首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
The aim of the present study was the synthesis, the determination of formation constants, and the evaluation of the antiproliferative activity of two copper(II) complexes formed with triazole-type ligands. The synthesis of the unsymmetrical triazole ligand 4-amino-3-aminomethyl-5-methyl-1,2,4-triazole (L1), and its copper(II) complex is reported. The ligand was prepared by functionalization of the carboxylate function of tert-butyloxycarbonyl (BOC) protected glycine O-methyl ester. All intermediates and final products were isolated and characterized with IR, 1H NMR, and elemental analysis. X-ray structures of the ligand as a sulfate salt ((H2L1)2SO4.H2O) and the copper(II) complex [CuCl2(L1)(2)] are described. The ligand forms a (N,N) bidentate chelate with the amino group and one triazole nitrogen atom. The tetragonally distorted octahedral coordination of Cu(II) results from two axially coordinated chloride ions. Protonation constants for L1 and speciation of the Cu(II)/L1 system were determined in 0.1 M aqueous KCl solution at 25 degrees C. Complexes formed in solution were also characterized by visible spectrophotometry. Ligand substitution competition between L1 and glycine has also been studied using potentiometric titrations. Antiproliferative activities of ([CuCl2(L1)2]) and [CuCl2(H2L2)]Cl, where HL2 is the 5-thioxo analog of L1, against human tumor cell lines HT1080 and HT29 as well as normal human fibroblasts (HF) are presented along with the antiproliferative activities of L1, CuCl2, and cisplatin. Activity of these two complexes are discussed and compared with the activity of analogous compounds reported in the literature which contain pyridyl groups in place of the aminomethyl group. In particular, it is suggested that a lypophilic residue such as a pyridyl group is important for antiproliferative activity of this class of compounds.  相似文献   

2.
An array of poly- and mononuclear complexes of Pt(II) with polypyridyl ligands is reported. The framework complexes [(PtCl(2))(2)(bpp)(2)(micro-PtCl(2))](H(2)O)(2) [bpp=2,3-bis(2-pyridyl)pyrazine], [PtCl(2)(micro-tptz)PtClNCPh]Cl [tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], and mononuclear PtCl(2)(NH(2)dpt) [NH(2)dpt=4-amino-3,5-bis(2-pyridyl)-1,2,4-triazole] have been prepared and structurally characterized. Both neutral and ionic complexes are present, with bifunctional and monofunctional Pt(II) moieties, whose size and shape enable them to behave as novel scaffolds for DNA binding. Pt(II) complexes were tested for their biological activity. Cell viability assay and flow cytometric analysis demonstrated that these complexes, particularly [PtCl(2)(micro-tptz)PtClNCPh]Cl, were effective death inducers in human colon rectal carcinoma HT29 cells and their cytotoxic activity was higher than that exerted by cisplatin. Morphological analysis of treated HT29 cells, performed by fluorescence microscopy after Hoechst 33258 staining, showed the appearance of the typical features of apoptosis. Moreover, our results suggested that mitochondria are involved in apoptosis induced by Pt(II) complexes in HT29 cells as demonstrated by dissipation of mitochondrial transmembrane potential.  相似文献   

3.
Three new monomeric Cu(II) complexes of 5-amino-3-pyridin-2-yl-1,2,4-triazole (Hapt), [Cu(Hapt)(H(2)O)(2)(SO(4))] (1), [Cu(Hapt)(2)(H(2)O)(NO(3))](NO(3)) (2), and [Cu(Hapt)(2)(NCS-N)](NCS).H(2)O (3), have been prepared and characterized by single crystal X-ray diffraction. One distorted [CuN(2)O(2)+O(')] square-pyramidal (1), one distorted [CuN(3)O+N(')+O(')] octahedral (2), and one distorted [CuN(4)+N(')] intermediate between square-pyramidal and trigonal-bipyramidal (3) coordination configuration were found and are suggested to be due to the chelating nature of the ligand, which interacts with Cu(II) through the N4(triazole) and N(pyridine) atoms. Spectral properties of these chelates are in accordance with the X-ray structural data. With ascorbate and H(2)O(2) activation, compound 2 exhibits higher nuclease activity than compound 1. The influence on the DNA cleavage process of different scavengers of reactive oxygen species: dimethyl sulfoxide (DMSO), tert-butyl alcohol, sodium azide, 2,2,6,6-tetramethyl-4-piperidone and superoxide dismutase enzyme (SOD), and of the minor groove binder distamycin, is also studied.  相似文献   

4.
The 1:1 condensation of 1-benzoylacetone and 1,2-diaminopropane yields 6-amino-3-methyl-1-phenyl-4-azahept-2-en-1-one (HL). When copper(II) perchlorate is added to the methanolic solution of HL, followed by triethylamine in 1:2:1 molar ratio, an unusual copper(II) complex, [Cu(L)(HL)]ClO4, is separated out where the deprotonated ligand, L, is coordinated in the usual chelating tridentate manner but HL is coordinated to Cu(II) only through the amine N, i.e. it acts as a pendant ligand. The complex is characterized by X-ray crystal structure analysis.  相似文献   

5.
Eight oxy-bridged dinuclear copper(II) complexes with catecholase-like sites, [Cu(L1)X]2 (HL1 = 1-diethylaminopropan-2-ol, X=N3- 1, NCO- 2, and NO2- 3), [Cu(L2)X]2 (HL2=N-ethylsalicylaldimine, X=NO3- 4, Cl- 5, N3- 6, NCS- 7), and [Cu(L3)]2(ClO4)2, 8 (HL3=N-(salicylidene)-N'-(2-pyridylaldene)propanediamine) have been prepared and characterized. The single crystal X-ray analysis show that the structures of complexes 6 and 8 are dimeric with two adjacent copper(II) atoms bridged by pairs of micro-oxy atoms from the L2 and L3 ligands. Magnetic susceptibility measurements in the temperature range 4-300 K indicate significant antiferromagnetic coupling for 4, 5 and 7 and ferromagnetic coupling for 6 between the copper(II) atoms. The catecholase activity of complexes for the oxidation of 3,5-di-tert-butylcatechol by O2 was studied and it was found that the complexes with the bond distance of Cu(II)...Cu(II) located at 2.9-3.0 A show higher catecholase activity.  相似文献   

6.
Copper(II) complexes of fluoroquinolone antibacterial agents levofloxacin (LEV) and sparfloxacin (SPAR), containing or not a nitrogen donor heterocyclic ligand, 2,2'-bipyridine (bipy) or 1,10-phenathroline (phen), were prepared and characterized. The complexes are of the type [CuCl(2)(H(2)O)(L)], [CuCl(bipy)(L)]Cl and [CuCl(2)(phen)(L)], where L?=?LEV or SPAR. The data suggest that LEV and SPAR act as zwitterionic bidentade ligands coordinated to Cu(II) through the carboxylate and ketone oxygen atoms. The electron paramagnetic resonance spectra of the [CuCl(bipy)(L)]Cl and [CuCl(2)(phen)(L)] complexes (L?=?LEV and SPAR) in aqueous and DMSO solutions indicate mixture of mononuclear and binuclear forms. The Cu(II) complexes, together with the corresponding ligands, were evaluated for their trypanocidal activity in vitro against Trypanosoma cruzi, the causative agent of Chagas disease. The assays performed against bloodstream trypomastigotes showed that all complexes were more active than their corresponding ligands. Complexes [CuCl(2)(phen)(LEV)] and [CuCl(2)(phen)(SPAR)] were revealed, among all studied compounds, to be the most active with IC(50)?=?1.6 and 4.7?μM, respectively, both presenting a superior effect than benznidazole. The interactions of fluoroquinolones and their Cu(II) complexes with calf-thymus DNA were investigated. These compounds showed binding properties towards DNA, with moderated binding constants values, suggesting that this structure may represent a parasite target.  相似文献   

7.
Novel platinum(II) complexes with 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines have been synthesized and characterized by infrared and multinuclear magnetic resonance spectroscopic techniques (1H, 13C, 15N, 195Pt). The complexes are of two types: [PtCl2(L)2] and [PtCl2(NH3)(L)], where L=5,7-diphenyl-1,2,4-triazolo[1,5-a]pyrimidine (dptp) and 5,7-ditertbutyl-1,2,4-triazolo[1,5-a]pyrimidine (dbtp). Significant 15N NMR upfield shifts (92-95 ppm) were observed for N(3) atom indicating this nitrogen atom as a coordination site. The molecular structure suggest that Pt(II) ion has the square planar geometry with N(3) bonded 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines, N-bonded second ligand (NH3 for cis-[PtCl2(NH3)(L)] or, respectively, 5,7-disubstituted-1,2,4-triazolo[1,5-a]pyrimidines for cis-[PtCl2L2]) and two cis chloride anions. The antiproliferative activity in vitro of complexes (1-4) have been tested against the cells of four human cell lines: SW707 rectal adenocarcinoma, A549 non-small cell lung carcinoma, T47D breast cancer and HCV29T bladder cancer. The results indicate a moderate antiproliferative activity of (4) against the cells of rectal, breast and bladder cancer and a marked and selective cytotoxic effect of (1-3) against the cells of all studied human cancer lines.  相似文献   

8.
Selective and effective antimicrobial activities against Gram-positive bacteria (B. subtilis and/or S. aureus) were found in 2-coordinate gold(I)-PPh(3) complexes with AuSP and AuNP cores, i.e. [Au(L)(PPh(3))] (HL=2-H(2)mna [H(2)mna=mercaptonicotinic acid] 3, D-H(2)pen [H(2)pen=penicillamine] 4, D,L-H(2)pen 5, 4-H(2)mba [H(2)mba=mercaptobenzoic acid] 8, Hpz [Hpz=pyrazole] 9, Him [Him=imidazole] 10, 1,2,3-Htriz [Htriz=triazole] 11, 1,2,4-Htriz 12, Htetz [Htetz=tetrazole] 13), whereas no activity was observed in 2-coordinate AuSP core complexes [Au(2-Hmba)(PPh(3))] 6 and [Au(3-Hmba)(PPh(3))] 7. The two novel AuSP core complexes, [Au(2-Hmpa)(PPh(3))] [H(2)mpa=mercaptopropionic acid] 1 and [Au(6-Hmna)(PPh(3))] 2, were prepared and characterized by elemental analysis, FT-IR, TG/DTA, and ((31)P, 1H and 13C) NMR spectroscopy. The crystal structures of 1 and 2 were determined as a supramolecular arrangement of the 2-coordinate AuSP core. Both 1 and 2 significantly showed antibacterial activities. As a model reaction of phosphinegold (I) complexes with the cysteine residue in the biological ligands, we examined if the ligand exchange reactions of the aromatic anions L(1)(-) in [Au(L(1))(PPh(3))] (HL(1)=6-H(2)mna 2, 2-H(2)mna 3, 2-H(2)mba 6, Hpz 9, Him 10, 1,2,3-Htriz 11, 1,2,4-Htriz 12) with aliphatic thiols HL(2) (HL(2)=2-H(2)mpa, D-H(2)pen) occurred under the mild conditions and, also, if the 'reverse' reactions, namely, the ligand exchange reactions of the thiolate anions in [Au(2-Hmpa)(PPh(3))] 1, [Au(D-Hpen)(PPh(3))] 4 and [Au(2-Hmba)(PPh(3))] 6 with the free ligands HL(1) took place under similar conditions. In this work, a relationship of the ligand-exchangeability among 2-coordinate gold(I) complexes (1-4, 6, 9-12) was revealed. Complex 6 was substitution-inert, whereas complexes 1-4 and 9-12 were substitution-labile. The ligand-exchangeability of Au-S and Au-N bonds in the 2-coordinate phosphinegold(I) complexes with AuSP and AuNP cores to form new AuSP cores, with retention of the Au-P bond, was closely related to the observed activities against Gram-positive bacteria, and the ease of the ligand-exchange reaction was strongly related to the intensity of the activities.  相似文献   

9.
A series of copper(II) and zinc(II) complexes involving a tridentate O,N,O'-donor Schiff base derived from salicylaldehyde and beta-alanine {i.e. N-salicylidene-beta-alanine(2-), (L)}, having the composition [Cu(2)(L)(2)(H(2)O)].H(2)O (1), [Cu(L)(H(2)O)](n) (2), and [Zn(L)(H(2)O)](n) (3), have been prepared and characterized by elemental analyses, UV-visible (UV-VIS), FT-IR and ESI-MS spectra, and thermal analyses. Complexes 1 and 2 have been investigated by single crystal X-ray analysis and also by temperature dependent magnetic susceptibility measurements (294-80K). All prepared complexes have been evaluated by the antiperoxynitrite activity assay and alloxan-induced diabetes model. The significant antioxidant and antidiabetic activities have been found in the case of both copper(II) complexes 1 and 2. In spite of first two complexes, the zinc(II) complex 3, as well as the potassium salt of the ligand (KHL) showed only insignificant protective effect against the tyrosine nitration in vitro.  相似文献   

10.
Mononuclear complexes of Cu(II), Ni(II), and Mn(II) with a new Schiff base ligand derived from indoline-2,3-dione and 2-hydroxybenzohydrazide, [Cu(II)(L)(2)], [Ni(II)(L)(2)], and [Mn(II)L.(AcO).2C(2)H(5)OH] [HL=(Z)-2-hydroxy-N'-(2-oxoindolin-3-ylidene)benzohydrazide], have been prepared. The complexes have been structurally characterized by X-ray crystallography. Among the three complexes, the Cu(II) complex had the novel highest antitumor activity.  相似文献   

11.
In order to better understand copper mediated oxidative chemistry via ligand-Cu(I)/O(2) reactivity employing S-donor ligands for copper, O(2)-reactivity studies of the copper(I) complexes (1 and 2, Chart 2) have been carried out with a tridentate N(2)S thiol ligand (1-(N-methyl-N-(2-(pyridin-2-yl)ethyl)amino)propane-2-thiol; L(SH)) or its oxidized disulfide form (L(SS)). Reactions of [L(SH)Cu(I)](+) (1) and [L(SS)(Cu(I))(2)(X)(2)](2+) (2) with O(2) give approximately 90% and approximately 70% yields of [L(SO3)Cu(II)(MeOH)(2)](+) (3), respectively, where L(SO3) is S-oxygenated sulfonate; 3 was characterized by electrospray ionization (ESI) mass spectrometry and X-ray crystallography. Mimicking TyrCys galactose oxidase cofactor biogenesis, a new C-S bond is formed (within new thioether moiety L(SPhOH)) from cuprous complex (both 1 and 2) dioxygen reactivity in the presence of 2,4-tBu(2)-phenolate. In addition, the disulfide ligand (L(SS)) reacts with 2equiv. cupric ion salts and the phenolate to efficiently give the cross-linked product L(SPhOH) in high yield (>90%) under anaerobic conditions. Separately, complex [L(SPhO)Cu(II)(ClO(4))] (4), possessing the cross-linked L(SPhOH), was characterized by ESI mass spectrometry and X-ray crystallography.  相似文献   

12.
SRIXE mapping has been used to gain insight into the fate of platinum(II) and platinum(IV) complexes in cells and tumours treated with anticancer active complexes to facilitate the development of improved drugs. SRIXE maps were collected of thin sections of human ovarian (A2780) cancer cells treated with bromine containing platinum complexes, cis-[PtCl(2)(3-Brpyr)(NH(3))] (3-Brpyr=3-bromopyridine) and cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] (OAcBr=bromoacetate), or a platinum complex with an intercalator attached cis-[PtCl(2)(2-[(3-aminopropyl)amino]-9,10-anthracenedione)(NH(3))]. After 24h the complexes appear to be localised in the cell nucleus with a lower concentration in the surrounding cytoplasm. In cells treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] the concentration of bromine was substantially higher than in control cells and the bromine was co-localised with the platinum consistent with the 3-bromopyridine ligand remaining bound to the platinum. The cells treated with cis,trans,cis-[PtCl(2)(OAcBr)(2)(NH(3))(2)] also showed an increased level of bromine, but to a much lesser extent than for those treated with cis-[PtCl(2)(3-Brpyr)(NH(3))] suggestive of substantial reduction of the platinum(IV) complex. Maps were also collected from thin sections of a 4T1.2 neo 1 mammary tumour xenograft removed from a mouse 3h after treatment with cis,trans,cis-[PtCl(2)(OH)(2)(NH(3))(2)] and revealed selective uptake of platinum by one cell.  相似文献   

13.
The Cu(II) and Zn(II) complexes of phenoxyl radical species [M(II)(L1*)(NO3)]+ (M=Cu or Zn, L1H: 2-methylthio-4-tert-butyl-6-[[bis[2-(2-pyridyl)ethyl]amino]methyl]phenol ) and [M(II)(L2*)(NO3)]+ (M=Cu or Zn, L2H: 2,4-di-tert-butyl-6-[[bis[2-(2-pyridyl)ethyl]amino]methyl]phenol) are prepared as model complexes of the active form of galactose oxidase (GAO). Hydrogen atom abstraction of 1,4-cyclohexadiene and tert-butyl substituted phenols by the GAO model complexes proceeds very efficiently to give benzene and the corresponding phenoxyl radical or its C-C coupling dimer as the oxidation products, respectively. Kinetic analyses on the oxidation reactions have shown that the hydrogen atom abstraction of the phenol substrates is significantly enhanced by the coordinative interaction of the OH group to the metal ion center of the complex, providing valuable insight into the enzymatic mechanism of the alcohol oxidation. Details of the substrate-activation process have been discussed based on the activation parameters (deltaH* and deltaS*) of the reactions.  相似文献   

14.
Cu(BZA)(2)(EtOH)(0.5) (1) was generated by the reaction of copper(II) hydroxide with benzoic acid (BZAH). [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) were obtained when 1 reacted with Thiabendazole (TBZH) and 2-(2-pyridyl)benzimidazole (2-PyBZIMH), respectively. [Cu(BZA)(2)(phen)(H(2)O)] (4) was isolated from the reaction of benzoic acid and 1,10-phenanthroline (phen) with copper(II)acetate dihydrate. Molecular structures of 2, 3 and 4 were determined crystallographically. 2 and 3 are hydrogen bonded dimers and trimers, respectively. The copper centres in complexes 2 and 3 are bis-chelate derivatives that have N(4)O ligation and their geometry is very similar being approximately square-pyramidal. However whereas in complex 2 both TBZH ligands are neutral in 3 one of the 2-PyBZIMH chelators is deprotonated on each copper. The structural results for 4 represent a re-examination of this crystallographically known compound for which no hydrogen atom coordinates have been previously reported. It crystallises as a hydrogen bonded dimmer and is a mono-chelate of phen with each copper centre possessing N(2)O(3) ligation and square pyramidal geometry. The catalase and superoxide dismutase (SOD) activities of the four complexes along with those of the known phenanthroline complexes [Cu(mal)(phen)(2)] and [Cu(phendione)(3)](ClO(4))(2) (malH(2)=malonic acid and phendione=1,10-phenanthroline-5,6-dione) were investigated. Complexes 1-4, the metal free ligands and a simple copper(II) salt were assessed for their cancer chemotherapeutic potential against the hepatocellular carcinoma (Hep-G(2)) and kidney adenocarcinoma (A-498) cell lines. TBZH, 2-PyBZIMH and benzoic acid when uncoordinated to a metal centre offer poor chemotherapeutic potential. copper(II) benzoate is significantly more active than the free acid. The bis-chelate derivatives [Cu(TBZH)(2)(BZA)](BZA).0.5TBZH.H(2)O (2) and [Cu(2-PyBZIMH)(2-PyBZIM)(BZA)].1.66EtOH (3) elicit a significant cytotoxic response to the cancer cell lines tested. Replacing TBZH and 2-PyBZIMH with phen to give [Cu(BZA)(2)(phen)(H(2)O)] (4) does not significantly increase the anti-cancer activity.  相似文献   

15.
Two new mu-methoxo-bridged dinuclear copper(II) complexes with a N-substituted sulfonamide, [Cu(mu-OMe)(L)(NH(3))](2) (1) and [Cu(mu-OMe)(L)(DMSO)](2) (2) [HL, N-2-(4-methylbenzothiazole)benzenesulfonamide], have been prepared and characterized by single-crystal X-ray difraction analyses. Compound 1 crystallizes in the monoclinic space group C(2)/c with a=22.0678(18), b=7.9134(7), c=21.1186(18)A, beta=113.788(4) degrees and Z=8. Compound 2 crystallizes in the monoclinic space group C(2)/c with a=18.0900(10), b=9.5720(10), c=24.2620(10) A, beta=98.7120(10) degrees and Z=8. In both complexes the copper atoms have square-planar environments bridged by two oxygen atoms from methoxide groups. Magnetic susceptibility measurements indicate a very strong antiferromagnetic coupling between the copper(II) ions in both complexes (2J<-1000 cm(-1)). Electronic Paramagnetic Resonance (EPR) spectra of the two complexes both in solid and in solution are silent. 13C NMR spectra of the complexes in solid state have been studied. The complexes have been evaluated as model systems for the catechol oxidase enzyme using 3,5-di-tert-butylcatechol as the test substrate. Complex 2 is slightly more active than complex 1.  相似文献   

16.
Three new complexes [Cu(L)(2)(NO(3))](NO(3))(H(2)O)(1/2)(CH(3)OH)(1/2) (1), [Cd(L)(2)(NO(3))(2)](H(2)O)(3) (2) and [Cd(L)(2)(ClO(4))(CH(3)OH)](ClO(4))(H(2)O)(1/4)(CH(3)OH) (3) (L=1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene) were synthesized and characterized by elemental analyses, IR and X-ray diffraction analysis. Among them, the Cu(II) and Cd(II) ions were both coordinated by four N donors from two distinct L ligands via N,N-bidentate chelating coordination mode. Additional weak interactions, such as the face-to-face pi-pi stacking and C-Hcdots, three dots, centeredO H-bonding interactions, linked the mononuclear unit into 1D chain and further into 2D network. Complexes 1-3 were subjected to biological assays in vitro against six different cancer cell lines. All of them exhibited cytotoxic specificity and notable cancer cell inhibitory rate. The interactions of 1-3 with calf thymus DNA were investigated by thermal denaturation, viscosity measurements, spectrophotometric and electrophoresis methods. The results indicate that these complexes bound to DNA by intercalation mode via the ligand L and had different nuclease activities, which were in good agreement with their DNA-binding strength. Moreover, the central metal ions of 1-3 played a vital role in DNA-binding behaviors, DNA-cleavage activities and cytotoxicities, whereas the contribution of the different counter anions to their bioactivities also should not be ignored.  相似文献   

17.
The complexes [Cu(dppz)(NO(3))]NO(3) (1), [Cu(dppz)(2)(NO(3))]NO(3) (2), [Cu(dpq)(NO(3))]NO(3) (3), and [Cu(dpq)(2)(NO(3))]NO(3) (4) were synthesized and characterized by elemental analysis, FAB-mass spectrometry, EPR, UV, and IR spectroscopies, and molar conductivity. DNA interaction studies showed that intercalation is an important way of interacting with DNA for these complexes. The biological activity of these copper complexes was evaluated on Leishmania braziliensis promastigotes, and the results showed leishmanicidal activity. Preliminary ultrastructural studies with the most active complex (2) at 1 h revealed parasite swelling and binucleated cells. This finding suggests that the leishmanicidal activity of the copper complexes could be associated with their interaction with the parasitic DNA.  相似文献   

18.
The reaction of [Cu(dien)NO(3)]NO(3) with 2-amino-5-methylthiazole (2A5MT), 2-amino-2-thiazoline (2A-2Tzn), imidazole (im), N,N'-thiocarbonyldiimidazole (Tcdim), 2-aminothiazole (2AT) and 2-ethylimidazole (2Etim), gave a new series of mixed-ligand compounds of the general formula [Cu(dien)(B)NO(3))]NO(3); (dien, diethylenetriamine; B, 2A5MT, 2A-2Tzn, im, Tcdim, 2AT and 2Etim). The complexes have been characterised by elemental analysis, molar conductivity and magnetic measurements, as well as by electronic and IR spectral studies. According to the above measurements the possible structure of the compounds is the square pyramidal in the solid state and the square planar in aqueous solution. We tested all complexes for antiproliferative (cytostatic and cytotoxic) activity against a panel of cell lines (HeLa, L929, HT-29 and T47D). All [(dien)Cu(B)NO(3))](NO(3)) complexes had an activity against colon cancer cells (HT-29), inducing G2/M cell cycle arrest, an effect that for most of the complexes could be attributed to p34cdc2 inhibition by tyrosine-phosphorylation and/or to induction of (cyclin-dependent kinase inhibitor) p21(WAF1). Other cell lines were resistant to the majority of the complexes, except [Cu(dien)(2A5MT)NO(3))](NO(3)), that had showed the highest anti-proliferative activity against HT-29 cells also. The predilection for colon cancer cells and the relatively low toxicity against normal (L929) cells justify further investigation of this group of compounds.  相似文献   

19.
A series of copper(II) complexes of the type [Cu(L)]2+, where L = N,N'-dialkyl-1,10-phenanthroline-2,9-dimethanamine and R = methyl (L1), n-propyl (L2), isopropyl (L3), sec-butyl (L4), or tert-butyl (L5) group, have been synthesized. The interaction of the complexes with DNA has been studied by DNA fiber electron paramagnetic resonance (EPR) spectroscopy, emission, viscosity and electrochemical measurements and agarose gel electrophoresis. In the X-ray crystal structure of [Cu(HL2)Cl2]NO3, copper(II) is coordinated to two ring nitrogens and one of the two secondary amine nitrogens of the side chains and two chloride ions as well and the coordination geometry is best described as trigonal bipyramidal distorted square based pyramidal (TBDSBP). Electronic and EPR spectral studies reveal that all the complexes in aqueous solution around pH 7 possess CuN3O2 rather than CuN4O chromophore with one of the alkylamino side chain not involved in coordination. The structures of the complexes in aqueous solution around pH 7 change from distorted tetragonal to trigonal bipyramidal as the size of the alkyl group is increased. The observed changes in the physicochemical features of the complexes on binding to DNA suggest that the complexes, except [Cu(L5)]2+, bind to DNA with partial intercalation of the derivatised phen ring in between the DNA base pairs. Electrochemical studies reveal that the complexes prefer to bind to DNA in Cu(II) rather than Cu(I) oxidation state. Interestingly, [Cu(L5)]2+ shows the highest DNA cleavage activity among all the present copper(II) complexes suggesting that the bulky N-tert-butyl group plays an important role in modifying the coordination environment around the copper(II) center, the Cu(II)/Cu(I) redox potential and hence the formation of activated oxidant responsible for the cleavage. These results were compared with those for bis(1,10-phenanthroline)copper(II), [Cu(phen)2]2+.  相似文献   

20.
Copper(II) ternary complexes based on the novel benzothiazole- N-sulfonamides, HL1 ( N-2-(4-methylbenzothiazole)benzenesulfonamide) and HL2 ( N-2-(6-nitrobenzothiazole)naphthalenesulfonamide) ligands, and pyridine have been synthesized and characterized. Complexes [Cu(L1)(2)(py)(2)] (1). and [Cu(L2)(2)(py)(2)] (2). were chemically characterized and their structures determined by means of single crystal X-ray analysis. In both compounds the Cu(II) ion is coordinated to four N atoms in a nearly square planar arrangement. The Cu-N bond distances are similar to those of Cu(2)Zn(2)SOD. The SOD mimetic activity of the complexes was determined both in vitro and in vivo. For determining the SOD-like activity of the complexes in vivo, we have developed a new method based on the complexes' protective effect on a delta sod1mutant of Saccharomyces cerevisiae against free radicals generated by hydrogen peroxide and menadione as well as free radicals produced in the cellular respiration process. The results have shown that complex 1 presents a protective action against oxidative stress induced by menadione or H(2)O(2) and that both complexes 1 and 2 protect against free radicals generated in cellular respiration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号