zein accumulation. Maize endosperm NADH-GOGAT was purified 159-fold using ammonium sulfate fractionation, anion exchange chromatography and dye-ligand chromatography. Apparent Km values for glutamine, α-ketoglutarate and NADH were 850, 19 and 1 μM, respectively. The results are consistent with endosperm GOGAT functioning to redistribute nitrogen from glutamine, the predominant nitrogenous compound delivered to the endosperm, into other amino acids needed for storage protein synthesis.  相似文献   

13.
The activities of enzymes involved in ammonia metabolism ferredoxin-dependent glutamate synthase (Fd-GOGAT), glutamine synthetase (GS) and glutamate dehydrogenase (GDH), the rates of photosynthetic oxygen evolution, dark respiration, and the activity of RuBP carboxylase (RuBPC) were determined in alfalfa (Medicago sativa L.) leaves taken from the apex (apical leaves), from the second to the fourth internode (mature leaves) and from the bottom of the canopy (basal leaves). Photosynthetic rate and the activities of RuBPC, GS and Fd-GOGAT showed their maximum in the mature leaves. The respiration rate together with amino acid and ammonium contents decreased with leaf age, whereas the opposite was true for GDH activity. Basal leaves still maintained substantial levels of chlorophylls, GS and Fd-GOGAT activities and oxygen evolution rate, thus suggesting that photosynthesis has some role in the reassimilation of the nitrogen liberated during protein degradation. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

14.
The grapevine (Vitis vinifera L.) partial fragment of cDNA clone pGOGAT1 [Loulakakis and Roubelakis-Angelakis (1997) Physiol Plant 101:220-228], encoding the ferredoxin-dependent glutamate synthase (Fd-GOGAT; EC 1.4.7.1), was overexpressed in Escherichia coli cells. A hybrid between the Fd-GOGAT fragment and maltose-binding protein was purified and used to raise a polyclonal antibody in a rabbit. The prepared antibody appeared to be specific towards Fd-GOGAT; it recognized a protein band of approximately 160 kDa on nitrocellulose blots after SDS-PAGE of total proteins from leaves, internodes, roots and calluses, and precipitated most of the enzyme activity present in grapevine protein extracts. The quantity of Fd-GOGAT protein was substantially higher in leaves than in other grapevine tissues tested, coincident with a similar distribution of the enzyme specific activity. Intracellular localization studies revealed that both the enzyme activity and the 160-kDa immunoreactive protein were associated with the chloroplastic fraction. Furthermore, the accumulation of Fd-GOGAT, glutamine synthetase (GS) and glutamate dehydrogenase (GDH), at the activity and protein levels, was monitored during leaf development of field-grown plants, from the stage of the newly expanding leaf to the senescing old leaf. Both the specific activity and quantity of the 160-kDa polypeptide of Fd-GOGAT were higher in the mature, full sized leaves and substantially lower in young and senescing leaves. GS specific activity and immunoreactive protein followed the same trend as Fd-GOGAT, while GDH showed opposite developmental patterns of accumulation. The biological significance of the presence of Fd-GOGAT in the various grapevine tissues and its physiological role during early development and natural senescence of the leaves are discussed.  相似文献   

15.
16.
Wild-type and mutant plants of barley (Hordeum vulgare L. cv. Maris Mink) lacking activities of chloroplastic glutamine synthetase (GS) and of ferredox-in-dependent glutamate synthase (Fd-GOGAT) were crossed to generate heterozygous plants. Crosses of the F2 generation containing GS activities between 47 and 97 of the wild-type and Fd-GOGAT activities down to 63 of the wild-type have been selected to study the control of both enzymes on photorespiratory carbon and nitrogen metabolism. There were no major pleiotropic effects. Decreased GS had a small impact on leaf protein and the total activity of ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). The activation state of Rubisco was unaffected in air, but a decrease in GS influenced the activation state of Rubisco in low CO2. In illuminated leaves, the amino-acid content decreased with decreasing GS, while the content of ammonium rose, showing that even small reductions in GS limit ammonium re-assimilation and may bring about a loss of nitrogen from the plants, and hence a reduction in protein and Rubisco. Leaf amino-acid contents were restored, and ammonium and nitrate contents decreased, by leaving plants in the dark for 24 h. The ratios of serine to glycine decreased with a decrease in GS when plants were kept at moderate photon flux densities in air, suggesting a possible feedback on glycine decarboxylation. This effect was absent in high light and low CO2. Under these conditions ammonium contents exhibited an optimum and amino-acid contents a minimum at a GS activity of 65 of the wild-type, suggesting an inhibition of ammonium release in mutants with less than 65 GS. The leaf contents of glutamate, glutamine, aspartate, asparagine, and alanine largely followed changes in the total amino-acid contents determined under different environmental conditions. Decreased Fd-GOGAT resulted in a decrease in leaf protein, chlorophyll, Rubisco and nitrate contents. Chlorophyll a/b ratios and specific leaf fresh weight were lower than in the wild-type. Leaf ammonium contents were similar to the wild-type and total leaf amino-acid contents were only affected in low CO2 at high photon flux densities, but mutants with decreased Fd-GOGAT accumulated glutamine and contained less glutamate.Abbreviations Chl chlorophyll - FBPase fructose-1,6-bisphosphatase - Fd-GOGAT ferredoxin-dependent glutamine: 2-oxoglutarate aminotransferase - GS glutamine synthetase - PEP phosphoenolpyruvate - PFD photon flux density - Rubisco ribulose-1,5-bisphosphate carboxylase-oxygenase This research was jointly supported by the Agricultural and Food Research Council and the Science and Engineering Research Council, U.K. in the programme on Biochemistry of Metabolic Regulation in Plants (PG50/555).  相似文献   

17.
The regulation of Fd-glutamate synthase (Fd-GOGAT, EC 1.4.1.7) and NADH-glutamate synthase (NADH-GOGAT, EC 1.4.1.14) was investigated in maize ( Zea mays L. cv. DEA) (1) during development starting from 7- to 11-day-old seedlings, (2) by treatment of 7-day-old etiolated leaves with intermittent light pulses to activate (red) and inactivate (far-red) phytochromes and (3) in 7-day-old green leaves grown under 16-h light/8-h dark cycles. Fd-GOGAT mRNA accumulated 4-fold, and the enzyme polypeptide (3-fold) and activity (3-fold) also increased in leaf cells, while NADH-GOGAT activity remained constantly low. Leaf-specific induction of Fd-GOGAT mRNA (3-fold) occurred in etiolated leaves by low fluence red light, and far-red light reversibly repressed the mRNA accumulation. Red/far-red reversible induction also occurred for Fd-GOGAT polypeptide (2-fold) and activity (2-fold), implicating the phytochrome-dependent induction of Fd-GOGAT. In contrast, NADH-GOGAT activity remained constant, irrespective of red/far-red light treatments. Fd-GOGAT showed diurnal changes under light/dark cycles with the maximum early in the morning and the minimum in the afternoon at the levels of mRNA, enzyme polypeptide and activity. Gln diurnally changed in parallel with Fd-GOGAT mRNA. The induction of Fd-GOGAT provides evidence that light and metabolites are the major signal for the Gln and Glu formation in maize leaf cells.  相似文献   

18.
The GLU1 promoter for Fd-glutamate synthase (Fd-GOGAT, EC 1.4.1.7) of Arabidopsis thaliana (ecotype Columbia) confers the expression of the β-glucuronidase (GUS) reporter gene on transgenic tobacco (Nicotiana tabacum L. cv. Xanthi) transformed with the GLU1 promoter-GUS construct. Histochemical analysis reveals that GUS expression is associated with mesophyll and vascular tissue of 14-d-old tobacco seedlings. Red light substitutes for white light and induces a 2-fold increase in the GUS expression associated with mesophyll, veins and vascular tissue. Sucrose also serves as a signal to induce GUS expression in mesophyll and veins of cotyledons. Mature leaves, adapted to the dark for 3 d, conserves the red light- and white light-dependent inductions of GUS activity, while GUS expression is repressed by white light in roots. The mesophyll-located expression of the GLU1 promoter suggests that Fd-glutamate synthase has a function in the photorespiratory ammonium cycling and primary ammonium assimilation. The distinct location of GLU1 promoter expression in the vascular tissue supports the view that Fd-glutamate synthase synthesises glutamate for intracellular transport of glutamine and glutamate.  相似文献   

19.
Summary. Accumulation of amino acids was studied in rice roots of 3-day-old seedlings subjected for 48 h to anaerobic conditions. Alanine and Gaba were the main amino acids accumulated under anoxia. Their synthesis was strongly inhibited by MSX and AZA, inhibitors of glutamine synthetase and glutamate synthase. These activities increased after 8 h of anaerobic treatment and, by immunoprecipitation of 35S-labeled proteins, it was shown that glutamine synthetase and ferredoxin-dependent glutamate synthase were synthesized during the treatment. These findings indicate that the glutamine synthetase/glutamate synthase cycle play an important role in anaerobic amino acid accumulation. Received April 5, 1999  相似文献   

20.
The activities of the enzymes nitrate reductase (EC 1.6.6.1), nitrite reductase (EC 1.6.6.4), glutamine synthetase (EC 6.3.1.2), glutamate synthase (GOGAT; EC 1.4.7.1), glutamate-oxaloacetate aminotransferase (EC 2.6.1.1), and glutamate dehydrogenase (EC 1.4.1.2) were compared in light-grown green or etiolated leaves of rye seedlings ( Secale cereale L. cv. Halo) raised at 22°C, and in the bleached 70S ribosome-deficient leaves of rye seedlings grown at a non-permissive high temperature of 32°C. Under normal permissive growth conditions the activities of most of the enzymes were higher in light-grown, than in dark-grown, leaves. All enzyme activities assayed were also observed in the heat-treated 70S ribosome-deficient leaves. Glutamine synthetase, glutamate synthase, and glutamate-oxaloacetate aminotransferase occurred in purified ribosome-deficient plastids separated on sucrose gradients. For glutamate-oxaloacetate aminotransferase four multiple forms were separated by polyacrylamide gel electrophoresis from leaf extracts. The chloroplastic form of this enzyme was also present in 70S ribosome-deficient leaves. It is concluded that the chloroplast-localized enzymes nitrite reductase, glutamine synthetase, glutamate synthase and glutamate-oxaloacetate aminotransferase, or their chloroplast-specific isoenzyme forms, are synthesized on cytoplasmic 80S ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号