首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
Irreversible destruction of joint structures is a major feature of osteoarthritis and rheumatoid arthritis. Fibrillar collagens in bone, cartilage and other soft tissues are critical for optimal joint form and function. Several approaches can be used to ascertain the role of collagenases, matrix metalloproteinases, in proteolysis of joint collagens in arthritis. These approaches include identifying spontaneous genetic disorders of the enzymes and substrates in humans and animals, as well as engineering mutations in the genes that encode these proteins in mice. Insights gained from such studies can be used to design new therapies to interrupt these catabolic events.  相似文献   

2.
Regulation of matrix biology by matrix metalloproteinases   总被引:35,自引:0,他引:35  
Matrix metalloproteinases (MMPs) are endopeptidases that contribute to growth, development and wound healing as well as to pathologies such as arthritis and cancer. Until recently, it has been thought that MMPs participate in these processes simply by degrading extracellular matrix (ECM) molecules. However, it is now clear that MMP activity is much more directed and causes the release of cryptic information from the ECM. By precisely cleaving large insoluble ECM components and ECM-associated molecules, MMPs liberate bioactive fragments and growth factors and change ECM architecture, all of which influence cellular behavior. Thus, MMPs have become a focal point for understanding matrix biology.  相似文献   

3.
4.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling, and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.  相似文献   

5.
Multiple roles of matrix metalloproteinases during apoptosis   总被引:5,自引:0,他引:5  
Structural, molecular and biochemical approaches have contributed to piecing together the puzzle of how matrix metalloproteinases (MMPs) work and contribute to various disease processes. However, MMPs have many unexpected substrates other than components of the extracellular matrix which profoundly influence cell behaviour, survival and death. With the current understanding of diverse/novel roles of matrix metalloproteinases—particularly their direct or indirect relevance for the early steps during programmed cell death—some seemingly contrasting results seem less surprising. To better target MMPs an appreciation of their many extracellular, intracellular and intranuclear functions, often acting in opposing directions with paradoxical roles in cell death, is carefully required.  相似文献   

6.
Matrix metalloproteinases have important functions for tissue turnover in fish, with relevance both for the fish industry and molecular and cellular research on embryology, inflammation and tissue repair. These metalloproteinases have been studied in different fish types, subjected to both aquaculture and experimental conditions. This review highlights studies on these metalloproteinases in relation to both fish quality and health and further, the future importance of fish for basic research studies.  相似文献   

7.
Matrix metalloproteinases (MMPs) and tissue inhibitors of metalloproteinases (TIMPs) are thought to be predominant proteases and protease inhibitors involved in the pathogenesis of inflammatory bowel diseases (IBD) through their ability to remodel the extracellular matrix (ECM) in response to inflammatory stimuli and by their immunomodulating effects. An imbalance between MMPs and TIMPs has been linked with acute and chronic inflammation and aberrant tissue remodeling, as seen in IBD. Moreover, recurrent phases of tissue destruction and subsequent tissue repair can cause serious complications in IBD patients such as fistulas and fibrosis. The aims of this review are (i) to summarize current literature on genetic association, mRNA, and protein expression studies with regard to MMPs and TIMPs in IBD patients and various animal models, including those with transgenic and knockout mice; (ii) to compare biochemical and molecular biological data in humans with those obtained in animal model studies and (iii) to critically evaluate and translate how this knowledge may be used in practical terms to understand better the pathophysiology and mechanisms operating in IBD and to apply this for improvement of clinical outcomes at diagnostic, prognostic and therapeutic levels.  相似文献   

8.
Annexin A1 (ANXA1, lipocortin-1) is the first characterized member of the annexin superfamily of proteins, so called since their main property is to bind (i.e., to annex) to cellular membranes in a Ca(2+) -dependent manner. ANXA1 has been involved in a broad range of molecular and cellular processes, including anti-inflammatory signalling, kinase activities in signal transduction, maintenance of cytoskeleton and extracellular matrix integrity, tissue growth, apoptosis, and differentiation. New insights show that endogenous ANXA1 positively modulates myoblast cell differentiation by promoting migration of satellite cells and, consequently, skeletal muscle differentiation. This suggests that ANXA1 may contribute to the regeneration of skeletal muscle tissue and may have therapeutic implications with respect to the development of ANXA1 mimetics.  相似文献   

9.
Bartnikas TB 《Biometals》2012,25(4):677-686
Transferrin is an abundant serum metal-binding protein best known for its role in iron delivery. The human disease congenital atransferrinemia and animal models of this disease highlight the essential role of transferrin in erythropoiesis and iron metabolism. Patients and mice deficient in transferrin exhibit anemia and a paradoxical iron overload attributed to deficiency in hepcidin, a peptide hormone synthesized largely by the liver that inhibits dietary iron absorption and macrophage iron efflux. Studies of inherited human disease and model organisms indicate that transferrin is an essential regulator of hepcidin expression. In this paper, we review current literature on transferrin deficiency and present our recent findings, including potential overlaps between transferrin, iron and manganese in the regulation of hepcidin expression.  相似文献   

10.
11.
Matrix metalloproteinases (MMPs) have long been linked to cancer progression owing to their ability to breakdown tissue barriers for metastatic spread. Accordingly, multiple studies have examined the potential value of these enzymes as targets for cancer therapy. Unfortunately, most clinical trials with MMP inhibitors have yielded negative results which has made necessary to re-evaluate the role of these proteases in cancer. Recent works mainly based on the use of mouse models deficient in specific MMPs have revealed that these enzymes play many roles in cancer distinct from matrix destruction, influencing early steps of tumor evolution, and expanding their pro-tumorigenic properties. However, these in vivostudies have also shown that, unexpectedly, some MMP family members like MMP8 may have paradoxical anti-tumor functions. Nevertheless, the final validation of these MMPs as bona fide tumor suppressors requested the identification of the putative genetic or epigenetic changes underlying their inactivation during cancer development. To this purpose, very recent large-scale genomic studies have explored the possibility that MMPs could be genetically altered in a panel of human malignant tumors from different sources. These studies have demonstrated that MMP8 is a frequently mutated gene in human melanoma. Functional analysis of the identified mutations has confirmed that all of them lead to the loss-of-function of MMP8 and enhance the progression of melanoma, thus providing definitive evidence that MMP8 is a tumor-suppressor gene. Parallel studies have extended these findings to other MMP-related metalloproteinases such as ADAMTS15, which has been found to be genetically inactivated in human colorectal cancer. This review describes the identification and validation of some MMPs and related enzymes as anti-tumor proteases and speculates about the molecular mechanisms underlying their protective roles in tumor development. Finally, the review explores the clinical applications derived from the identification of MMPs that favor the host instead of the tumor.  相似文献   

12.
13.
Despite much information on their catalytic properties and gene regulation, we actually know very little of what matrix metalloproteinases (MMPs) do in tissues. The catalytic activity of these enzymes has been implicated to function in normal lung biology by participating in branching morphogenesis, homeostasis, and repair, among other events. Overexpression of MMPs, however, has also been blamed for much of the tissue destruction associated with lung inflammation and disease. Beyond their role in the turnover and degradation of extracellular matrix proteins, MMPs also process, activate, and deactivate a variety of soluble factors, and seldom is it readily apparent by presence alone if a specific proteinase in an inflammatory setting is contributing to a reparative or disease process. An important goal of MMP research will be to identify the actual substrates upon which specific enzymes act. This information, in turn, will lead to a clearer understanding of how these extracellular proteinases function in lung development, repair, and disease.  相似文献   

14.
Physiological processes involving remodelling of the extracellular matrix, such as wound healing, embryogenesis, angiogenesis, and the female reproductive cycle, require the activity of matrix metalloproteinases (MMPs). This group of proteases degrades basal membranes and connective tissues and plays an essential role in the homeostasis of the extracellular matrix. An imbalance in the expression or activity of MMPs can have important consequences in diseases such as multiple sclerosis, Alzheimer's disease, or the development of cancers. Because of the pathophysiological importance of MMPs, their activity is highly controlled in order to confine them to specific areas. An activation cascade, initiated by the proteolysis of plasminogen, cleaves proMMPs, and every step is controlled by specific activators or inhibitors. MMPs destabilize the organization of the extracellular matrix and influence the development of cancer by contributing to cell migration, tumor cell proliferation, and angiogenesis. Accordingly, these proteases possess an important role in cell-matrix interactions by affecting fundamental processes such as cell differentiation and proliferation. Therefore, the characterization of MMPs involved in specific types and stages of tumors will significantly improve the diagnosis and treatment of these cancers in humans.  相似文献   

15.
Recent studies indicate that mesenchymal stromal cell (MSC) transplantation improves healing of injured and diseased skeletal muscle, although the mechanisms of benefit are poorly understood. In the present study, we investigated whether MSCs and/or their trophic factors were able to regulate matrix metalloproteinase (MMP) expression and activity in different cells of the muscle tissue. MSCs in co-culture with C2C12 cells or their conditioned medium (MSC-CM) up-regulated MMP-2 and MMP-9 expression and function in the myoblastic cells; these effects were concomitant with the down-regulation of the tissue inhibitor of metalloproteinases (TIMP)-1 and -2 and with increased cell motility. In the single muscle fiber experiments, MSC-CM administration increased MMP-2/9 expression in Pax-7+ satellite cells and stimulated their mobilization, differentiation and fusion. The anti-fibrotic properties of MSC-CM involved also the regulation of MMPs by skeletal fibroblasts and the inhibition of their differentiation into myofibroblasts. The treatment with SB-3CT, a potent MMP inhibitor, prevented in these cells, the decrease of α-smooth actin and type-I collagen expression induced by MSC-CM, suggesting that MSC-CM could attenuate the fibrogenic response through mechanisms mediated by MMPs. Our results indicate that growth factors and cytokines released by these cells may modulate the fibrotic response and improve the endogenous mechanisms of muscle repair/regeneration.  相似文献   

16.
Endogenous tissue inhibitors of metalloproteinases (TIMPs) have key roles in regulating physiological and pathological cellular processes. Imitating the inhibitory molecular mechanisms of TIMPs while increasing selectivity has been a challenging but desired approach for antibody-based therapy. TIMPs use hybrid protein-protein interactions to form an energetic bond with the catalytic metal ion, as well as with enzyme surface residues. We used an innovative immunization strategy that exploits aspects of molecular mimicry to produce inhibitory antibodies that show TIMP-like binding mechanisms toward the activated forms of gelatinases (matrix metalloproteinases 2 and 9). Specifically, we immunized mice with a synthetic molecule that mimics the conserved structure of the metalloenzyme catalytic zinc-histidine complex residing within the enzyme active site. This immunization procedure yielded selective function-blocking monoclonal antibodies directed against the catalytic zinc-protein complex and enzyme surface conformational epitopes of endogenous gelatinases. The therapeutic potential of these antibodies has been demonstrated with relevant mouse models of inflammatory bowel disease. Here we propose a general experimental strategy for generating inhibitory antibodies that effectively target the in vivo activity of dysregulated metalloproteinases by mimicking the mechanism employed by TIMPs.  相似文献   

17.
18.
Chronic obstructive pulmonary disease (COPD) is a common lung disease with cigarette smoking as the major etiological factor, but only 15% of smokers develop COPD. Destruction of lung elastin observed in COPD is mediated by many enzymes, including cysteine, serine, and matrix metalloproteinases (MMP). The contribution of these enzymes to the lung elastolytic load, released from alveolar macrophages collected from nonsmokers, healthy smokers, and COPD patients, was examined by radiolabeled elastin as substrate in the presence of specific enzyme inhibitors. The activity of MMP was further examined by zymography and Western blotting. COPD macrophages degraded more elastin than either of the other groups. Elastolysis was greatest in the initial 24 h. Through the 72-h culture period, the contribution to elastolysis of serine elastases decreased, MMP increased, and cysteine elastases remained constant. The increased release of elastolytic enzymes in COPD subjects may explain why some smokers develop COPD. This difference may be due to unknown susceptibility factors. Serine proteases play a significant role; however, other enzymes, particularly the MMP, deserve further investigation.  相似文献   

19.
20.
Matrix metalloproteases (MMPs) are key regulatory molecules in the formation, remodeling and degradation of extracellular matrix (ECM) components in both physiological and pathological processes in many tissues. In skeletal muscle, MMPs play an important role in the homeostasis and maintenance of myofiber functional integrity by breaking down ECM and regulating skeletal muscle cell migration, differentiation and regeneration. Skeletal muscle satellite cells, a group of quiescent stem cells located between the basement membrane and the plasmalemma of myofibers, are responsible for lifelong maintenance and repairing, which can be activated and as a result migrate underneath the basement membrane to promote regeneration at the injured site. MMPs are able to degrade ECM components, thereby facilitating satellite cell migration and differentiation. This current review will focus on the critical roles of MMPs in skeletal muscle injury and repair, which include satellite cell activation with migration and differentiation. The effect of MMPs on muscle regeneration and fibrous scar tissue formation, as well as therapeutic insights for the future will be explored.Key words: matrix metalloproteinases, skeletal muscle satellite cells, migration, differentiation, regeneration, fibrosis  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号