首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two sandwich-type enzyme immunoassays have been developed to measure apolipoproteins A-I and E in rabbit serum. Specific goat antibodies were purified by affinity chromatography and used both for coating and for preparing antibody-peroxydase conjugates. The sensitivity of these assays is sufficient to allow studies of apo A-I and E distribution in lipoproteins fractionated by gel filtration from 50 microliters of serum. In WHHL rabbits, apo A-I is 5-fold lower (5.2 +/- 2.5 mg/dl) and apo E is 8-fold higher (9.9 +/- 3.5 mg/dl) than in normolipidemic rabbits (29 +/- 4.3 mg/dl and 1.3 +/- 0.5 mg/dl, respectively). In hyperlipidemic rabbits, fed 2 months on a 0.5% cholesterol diet, the apo A-I level was similar (32 +/- 12 mg/dl) to that of normolipidemic rabbits, but the apo E level is 12-fold higher (15.1 +/- 5.5 mg/dl). In addition, HDL particles were enriched with cholesterol and apo E. The bulk of apo E and cholesterol is located in large beta-VLDL in diet-induced hyperlipidemia, whereas they are mainly located in smaller size beta-VLDL in WHHL rabbits. In normolipidemic rabbits apo E occurs mainly in HDL, and cholesterol is distributed in the main three lipoprotein fractions VLDL, LDL and HDL. Interestingly, HDL of WHHL rabbit are deficient in apo A-I. These results are compatible with profound perturbations of lipoprotein composition and metabolism in atherogenic hyperlipidemia.  相似文献   

2.
Effect of coconut oil on plasma apo A-I levels in WHHL and NZW rabbits   总被引:1,自引:0,他引:1  
Age-matched Watanabe (WHHL) and New Zealand White (NZW) rabbits were fed a coconut oil-enriched diet (14%, w/w) for 2 weeks. Lipid and apolipoprotein (apo) A-I levels in plasma and lipoprotein fractions were monitored. Within 3 days after the start of the coconut oil diet, plasma apo A-I and high-density lipoprotein (HDL)-apo A-I levels increased 3-fold in the WHHL rabbits. A smaller but significant increase (63%) in apo A-I and HDL-apo A-I levels was also observed in the NZW rabbits. HDL cholesterol levels also increased from 16 +/- 3 mg/dl during a regular diet to 46 +/- 16 mg/dl (288%) during the coconut oil diet in the WHHL rabbits and from 37 +/- 7 mg/dl to 69 +/- 19 mg/dl (186%), respectively, in the NZW rabbits. Apo A-I and HDL cholesterol levels fell sharply to the original levels soon after switching back to a regular diet (within 3 days for WHHL rabbits and within 5 days for NZW rabbits). The fractional catabolic rate calculated from 125I-HDL kinetic studies indicated that the turnover rate for HDL was significantly slower in WHHL rabbits fed the coconut oil diet than the control diet (0.018 +/- 0.004 h-1 vs. 0.027 +/- 0.007 h-1, P less than 0.01). No changes were found in the NZW rabbits fed either diet. Trilaurin, the main component of the coconut oil (46.9%) supplemented diet (6.5%, w/w), was also used in this study. The effect of trilaurin on plasma apo A-I and HDL-cholesterol levels is discussed.  相似文献   

3.
The effect of partial ileal bypass surgery (PIB) on lipoprotein concentrations and compositions and on the catabolism of low-density lipoproteins (LDL) was studied in Watanabe heritable hyperlipidemic (WHHL) rabbits. After PIB, total serum cholesterol was 65% lower (6.22 +/- 1.58 vs. 17.24 +/- 3.22 mmol/l) and LDL cholesterol 81% lower (2.02 +/- 0.95 vs. 10.90 +/- 3.60 mmol/l) than in control WHHL rabbits; cholesteryl esters, expressed as percentage of mass, were 55% lower in the very-low and intermediate-density lipoprotein (VLDL + IDL) fractions, and 45% lower in LDL, whereas triacylglycerols were 89% higher in VLDL + IDL and 121% higher in LDL. The fractional catabolic rate (FCR) of LDL protein (apoLDL) from operated animals was 10% higher than that from controls in all animals (0.55 +/- 0.10 vs. 0.50 +/- 0.10 pools/day; P less than 0.01). The FCR of autologous apoLDL in PIB rabbits was 50% higher than that of autologous apoLDL in control rabbits (0.63 +/- 0.05 vs. 0.42 +/- 0.06 pools/day); this was not caused by induction of receptor-mediated clearance of LDL. The production rate of apoLDL after PIB in PIB rabbits was 50% lower compared to control apoLDL in controls (26.0 +/- 6.7 vs. 51.7 +/- 16.4 mg/kg per day). We conclude that PIB lowers LDL cholesterol in WHHL rabbits by a decreased production of LDL, by an increased non-specific clearance of LDL and by compositional changes, which lead to LDL particles containing less cholesterol.  相似文献   

4.
To investigate the effects of recombinant human monocyte colony-stimulating factor (M-CSF) on plasma cholesterol metabolism, we injected M-CSF intravenously into New Zealand White rabbits (n = 13) at a dose of 100 micrograms/day for 7 days. After the treatment, the plasma cholesterol levels fell by 33.2% from 61.4 +/- 25.9 to 41.0 +/- 10.2 mg/dl (mean +/- S.D.). We also injected a large dose of M-CSF (500 micrograms/day) for 6 days into Watanabe Heritable Hyperlipidemic rabbits, which are deficient in low density lipoprotein (LDL) receptors. Again, there was a significant reduction in plasma cholesterol levels by 36.2% from 730.5 +/- 176.4 to 466.0 +/- 104.9 mg/dl (n = 4). In the kinetic studies in New Zealand White rabbits with very low density lipoprotein, LDL, and methylated LDL, the removal rates of those lipoproteins were increased 1.9-, 1.7-, and 2.0-fold, respectively, after the treatment. Immunoblot analysis of LDL receptors in the treated rabbits showed no significant changes in LDL receptor proteins in livers but a great increase in spleens and bone marrows compared with the controls. Messenger RNA was also estimated by Northern blotting in both groups, and the results were compatible with those from the immunoblot. The data suggest that M-CSF stimulates the clearance of lipoproteins containing apolipoprotein B-100 via both LDL receptor-dependent and -independent pathways in target cells of M-CSF and reduces plasma cholesterol.  相似文献   

5.
Partial ileal bypass surgery in homozygous Watanabe heritable hyperlipidemic (WHHL) rabbits resulted in a decrease of low density lipoproteins (LDL)-cholesterol from 14.2 +/- 2.4 to 7.0 +/- 1.2 mmol/l. To investigate the effect of partial ileal bypass on receptor-mediated and receptor-independent LDL catabolism, turnover studies were performed of radiolabeled native LDL and chemically modified LDL (methyl-LDL) in WHHL rabbits after partial ileal bypass, in WHHL control rabbits, and in New Zealand White ("normal") rabbits. The plasma LDL pool in WHHL control rabbits was increased 10-fold. The receptor-mediated LDL clearance was essentially zero in WHHL rabbits, both in controls and after ileal bypass surgery; the fractional catabolic rates for total LDL were equal in both WHHL groups and were also similar to that for methyl-LDL in the normal rabbits. Seventy percent of the total LDL clearance in the normal rabbits occurred via the LDL receptor pathway. In the animals with a partial ileal bypass, the plasma LDL-protein pool was appreciably lower than in WHHL controls (41.6 +/- 5.7 vs 73.4 +/- 9.9 mg/kg, P less than 0.02). The absolute catabolic rate was almost 50% lower in the PIB group (21.4 +/- 2.0 vs 40.0 +/- 7.5 mg X kg-1 X day-1, P less than 0.02). These results indicate that the decrease of LDL after partial ileal bypass surgery in WHHL rabbits is the result of a reduced production rate of LDL.  相似文献   

6.
These studies were undertaken to measure rates of synthesis of digitonin-precipitable sterols in vivo and in vitro in control rabbits (New Zealand (NZ) control) and in homozygous Watanabe heritable hyperlipidemic rabbits (WHHL) that lack receptors for low density lipoproteins (LDL). The plasma cholesterol concentration in NZ control fetuses equaled 79 mg/dl, rose to 315 mg/dl 12 days after birth, and fell to 80 mg/dl in young adult animals. At these same ages, cholesterol concentrations in the WHHL animals equal 315, 625, and 715 mg/dl, respectively. The rate of whole animal sterol synthesis in vivo, expressed as the mumol of [3H]water incorporated into sterols per hr per kg of body weight, was lower in the WHHL animals than in the NZ controls both in the fetuses (108 vs 176) and in the adult animals (48 vs 66). In adult NZ controls the content of newly synthesized sterols (rate of sterol synthesis) per g of tissue was highest in the liver (538 nmol/g per hr), adrenal gland (438), small bowel (371), and ovary (225) while lower rates of synthesis were found in 15 other tissues. In the WHHL rabbits a higher content of [3H]sterols was found only in the adrenal gland (2,215) while synthesis was suppressed in the liver (310), colon, lung, and kidney, and was unchanged in the remaining organs. These findings were confirmed by measurements of rates of sterol synthesis in the same tissues in vitro. When whole organ weight was taken into consideration, the tissues that were the major contributors to whole body sterol synthesis in both types of rabbits were liver, small bowel, skin, and carcass. However, it was the lower rate of synthesis in the liver of the WHHL animals that alone accounted for the lower rate of whole animal sterol synthesis seen in these rabbits. These studies demonstrate that in WHHL animals that lack LDL receptors and that have very high levels of circulating LDL cholesterol, the rate of cholesterol synthesis in nearly all tissues is normal but in the liver is significantly suppressed. Only the adrenal gland manifested enhanced synthesis. Such findings suggest that in the WHHL rabbit where LDL receptor activity is reduced and plasma LDL levels rise, mechanisms other than receptor-mediated LDL uptake may act to deliver cholesterol to the cells of the various organs and to the liver.  相似文献   

7.
The homozygous Watanabe heritable hyperlipidemic (WHHL) rabbit, an animal model for human familial hypercholesterolemia, which has been maintained in a closed colony, has a reproductive ability which is remarkably lower than that of normal rabbits. The present study was undertaken to determine whether this low reproductive ability was associated with hyperlipidemia, since it is not associated with inbreeding depression. WHHL dams with over 600 mg/dl of serum cholesterol level showed a weaning rate of only about 20%, while dams with about 300 mg/dl of cholesterol showed a 64% weaning rate. Both conception and weaning rate seemed to decrease with a rise in serum triglyceride. The weaning age of homozygous offspring from the homozygous WHHL dams was significantly higher than homozygous offspring from heterozygous WHHL dame. The rate of increase in body weight of the offspring from WHHL dams was significantly lower than that of the offspring from heterozygous dams under 24 days of age. We concluded that the low reproductive ability, especially low nursing ability, was associated with hyperlipidemia due to the deficiency of low density lipoprotein receptors.  相似文献   

8.
Low density lipoprotein (LDL) catabolism was studied using WHHL rabbits, an inbred strain deficient in LDL receptor activity and, thus, an animal model for homozygous familial hypercholesterolemia. WHHL and normal rabbits were injected with [14C]sucrose-LDL and the tissue sites of LDL degradation were determined 24 h later. On degradation of [14C]sucrose-LDL, the [14C]sucrose ligand remains trapped within tissues as a cumulative measure of degradation. The fractional catabolic rate of [14C]sucrose-LDL in Watanabe heritable hyperlipidemic (WHHL) rabbits was reduced (0.024 +/- 0.010 versus 0.063 +/- 0.026 h-1) but, by virtue of the increased plasma pool, total LDL flux was increased (33.5 +/- 9.6 versus 10.6 +/- 4.4 mg of LDL protein/kg/day). Liver was the predominant site of catabolism in both WHHL and normal rabbits (52.7 +/- 6.9 and 56.6 +/- 6.2% of total degradation). About 90% of hepatic catabolism was attributable to parenchymal cells in both cases. Thus, Kupffer cells, a major component of the reticuloendothelial system, do not play a major role in LDL catabolism in WHHL rabbits. Despite receptor deficiency, the relative contribution of various tissues to overall LDL degradation was not greatly altered and the absolute rate of delivery of LDL to all tissues was increased with the exception of the adrenal. Thus, there was no evidence that the increased degradation occurred in any special subset of "scavenger" cells. Nevertheless, local scavenger cell uptake may be critically important, especially in atherogenesis. If it is assumed that receptor-independent degradation occurs at the same rate in the tissues of WHHL and normal rabbits and that catabolism in the absence of receptors is a linear function of concentration, then one can estimate the fraction of uptake in normal tissues mediated by receptors. The difference in the fraction of the plasma LDL pool cleared per unit of time in normal and WHHL rabbits would reflect the contribution of receptors to fractional clearance. By this calculation, receptor-mediated degradation in normal rabbits was 62% overall, 63% in liver, 92% in adrenal, and 83% in gut.  相似文献   

9.
A sensitive and specific double antibody radio-immunoassay for the major apolipoprotein (apoB) of rhesus (Macaca mulatta) serum very low density lipoprotein (VLDL) and low density lipoprotein (LDL) is described. The anti-serum was raised to LDL (d 1.030-1.040 g/ml) and the LDL(2) (d 1.020-1.050 g/ml) was labeled with (125)I by the chloramine-T or iodine monochloride method. The assay, which was sensitive to 0.02-0.5 micro g of LDL(2), had an inter-assay coefficient of variation of 4.5%. This assay was successfully used to measure apoB in the whole serum and low density lipoproteins of control monkeys maintained on a standard Purina monkey chow (PMC) diet and of three groups of monkeys fed atherogenic diets: an "average American diet," a 25% peanut oil and 2% cholesterol-supplemented PMC diet, and a 25% coconut oil and 2% cholesterol-supplemented PMC diet. The control monkeys (n = 13) had a serum cholesterol of 146 +/- 28 mg/dl and an apoB of 50 +/- 18 mg/dl. In the monkeys maintained on the atherogenic diets the serum apoB was elevated: 103 +/- 28 mg/dl (American), 102 +/- 35 mg/dl (peanut oil), and 312 +/- 88 mg/dl (coconut oil). The values for serum total cholesterol were 333 +/- 65 mg/dl (American), 606 +/- 212 mg/dl (peanut oil), and 864 +/- 233 mg/dl (coconut oil) and were elevated relative to controls (P < 0.001). For each of the diets, total serum cholesterol correlated with serum apoB (P < 0.001). The slopes of the regression lines of serum apoB vs. cholesterol for the monkeys on the PMC, American, and coconut oil diets were similar (m = 0.531, 0.401, and 0.359, respectively), but differed from that of monkeys on the peanut oil diet (m = 0.121). The immunoreactivities of rhesus and human LDL were compared using specific antisera raised against these antigens. In homologous assay systems, monkey and human LDL exhibited unique immunological determinants. The same results were obtained with the delipidated preparations of the two LDLs using antisera raised against either monkey or human apoB. Crossover studies using a heterologous tracer with each anti-serum resulted in the selection of a specific population of antibodies directed against antigenic sites shared by these two LDL species.  相似文献   

10.
In this study, we created LDL receptor (LDLr) defective (WHHL) transgenic rabbits expressing human apo[a] to examine whether LDLr mediates the Lp[a] clearance from the plasma. By crossbreeding WHHL rabbits with human apo[a] transgenic rabbits, we obtained two groups of human apo[a] transgenic rabbits with defective LDLr functions: apo[a](1/0) WHHL heterozygous (LDLr(+/-) and apo[a](+/0) WHHL homozygous (LDLr(-/-) rabbits. The lipid and lipoprotein levels of human apo[a] WHHL rabbits were compared to those of human apo[a] transgenic rabbits with normal LDLr functions (LDLr(+/+). The apo[a] production rate was evaluated by analyzing apo[a] mRNA expression in the liver, the major site for apo[a] synthesis in transgenic rabbits. We found that pre-beta lipoproteins were markedly increased accompanied by a 2-fold increase in the plasma Lp[a] in apo[a](+/0)/LDLr(+/-) rabbits and a 4.2-fold increase in apo[a](+/0)/LDLr(-/-) rabbits compared with that in apo[a](+/0) rabbits with normal LDLr function. In apo[a](+/0)/LDLr(-/-) rabbits, there was a marked increase in plasma total cholesterol and triglycerides, as was found in their counterpart non-transgenic WHHL rabbits. Northern blot analysis revealed that hepatic apo[a] expression in WHHL transgenic rabbits was similar to that in LDLr(+/+) transgenic rabbits, suggesting the accumulation of plasma Lp[a] in WHHL transgenic rabbits was not due to increased apo[a] synthesis.In conclusion, absence of a functional LDLr leads to a marked accumulation of plasma Lp[a] in human apo[a] transgenic WHHL rabbits and LDLr may participate in the catabolism of Lp[a] in rabbits.  相似文献   

11.
Diabetes mellitus is associated with hyperlipidemia and increased risk of atherosclerosis. A diabetic animal model has been developed to study the effect of treatment with pravastatin, a potent HMG CoA reductase inhibitor, on plasma lipoprotein levels. Hypercholesterolemia was induced in alloxan diabetic and control rabbits by feeding a diet containing 25% casein and 10% hydrogenated coconut oil for 8 weeks. Feeding the casein-coconut oil diet to the diabetic group resulted in a 5-fold increase in serum cholesterol levels, which was not statistically different from the nondiabetic group fed this diet. However, in the diabetic group, there was more cholesterol in the VLDL fraction and less in LDL as compared to the nondiabetic group. Serum triacylglycerol levels in the diabetic rabbits were variable and ranged from 58-943 mg/dl. The diabetic and nondiabetic animals were then treated with pravastatin at a dose of 10 mg/kg per day for 21 days. In the nondiabetic group, pravastatin treatment significantly lowered serum and LDL cholesterol concentrations by 28.5% (52.3 mg/dl, P less than 0.05) and 36.2% (40.7 mg/dl, P less than 0.05) respectively, relative to the placebo group. Serum and VLDL triacylglycerol levels in the nondiabetic group were also significantly decreased following pravastatin treatment. In the diabetic group, serum and LDL cholesterol levels were decreased by 37.0% (69.1 mg/dl, P less than 0.05) and 52.7% (32.1 mg/dl, P less than 0.01), respectively, relative to the diabetics given the placebo. Pravastatin treatment did not adversely affect serum glucose levels. Thus, pravastatin treatment was effective in controlling the hypercholesterolemia present in these diabetic animals.  相似文献   

12.
The premise that the intrinsic level of expression of hepatic 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase determines the relative sensitivity to the serum cholesterol raising action of dietary cholesterol was examined in 9 strains of rat. For further comparison purposes, hamsters were also examined. The basal expression of hepatic HMG-CoA reductase, extent of feedback regulation by cholesterol, and changes in serum cholesterol levels and the hepatic low-density lipoprotein (LDL) receptor in response to cholesterol challenge were determined in these animals. The Sprague-Dawley, Wistar-Furth, Spontaneously Hypertensive, Lewis, and Wistar-Kyoto rats were all very resistant to dietary cholesterol and exhibited hepatic HMG-CoA reductase activities above 150 pmol / min(-1) / mg(-1). The Buffalo, Brown Norway, and Copenhagen 2331 rats had hepatic HMG-CoA reductase activities below 90 pmol / min(-1) / mg(-1) and had increases in serum cholesterol levels ranging from 12 to 33 mg/dl when given a 4-day, 1% cholesterol challenge. The extent of feedback regulation was reduced to only 3-fold in the Fisher 344 and Brown Norway rats that exhibited significant increases in serum cholesterol levels when given a cholesterol challenge. The Golden Syrian hamsters exhibited the largest increase (197 mg/dl) in serum cholesterol levels in response to dietary cholesterol and the lowest basal expression of hepatic HMG-CoA reductase (3.3 pmol / min(-1) / mg(-1)). Hepatic LDL receptor levels were not significantly decreased by dietary cholesterol in any of the animals. The data from these inbred rats and the hamsters strongly support the conclusion that the animals expressing the highest levels of hepatic HMG-CoA reductase are the most resistant to the serum cholesterol raising action of dietary cholesterol.  相似文献   

13.
Lipoprotein lipase (LPL) is the rate-limiting enzyme for the hydrolysis of the triglyceride-rich lipoproteins and plays a critical role in lipoprotein and free fatty acid metabolism. Genetic manipulation of LPL may be beneficial in the treatment of hypertriglyceridemias, but it is unknown whether increased LPL activity may be effective in lowering plasma cholesterol and improving insulin resistance in familial hypercholesterolemic patients. To test the hypothesis that stimulation of LPL expression may be used as an adjunctive therapy for treatment of homozygous familial hypercholesterolemia, we have generated transgenic (Tg) Watanabe heritable hyperlipidemic (WHHL) rabbits that overexpress the human LPL transgene and compared their plasma lipid levels, glucose metabolism, and body fat accumulation with those of non-Tg WHHL rabbits. Overexpression of LPL dramatically ameliorated hypertriglyceridemia in Tg WHHL rabbits. Furthermore, increased LPL activity in male Tg WHHL rabbits also corrected hypercholesterolemia (544 +/- 52 in non-Tg versus 227 +/- 29 mg/dl in Tg, p < 0.01) and reduced body fat accumulation by 61% (323 +/- 27 in non-Tg versus 125 +/- 21ginTg, p < 0.01), suggesting that LPL plays an important role in mediating plasma cholesterol homeostasis and adipose accumulation. In addition, overexpression of LPL significantly suppressed high fat diet-induced obesity and insulin resistance in Tg WHHL rabbits. These results imply that systemic elevation of LPL expression may be potentially useful for the treatment of hyperlipidemias, obesity, and insulin resistance.  相似文献   

14.
To determine the effect of isocaloric substitution of dietary fish oil for lard on the physical and chemical properties of plasma low density lipoproteins (LDL), ten adult male cynomolgus monkeys were fed diets containing 11% (by weight) fish oil or lard in a crossover study consisting of two 15-week periods with a 6-week washout period in between. The atherogenic diets contained 40% of calories as fat with 0.26 mg cholesterol/kcal. Periodic measurements of plasma lipids were made throughout the study and a large blood sample was taken near the end of each 15-week period for LDL isolation and characterization, and for quantification of plasma apolipoproteins. Values for both studies were combined (mean +/- SE; n = 10) by diet. Significantly lower high density lipoprotein (HDL) cholesterol (28 +/- 2 vs. 57 +/- 8 mg/dl), apoA-I (53 +/- 11 vs. 88 +/- 7 mg/dl), and apoE (4.2 +/- 0.9 vs. 8.2 +/- 1.5 mg/dl) concentrations were found when the animals were consuming the fish oil versus the lard diet, respectively, but total plasma cholesterol (408 +/- 35 vs. 416 +/- 14 mg/dl), LDL cholesterol (356 +/- 34 vs. 331 +/- 17 mg/dl), and apoB (227 +/- 35 vs. 205 +/- 23 mg/dl) levels were not affected. LDL size was smaller during fish oil feeding (4.2 +/- 0.1 vs. 4.9 +/- 0.1 g/mumol) and LDL particle concentration was greater (2.3 +/- 0.2 vs. 1.8 +/- 0.1 microM). During fish oil feeding LDL cholesteryl esters (CE) and phospholipids (PL) were enriched in n-3 fatty acids and were relatively poor in 18:1 and 18:2 LDL CE transition temperature was about 11 degrees C lower during fish oil feeding (32 +/- 1 vs. 44 +/- 0.5 degrees C) and was positively correlated with the number of saturated, monoun-saturated, and n-6 polyunsaturated CE molecules per LDL. The results suggested that the range of transition temperatures among individual animal LDL was primarily determined by the number of monounsaturated CE, and the accumulation of n-3 polyunsaturated CE in LDL during fish oil feeding uniformly lowered the transition temperature of the LDL particle. There was a significant decrease in the percentage of LDL phosphatidylcholine (59 +/- 1 vs. 72 +/- 1%) and an increase in lysophosphatidylcholine (13 +/- 1 vs. 5 +/- 1%) and sphingomyelin (22 +/- 1 vs. 17 +/- 1%) during fish oil feeding relative to that of lard.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

15.
Rabbits fed low-fat, cholesterol-free, semi-purified diets containing casein developed a marked hypercholesterolemia compared to rabbits fed a similar diet containing soy protein (plasma cholesterol 281 +/- 31 vs. 86 +/- 9 mg/dl; P less than 0.05). Turnover studies (three per dietary group) were carried out in which homologous 125I-labeled VLDL and 131I-labeled LDL were injected simultaneously into casein- (n = 8) or soy protein- (n = 9) fed rabbits. ApoB-specific activities were determined in VLDL, IDL and LDL isolated from the pooled plasma of two or three rabbits per dietary group. The production rate of VLDL apoB (1.20 +/- 0.3 vs. 1.09 +/- 0.1 mg/h per kg) was similar for the two dietary groups. The fractional catabolic rate of VLDL apoB was lower for the casein group (0.15 +/- 0.03 vs. 0.23 +/- 0.01.h-1; 0.05 less than P less than 0.10). Although the pool size of VLDL apoB was higher in the casein group (8 +/- 2 vs. 5 +/- 0.3 mg/kg), this value did not reach statistical significance. For LDL apoB, the increased pool size in casein-fed rabbits (30 +/- 5 vs. 5 +/- 1 mg/kg; P less than 0.01) was associated with a decreased fractional catabolic rate (0.03 +/- 0.005 vs. 0.08 +/- 0.008.h-1; P less than 0.01) and a 2-fold increase in the production rate of LDL apoB (1 +/- 0.3 vs. 0.4 +/- 0.06 mg/kg per h; 0.05 less than P less than 0.10) compared to rabbits fed soy protein. Analysis of precursor-product relationships between the various lipoprotein fractions showed that casein-fed rabbits synthesized a higher proportion of LDL apoB (95% +/- 2 vs. 67% +/- 2; P less than 0.001) independent of VLDL catabolism. These results support the concept that the hypercholesterolemia in casein-fed rabbits is associated with impaired LDL removal consistent with a down-regulation of LDL receptors. These changes do not occur when the casein is replaced by soy protein.  相似文献   

16.
Significant cholesterol synthesis occurs in gut mucosa of animals and humans. However, the role of gut synthesis in hypercholesterolemia and the effect of drugs on this function have not been defined. We obtained jejunal biopsies and bile samples from 21 Type II hypercholesterolemic subjects (mean serum cholesterol = 331 mg/dl) on a low fat diet after an over-night fast. Whole gut mucosal homogenate was assayed for activity of 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase, the rate-determining enzyme of cholesterol synthesis. Mean reductase activity (pmol/mg per min) was 5.5 +/- 1.0 (n = 21) in hypercholesterolemic subjects versus 11.3 +/- 1.0 in 52 normal subjects (P less than 0.01). This is consistent with the hypothesis that the primary defect in these patients is not excessive cholesterol synthesis but decreased low density lipoprotein (LDL) clearance. It implies that high LDL levels down-regulate gut reductase activity. After treatment of 7 patients with lovastatin (40-80 mg/day for at least 6-13 weeks), gut reductase activity decreased from 7.7 +/- 2.6 to 3.6 +/- 0.5 (P less than 0.05), in biopsies obtained 12 hr after the last drug dose. Inhibition of reductase activity by this drug was detected 12 hr after a dose, and the enzyme was not measurably induced during 6-13 weeks of therapy. In keeping with the decrease in serum cholesterol (332----239 mg/dl) and mucosal reductase activity during lovastatin therapy, mean gallbladder bile cholesterol saturation index also decreased (1.045 +/- 0.112 vs. 0.883 +/- 0.109, n = 7).(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
Treatment of low density lipoprotein (LDL) receptor-deficient rabbits (WHHL rabbits) with probucol (1% w/w in a chow diet) lowered their LDL-cholesterol levels by 36%, consonant with the reported effectiveness of the drug in patients deficient in the LDL receptor. Initial studies of LDL fractional catabolic rate (FCR) using 125I-labeled LDL prepared from the serum of untreated WHHL rabbits showed no difference between probucol-treated WHHL rabbits and untreated WHHL rabbits. When, however, 125I-labeled LDL was prepared from donor WHHL rabbits under treatment with probucol and injected back into them, the FCR was found to be increased by about 50% above that measured simultaneously using 131I-labeled LDL prepared from untreated WHHL donors. The labeled LDL from probucol-treated donors was also metabolized more rapidly than that from untreated donors when injected into untreated WHHL rabbits or into untreated wild-type New Zealand White rabbits. Finally, it was shown that rabbit skin fibroblasts in culture degraded labeled LDL prepared from probucol-treated WHHL rabbits more rapidly than that prepared from untreated WHHL donors. This was true both for normal rabbit fibroblasts and also for WHHL skin fibroblasts, although the absolute degradation rates in the latter were, of course, much lower for both forms of LDL. The data indicate that a major mechanism by which probucol lowers LDL levels relates not to changes in the cellular mechanisms for LDL uptake or to changes in LDL production but rather to intrinsic changes in the structure and metabolism of the plasma LDL of the probucol-treated animal.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Plasma lipids, lipoproteins, and lipoprotein cholesterol levels were studied in a group (n = 8) of prepubertal growth hormone-deficient patients before and after growth hormone (GH) administration. Determination of plasma lipoproteins by a sensitive agarose gel electrophoretic technique demonstrated: (a) in the patients with two prebeta bands an intensification of the fast prebeta lipoprotein fraction after growth hormone administration; and (b) in the patients with one prebeta band the appearance of a second prebeta band after growth hormone administration. The mean (+/- SD) plasma triglyceride level before GH was 86 +/- 60 mg/dl and 158 +/- 95 mg/dl after GH (P less than 0.01). Mean (+/- SD) plasma cholesterol level before GH was 196 +/- 25 mg/dl and 174 +/- 28 mg/dl after GH (P less than 0.05). High-density lipoprotein cholesterol concentrations decreased significantly (P less than 0.001) from mean (+/- SD) 55 +/- 12 mg/dl before GH to 37 +/- 10 mg/dl after GH. Very-low-density lipoprotein cholesterol concentrations increased significantly (P less than 0.05) from mean (+/- SD) 13 +/- 12 mg/dl before GH to 23 +/- 15 mg/dl after GH. Low-density lipoprotein cholesterol concentrations decreased (N.S.) from mean (+/- SD) 123 +/- 15 mg/dl before GH to 114 +/- 15 mg/dl after GH. These lipid and lipoprotein changes could be mediated through the insulin antagonism, hyperinsulinemia, and a decrease in lipoprotein lipase activity caused by growth hormone.  相似文献   

19.
Testosterone serum levels may influence the lipoprotein metabolism and possibly atherogenic risk. Our aim was to investigate the effects of long-term testosterone supplementation in hypogonadal men on multiple lipoprotein markers. 18 Hypogonadal men were studied before and after 3, 6, and 18 (n = 7) months of treatment with testosterone enanthate. During treatment, serum testosterone and estradiol increased, reaching normal levels (p < 0.0001 and 0.003, respectively). This was associated with a decrease in HDL cholesterol (from 1.40 +/- 0.10 mmol/l to 1.22 +/- 0.08 mmol/l, p < 0.001) after six months at the expense of HDL2 cholesterol (p < 0.01), as well as apoprotein A1 (from 139 +/- 3.4 mg/dl to 126 +/- 3.0 mg/dl, p < 0.005). Hepatic lipase activity increased (p < 0.05) and correlated positively with testosterone (r = 0.56, p < 0.02) and negatively with HDL cholesterol (r = - 0.58, p < 0.02). Total and LDL cholesterol, triglycerides, and apoprotein B did not increase. Among the seven patients who completed 18 months of treatment, triglycerides, total cholesterol, LDL and HDL cholesterol, as well as total cholesterol/HDL cholesterol ratio values did not differ from baseline while apoprotein A1 (p < 0.03) and HDL cholesterol (p < 0.015) remained decreased and hepatic lipase unchanged. Restoration of testosterone levels in hypogonadal men in this study did not reveal unfavorable changes based on total cholesterol/HDL cholesterol and LDL cholesterol/apoprotein B ratios, which are both atherogenic risk markers. Whether the changes in light of lipoprotein metabolism will adversely influence cardiovascular risk over time remains to be determined.  相似文献   

20.
There is still a lack of information on the effect of regular dancing exercise on lipid profiles. On the other hand, many studies have been carried out on the effect of aerobic exercise on lipid profiles. This study tried to find out the effects of Modern Balinese Baris Dancing Exercise (MBBDE) on serum lipid profiles. Subjects of the study were 30 healthy young male Balinese as an experimental group, and another 30 healthy young Balinese as control group. The MBBDE involved exercise intensity at 70-80% of targeted heart rate, for 50 min period, 3 times per week for 8 weeks. Pre- and post-control group design was applied. Total cholesterol and triglyceride were measured enzymatically. Following MBBDE 3 x 50 min/week for 8 weeks duration, serum level of high density lipoprotein cholesterol (HDL-C) concentration increased significantly from 55.3 +/- 2.32 mg/dl to 63.2 +/- 2.82 mg/dl (p < 0.001). It was also associated with the decrease of total cholesterol concentration from 195.5 +/- 21.10 mg/dl to 161.8 +/- 21.29 mg/dl (p < 0.001); triglyceride concentration from 132.2 +/- 9.65 mg/dl to 110.6 +/- 9.08 mg/dl (p < 0.001); and low density lipoprotein cholesterol (LDL-C) concentration from 113.8 +/- 21.68 mg/dl to 76.9 +/- 20.76 mg/dl (p < 0.001). No significant differences were found in the above parameters in the control group. It is concluded that MBBDE is an aerobic, endurance exercise, and therefore produces beneficial effect on the serum lipid profiles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号