首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To determine whether small hydrophobic surfactant peptides (SP-B and SP-C) participate in recycling of pulmonary surfactant phospholipid, we determined the effect of these peptides on transfer of 3H- or 14C-labelled phosphatidylcholine from liposomes to isolated rat alveolar Type II cells and Chinese hamster lung fibroblasts. Both natural and synthetic SP-B and SP-C markedly stimulated phosphatidylcholine transfer to alveolar Type II cells and Chinese hamster lung fibroblasts in a dose- and time-dependent fashion. Effects of the peptides on phospholipid uptake were dose-dependent, but not saturable and occurred at both 4 and 37 degrees C. Uptake of labelled phospholipid into a lamellar body fraction prepared from Type II cells was augmented in the presence of SP-B. Neither SP-B nor SP-C augmented exchange of labelled plasma membrane phosphatidylcholine from isolated Type II cells or enhanced the release of surfactant phospholipid when compared to liposomes without SP-B or SP-C. Addition of native bovine SP-B and SP-C to the phospholipid vesicles perturbed the size and structure of the vesicles as determined by electron microscopy. To determine the structural elements responsible for the effect of the peptides on phospholipid uptake, fragments of SP-B were synthesized by solid-phase protein synthesis and their effects on phospholipid uptake assessed in Type II epithelial cells. SP-B (1-60) stimulated phospholipid uptake 7-fold. A smaller fragment of SP-B (15-60) was less active and the SP-B peptide (40-60) failed to augment phospholipid uptake significantly. Like SP-B and SP-C, surfactant-associated protein (SP-A) enhanced phospholipid uptake by Type II cells. However, SP-A failed to significantly stimulate phosphatidylcholine uptake by Chinese hamster lung fibroblasts. These studies demonstrate the independent activity of surfactant proteins SP-B and SP-C on the uptake of phospholipid by Type II epithelial cells and Chinese hamster lung fibroblasts in vitro.  相似文献   

2.
1alpha,25-dihydroxyvitamin D(3) [1,25(OH)(2)D(3)] has been reported to stimulate lung maturity, alveolar type II cell differentiation, and pulmonary surfactant synthesis in rat lung. We hypothesized that 1,25(OH)(2)D(3) stimulates expression of surfactant protein-A (SP-A), SP-B, and SP-C in human fetal lung and type II cells. We found that immunoreactive vitamin D receptor was detectable in fetal lung tissue and type II cells only when incubated with 1,25(OH)(2)D(3). 1,25(OH)(2)D(3) significantly decreased SP-A mRNA in human fetal lung tissue but did not significantly decrease SP-A protein in the tissue. In type II cells, 1,25(OH)(2)D(3) alone had no significant effect on SP-A mRNA or protein levels but reduced SP-A mRNA and protein in a dose-dependent manner when the cells were incubated with cAMP. SP-A mRNA levels in NCI-H441 cells, a nonciliated bronchiolar epithelial (Clara) cell line, were decreased in a dose-dependent manner in the absence or presence of cAMP. 1,25(OH)(2)D(3) had no significant effect on SP-B mRNA levels in lung tissue but increased SP-B mRNA and protein levels in type II cells incubated in the absence or presence of cAMP. Expression of SP-C mRNA was unaffected by 1,25(OH)(2)D(3) in lung tissue incubated +/- cAMP. These results suggest that regulation of surfactant protein gene expression in human lung and type II cells by 1,25(OH)(2)D(3) is not coordinated; 1,25(OH)(2)D(3) decreases SP-A mRNA and protein levels in both fetal lung tissue and type II cells, increases SP-B mRNA and protein levels only in type II cells, and has no effect on SP-C mRNA levels.  相似文献   

3.
4.
Maturation of fetal alveolar type II epithelial cells in utero is characterized by specific changes to lung surfactant phospholipids. Here, we quantified the effects of hormonal differentiation in vitro on the molecular specificity of cellular and secreted phospholipids from human fetal type II epithelial cells using electrospray ionization mass spectrometry. Differentiation, assessed by morphology and changes in gene expression, was accompanied by restricted and specific modifications to cell phospholipids, principally enrichments of shorter chain species of phosphatidylcholine (PC) and phosphatidylinositol, that were not observed in fetal lung fibroblasts. Treatment of differentiated epithelial cells with secretagogues stimulated the secretion of functional surfactant-containing surfactant proteins B and C (SP-B and SP-C). Secreted material was further enriched in this same set of phospholipid species but was characterized by increased contents of short-chain monounsaturated and disaturated species other than dipalmitoyl PC (PC16:0/16:0), principally palmitoylmyristoyl PC (PC16:0/14:0) and palmitoylpalmitoleoyl PC (PC16:0/16:1). Mixtures of these PC molecular species, phosphatidylglycerol, and SP-B and SP-C were functionally active and rapidly generated low surface tension on compression in a pulsating bubble surfactometer. These results suggest that hormonally differentiated human fetal type II cells do not select the molecular composition of surfactant phospholipid on the basis of saturation but, more likely, on the basis of acyl chain length.  相似文献   

5.
Developing rat lung lipofibroblasts express leptin beginning on embryonic day (E) 17, increasing 7- to 10-fold by E20. Leptin and its receptor are expressed mutually exclusively by fetal lung fibroblasts and type II cells, suggesting a paracrine signaling "loop." This hypothesized mechanism is supported by the following experimental data: 1) leptin stimulates the de novo synthesis of surfactant phospholipid by both fetal rat type II cells (400% x 100 ng(-1) x ml(-1) x 24 h(-1)) and adult human airway epithelial cells (85% x 100 ng(-1) x 24 h(-1)); 2) leptin is secreted by lipofibroblasts in amounts that stimulate type II cell surfactant phospholipid synthesis in vitro; 3) epithelial cell secretions such as parathyroid hormone-related protein (PTHrP), PGE(2), and dexamethasone stimulate leptin expression by fetal rat lung fibroblasts; 4) PTHrP or leptin stimulate the de novo synthesis of surfactant phospholipid (2- to 2.5-fold/24 h) and the expression of surfactant protein B (SP-B; >25-fold/24 h) by fetal rat lung explants, an effect that is blocked by a leptin antibody; and 5) a PTHrP receptor antagonist inhibits the expression of leptin mRNA by explants but does not inhibit leptin stimulation of surfactant phospholipid or SP-B expression, indicating that PTHrP paracrine stimulation of type II cell maturation requires leptin expression by lipofibroblasts. This is the first demonstration of a paracrine loop that functionally cooperates to induce alveolar acinar lung development.  相似文献   

6.
Mechanical ventilation plays a central role in the pathogenesis of bronchopulmonary dysplasia. However, the mechanisms by which excessive stretch of fetal or neonatal type II epithelial cells contributes to lung injury are not well defined. In these investigations, isolated embryonic day 19 fetal rat type II epithelial cells were cultured on substrates coated with fibronectin and exposed to 5% or 20% cyclic stretch to simulate mechanical forces during lung development or lung injury, respectively. Twenty percent stretch of fetal type II epithelial cells increased necrosis, apoptosis, and proliferation compared with control, unstretched samples. By ELISA and real-time PCR (qRT-PCR), 20% stretch increased secretion of IL-8 into the media and IL-8 gene expression and inhibited IL-10 release. Interestingly, administration of recombinant IL-10 before 20% stretch did not affect cell lysis but significantly reduced apoptosis and IL-8 release compared with stretched samples without IL-10. Collectively, our studies suggest that IL-10 may play an important role in protection of fetal type II epithelial cells from injury secondary to stretch.  相似文献   

7.
We have developed a Culture system for guinea pig alveolar type II cells using an epithelium-denuded human amnion membrane as a substratum. The differentiated morphology was maintained for 3 wk by both air-interface feeding and immersion feeding when type II cells were cultured on the basement membrane side of the amnion with fibroblasts on the opposite side (coculture). Functionally high levels of surfactant protein B (SP-B) and C (SP-C) messenger ribonucleic acids (mRNAs) were expressed even after the 3-wk cultivation and surfactant protein A mRNA was detected on day 10 of the culture. The differentiation was also maintained when fibroblasts were cultured on lower chambers of the culture plates (separate culture). In contrast, culture of type II cells without fibroblasts (monoculture) could not preserve the mature morphology. When the monoculture was supplemented with keratinocyte growth factor or hepatocyte growth factor, a monolayer of rather cuboidal type II cells with apical microvilli was maintained. However, the percent area of lamellar bodies in these cells was significantly less than that in freshly isolated type II cells, and mRNA expressions of SP-B and SP-C were also considerably suppressed. These findings suggest that other growth factors or combinations of these factors are necessary for the maintenance of the differentiated phenotype. As substratum, a permeable collagen membrane or a thin gel layer of Engelbreth-Holm-Swarm mouse sarcoma extracts did not preserve the mature characteristics. This culture system using an acellular human amnion membrane may provide novel models for research in type II cells.  相似文献   

8.
To determine potential relationships between transforming growth factor (TGF)-alpha and surfactant homeostasis, the metabolism, function, and composition of surfactant phospholipid and proteins were assessed in transgenic mice in which TGF-alpha was expressed in respiratory epithelial cells. Secretion of saturated phosphatidylcholine was decreased 40-60% by expression of TGF-alpha. Although SP-A, SP-B, and SP-C mRNA levels were unchanged by expression of TGF-alpha, SP-A and SP-B content in bronchoalveolar lavage fluid was decreased. The minimum surface tension of surfactant isolated from the transgenic mice was significantly increased. Incubation of cultured normal mice type II cells with TGF-alpha in vitro did not change secretion of surfactant phosphatidylcholine and SP-B, indicating that TGF-alpha does not directly influence surfactant secretion. Expression of a dominant negative (mutant) EGF receptor in the respiratory epithelium blocked the TGF-alpha-induced changes in lung morphology and surfactant secretion, indicating that EGF receptor signaling in distal epithelial cells was required for TGF-alpha effects on surfactant homeostasis. Because many epithelial cells were embedded in fibrotic lesions caused by TGF-alpha, changes in surfactant homeostasis may at least in part be influenced by tissue remodeling that results in decreased surfactant secretion. The number of nonembedded type II cells was decreased 30% when TGF-alpha was expressed during development and was increased threefold by TGF-alpha expression in adulthood, suggesting possible alteration of type II cells on surfactant metabolism in the adult lung. Abnormalities in surfactant function and decreased surfactant level in the airways may contribute to the pathophysiology induced by TGF-alpha in both the developing and adult lung.  相似文献   

9.
Normal growth and differentiation of the lung depends upon mesenchymal-epithelial interactions during development. Recombination experiments using immature (Day 17) and mature (Day 21) fetal rat lung fibroblasts (FRLF) revealed that the stimulatory effect of mature fibroblasts on fetal type II epithelial cells is blocked by immature fibroblasts. Similarly, conditioned medium from Day 17 FRLFs blocks the stimulatory effect (fibroblast-pneumonocyte factor) of Day 21 conditioned medium on type II epithelial cells. This blocking activity is nondialyzable, trypsin sensitive, and heat stable. Its activity is neutralized by an antibody to TGF beta, in both conditioned media and recombined cell studies, and its activity is mimicked by TGF beta. Developmentally, TGF beta-like activity is present in conditioned medium from 15- to 19-day FRLF, decreasing precipitously between 19 and 21 days gestation. Northern blot analysis of mRNAs from fetal rat lung fibroblasts on Days 17, 19, and 21 revealed expression of TGF beta at all three stages of development.  相似文献   

10.
11.
12.
Evaluation of the number of type II alveolar epithelial cells (AECs) is an important measure of the lung’s ability to produce surfactant. Immunohistochemical staining of these cells in lung tissue commonly uses antibodies directed against mature surfactant protein (SP)-C, which is regarded as a reliable SP marker of type II AECs in rodents. There has been no study demonstrating reliable markers for surfactant system maturation by immunohistochemistry in the fetal sheep lung despite being widely used as a model to study lung development. Here we examine staining of a panel of surfactant pro-proteins (pro–SP-B and pro–SP-C) and mature proteins (SP-B and SP-C) in the fetal sheep lung during late gestation in the saccular/alveolar phase of development (120, 130, and 140 days), with term being 150 ± 3 days, to identify the most reliable marker of surfactant producing cells in this species. Results from this study indicate that during late gestation, use of anti-SP-B antibodies in the sheep lung yields significantly higher cell counts in the alveolar epithelium than SP-C antibodies. Furthermore, this study highlights that mature SP-B antibodies are more reliable markers than SP-C antibodies to evaluate surfactant maturation in the fetal sheep lung by immunohistochemistry.  相似文献   

13.
Infants with increased pulmonary blood flow secondary to congenital heart disease suffer from tachypnea, dyspnea, and recurrent pulmonary infections. We have recently established a model of pulmonary hypertension secondary to increased pulmonary blood flow in lambs after in utero placement of an aortopulmonary vascular graft. The purpose of the present study was to utilize our animal model to determine the effects on the expression of surfactant proteins A (SP-A), B (SP-B), and C (SP-C). At age 4 wk, SP-A mRNA content in lambs decreased to 61.4 +/- 8% of age-matched control value (n = 5; P < 0.05). In addition, SP-A protein content was decreased to 50 +/- 12% of control value (n = 6; P < 0.0001). Although we did not observe statistically significant changes in SP-B mRNA content, SP-B protein was decreased to 74 +/- 25% of control value (n = 4; P < 0.02). There was no difference in SP-C mRNA. These data show that in a model of congenital heart disease with pulmonary hypertension secondary to increased pulmonary blood flow, there is a decrease in SP-A gene expression as well as a decrease in SP-A and SP-B protein contents.  相似文献   

14.
Processing of pulmonary surfactant protein B by napsin and cathepsin H   总被引:10,自引:0,他引:10  
Surfactant protein B (SP-B) is an essential constituent of pulmonary surfactant. SP-B is synthesized in alveolar type II cells as a preproprotein and processed to the mature peptide by the cleavage of NH2- and COOH-terminal peptides. An aspartyl protease has been suggested to cleave the NH2-terminal propeptide resulting in a 25-kDa intermediate. Napsin, an aspartyl protease expressed in alveolar type II cells, was detected in fetal lung homogenates as early as day 16 of gestation, 1 day before the onset of SP-B expression and processing. Napsin was localized to multivesicular bodies, the site of SP-B proprotein processing in type II cells. Incubation of SP-B proprotein from type II cells with a crude membrane extract from napsin-transfected cells resulted in enhanced levels of a 25-kDa intermediate. Purified napsin cleaved a recombinant SP-B/EGFP fusion protein within the NH2-terminal propeptide between Leu178 and Pro179, 22 amino acids upstream of the NH2 terminus of mature SP-B. Cathepsin H, a cysteine protease also implicated in pro-SP-B processing, cleaved SP-B/EGFP fusion protein 13 amino acids upstream of the NH2 terminus of mature SP-B. Napsin did not cleave the COOH-terminal peptide, whereas cathepsin H cleaved the boundary between mature SP-B and the COOH-terminal peptide and at several other sites within the COOH-terminal peptide. Knockdown of napsin by small interfering RNA resulted in decreased levels of mature SP-B and mature SP-C in type II cells. These results suggest that napsin, cathepsin H, and at least one other enzyme are involved in maturation of the biologically active SP-B peptide.  相似文献   

15.
Surfactant protein B (SP-B) mRNA and protein are restricted to alveolar Type II and Clara cells in the respiratory epithelium. In order to investigate the function of SP-B in these distinct cell types, transgenic mice were generated in which SP-B expression was selectively restored in Type II cells or Clara cells of SP-B -/- mice. The 4.8-kilobase murine SP-C promoter was used to generate 3 transgenic lines which expressed human SP-B in Type II cells (mSP-C/hSP-B). Likewise, the 2.3-kilobase murine CCSP promoter was used to generate two transgenic lines which expressed human SP-B in Clara cells (mCCSP/hSP-B). mSP-C/hSP-B and mCCSP/hSP-B transgenic mice were subsequently bred to SP-B +/- mice in order to selectively express SP-B in Type II cells or Clara cells of SP-B -/- mice. Selective restoration of SP-B expression in Type II cells completely rescued the neonatal lethal phenotype in SP-B -/- mice. Expression of SP-B in some, but not all Type II cells of SP-B -/- mice, allowed postnatal survival, but resulted in significantly altered lung architecture and function. Selective restoration of SP-B expression in Clara cells of SP-B -/- mice resulted in respiratory dysfunction and invariable neonatal death, related to the complete absence of mature SP-B peptide in these mice. These results indicate that expression and processing of the SP-B proprotein to the mature peptide in Type II cells is absolutely required for lung function in vivo and that SP-B expression in Clara cells cannot substitute for this function.  相似文献   

16.
17.
18.
We examined the effect of monolayer culture on surfactant phospholipids and proteins of type II cells isolated from human adult and fetal lung. Type II cells were prepared from cultured explants of fetal lung (16-24 weeks gestation) and from adult surgical specimens. Cells were maintained for up to 6 days on plastic tissue culture dishes. Although incorporation of [methyl-3H]choline into phosphatidylcholine (PC) by fetal cells was similar on day 1 and day 5 of culture, saturation of PC fell from 35 to 26%. In addition, there was decreased distribution of labeled acetate into PC, whereas distribution into other phospholipids increased or did not change. The decrease in saturation of newly synthesized PC was not altered by triiodothyronine (T3) and dexamethasone treatment or by culture as mixed type II cell/fibroblast monolayers. The content of surfactant protein SP-A (28-36 kDa) in fetal cells, as measured by ELISA and immunofluorescence microscopy, rose during the first day and then fell to undetectable levels by the fifth. Synthesis of SP-A, as measured by [35S]methionine labeling and immunoprecipitation, was detectable on day 1 but not thereafter. Levels of mRNAs for SP-A and for the two lipophilic surfactant proteins SP-B (18 kDa) and SP-C (5 kDa) fell with half-times of maximally 24 h. In contrast, total protein synthesis measured by [35S]methionine incorporation increased and then plateaued. In adult cells, the content of SP-A and its mRNA decreased during culture, with time-courses similar to those for fetal cells. We conclude that in monolayer culture on plastic culture dishes, human type II cells lose their ability to synthesize both phospholipids and proteins of surfactant. The control of type II cell differentiation under these conditions appears to be at a pretranslational level.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号